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ABSTRACT

The neuronal RNA-binding protein HuD plays a critical role
in the post-transcriptional regulation of short-lived mRNAs
during the initial establishment and remodelling of neural
connections. We have generated transgenic mice over-
expressing this protein (HuD-Tg) in adult DGCs (dentate
granule cells) and shown that their mossy fibres contain high
levels of GAP-43 (growth-associated protein 43) and exhibit
distinct morphological and electrophysiological properties.
To investigate the basis for these changes and identify other
molecular targets of HuD, DGCs from HuD-Tg and control
mice were collected by LCM (laser capture microscopy) and
RNAs analysed using DNA microarrays. Results show that 216
known mRNAs transcripts and 63 ESTs (expressed sequence
tags) are significantly up-regulated in DGCs from these
transgenic mice. Analyses of the 39-UTRs (39-untranslated
regions) of these transcripts revealed an increased number
of HuD-binding sites and the presence of several known
instability-conferring sequences. Among these, the mRNA for
TTR (transthyretin) shows the highest level of up-regulation,
as confirmed by qRT–PCR (quantitative reverse transcription–
PCR) and ISH (in situ hybridization). GO (gene ontology)
analyses of up-regulated transcripts revealed a large over-
representation of genes associated with neural development
and axogenesis. In correlation with these gene expression
changes, we found an increased length of the infrapyramidal
mossy fibre bundle in HuD-Tg mice. These results support
the notion that HuD stabilizes a number of developmentally

regulated mRNAs in DGCs, resulting in increased axonal
elongation.

Key words: axonal outgrowth, dentate granule cell, gene
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INTRODUCTION

Post-transcriptional mechanisms play an important role in

gene regulation, particularly in neurons, where mRNAs are

localized to dendrites and growing axons and regulated

independently from transcription (Eberwine et al., 2001;

Steward and Schuman, 2001; Martin and Zukin, 2006;

Bolognani and Perrone-Bizzozero, 2008; Yoo et al., 2010).

RNA-binding proteins participate in all aspects of post-

transcriptional regulation, from mRNA splicing and transport

to stability and translation. Among these proteins, the

neuronal ELAV-like protein HuD has been shown to bind and

stabilize several short-lived mRNAs, including those encoding

GAP-43 (growth-associated protein 43) and other development-

ally regulated proteins (for a review see Perrone-Bizzozero and

Bolognani, 2002; Deschênes-Furry et al., 2006). The expres-

sion of HuD coincides with the earliest stages of neuronal

differentiation and is maintained through the maturation

of neurons (Okano and Darnell, 1997; Wakamatsu and

Weston, 1997; Clayton et al., 1998; Bolognani et al., 2007a;
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Hambardzumyan et al., 2009). This pattern of expression is

critical for proper neuronal differentiation, as shown by KO

(knockout) and overexpression studies (Akamatsu et al., 2005;

Bolognani et al., 2006). Furthermore, recent studies also

demonstrate that HuD is required for mechanisms of learning

and memory in mature hippocampus and peripheral nerve

regeneration (Bolognani et al., 2004; Pascale et al., 2004;

Anderson et al., 2003; Deschênes-Furry et al., 2007). Consistent

with the role of HuD in developmental and adult plasticity,

genome-wide identification of its targets revealed that many of

these transcripts encode for proteins associated with axon

guidance, actin dynamics and long-term potentiation

(Bolognani et al., 2010).

We have previously shown that DGCs (dentate granule

cells) of the hippocampus express HuD mRNA and protein

during the first week of postnatal development (Bolognani

et al., 2007a). However, their levels decline quickly thereafter

and they are not detected in DGCs from mature mice or rats

(Bolognani et al., 2006, 2007a). This developmental decline in

HuD expression in DGCs correlates with that of one of its

target mRNAs, GAP-43, presumably due to its instability in the

absence of HuD (Namgung and Routtenberg, 2000; Bolognani

et al., 2006). Supporting this idea, we have shown that both

HuD and GAP-43 are re-induced in DGCs of adult rats after

epileptic seizures (Bolognani et al., 2007a) and that adult

transgenic mice in which HuD is overexpressed via the

aCaMKII (a-Ca2+/calmodulin-dependent protein kinase II)

promoter exhibit increased stabilization and accumula-

tion of GAP-43 mRNA in DGCs (Bolognani et al., 2006).

Furthermore, mossy fibres of HuD-Tg exhibit increased PPF

(paired-pulse facilitation) and increased sprouting of GAP-43

containing terminals in the CA3 region (Tanner et al., 2008).

To further characterize the molecular targets and mechan-

isms mediating the different properties of DGCs and their

projections in HuD overexpressor mice, we sought to identify

the mRNAs regulated by HuD in these cells using a combina-

tion of LCM (laser capture microscopy) and gene expression

profiling. Our results clearly show an increased expression of

development-associated genes in DGCs from adult HuD over-

expressor mice relative to age-matched control littermates.

MATERIALS AND METHODS

Animals
All animal studies were approved by the University of New

Mexico Animal Care and Use Committee and conformed to

NIH (National Institutes of Health) guidelines for the use of

animals in research. All experiments were performed using

adult male HuD-Tg line 4 mice (Bolognani et al., 2006) and

control littermates from 6 to 8 weeks of age. HuD-Tg mice

express the HuD isoform of the human HuD protein under the

control of the aCaMKII promoter [Tg(Camk2a-ELAVL4)].

LCM and microarray analysis
DGCs from both hippocampi of three pairs of HuD-Tg mice

and WT (wild-type) littermates were captured in two separate

experiments at the Duke DNA Microarray Facility. RNAs were

then isolated and analysed by Affymetrix 430 2.0 mouse

genomic arrays at Translational Genomics (T-Gen). Both

facilities were part of the NIH Neuroscience DNA Microarray

Consortium. Statistical analysis of transcript levels in HuD-Tg

and non-transgenic control littermates was performed using

GeneSpring 9.0 software, and significant differences in gene

expression were determined using P,0.05.

39-UTR (39-untranslated regions) bioinformatics
analyses
For analysis of the presence of known AREs (AU-rich elements)

and 39-UTR statistics, 39-UTR sequences of up-regulated

genes and the entire 430 2.0 Affymetrix chip were downloaded

from Biomart Ensembl 61 Mus musculus gene database

(NCBIM37) in FASTA format (http://www.ensembl.org/biomart).

We were able to retrieve 285 39-UTR sequences of the up-

regulated genes in the dentate gyrus and 18490 39-UTR

sequences of the entire chip. Custom-written scripts in Perl

5.10.0 using BioPerl 1.5.2 modules were used to compute the

presence of the motifs in the data set as described by Bolognani

et al. (2010). Differences between these two datasets were

analysed by x2 test using the R statistical package version 2.7.1.

GO (gene ontology) and biological pathway
analyses
Data were analysed using the Gene Set Analysis Toolkit V2

(WebGestalt) available online at the Vanderbilt University

(http://bioinfo.vanderbilt.edu/webgestalt/). We compared the

distribution of genes up-regulated in the dentate gyrus of

HuD-Tg mice with those in the Affymetrix 430 2.0 chip gene

list. The software uses the hypergeometric statistical test to

analyse significance, and P,0.01 were considered as statisti-

cally significant. IPA (ingenuity pathway analysis) software

(http://www.ingenuity.com/) allows for the visualization of

dynamic pathways based on information manually curated

from literature searches. IPA was used here to discover

and visualize relevant biological networks and functional

enrichments associated with HuD-DGC up-regulated and

down-regulated transcripts.

FISH (fluorescence in situ hybridization)
FISH was performed as described Smith et al. (2004) with

the TSA amplification modifications indicated in the GEISHA

(Gene Expression In situ Hybridization Analysis project, http://

geisha.arizona.edu). Briefly, after the mice were killed, brains

were removed rapidly and flash-frozen in 2-methylbutane

cooled to 240 C̊ in solid CO2/methanol slurry. Sections (16 mm)

were cut at 220 C̊ on a cryostat and stored at 280 C̊. An

antisense oligonucleotide against nucleotides 134–17 in the
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mouse TTR (transthyretin) mRNA (59-GGATTCTCCAGCACCCGCG-

GGGCCAGCTTCAGACAC) was end-labelled using recombinant

terminal transferase and DIG (digoxigenin)-dUTP (Roche, Oligo-

nucleotide tailing kit) according to the manufacturer’s protocols.

Sections were hybridized overnight at 55 C̊ with DIG-labelled

TTR probes and washed with 50% formamide/16SSC/0.1%

Tween-20. Sections were then incubated in the presence of

peroxidase-conjugated anti-DIG antibodies followed by tyra-

mide-fluorescein conjugates (TSA Plus Florescence Systems Kit,

PerkinElmer). After subsequent washes, fluorescent intensity in

the sections was measured using NIH ImageJ.

qRT–PCR (quantitative reverse transcription–
PCR)
qRT–PCR for TTR mRNA was performed as previously described

(Bullock et al., 2009). Briefly, mouse TTR primers (forward 59-AG-

GTCAGAAAGCAGAGTGGACCAA and reverse 59-ACACTACTGTG-

CATCTACAGCCCT) were validated against mouse GAPDH (glycer-

aldehyde-3-phosphate dehydrogenase; forward 59-TGTGATGGG-

TGTGAACCACGAGAA and reverse 59-GAGCCCTTCCACAATGCCA-

AAGTT) and found to be within optimal amplification values

(validation curve slopes ,|0.1|). Dissociation curves of all SYBR

Green primer pairs revealed no evidence of dimerization. Samples

were run in triplicate in two separate plates and compared with

GAPDH on the same plate as previously described (Bullock et al.,

2009).

Immunohistochemistry
Four pairs of HuD-Tg and control mice were processed for

immunohistochemistry as described by Tanner et al. (2008).

Briefly, brains were fixed in 4% (w/v) PFA (paraformaldehyde)

and cryoprotected for at least 24 h in 30% sucrose in PBS.

Brains were mounted on a sliding-knife microtome and

serial sections of 40 mm were placed free-floating in PBS.

Sections were incubated with rabbit anti-calbindin D-28k

(1:2000; Swant) followed by incubation with anti-rabbit Alexa

FluorH 568 secondary antibodies (1:100; Molecular Probes).

Epifluorescent images were taken on a BioRad BX-60 microscope

with an Olympus DP71 CCD-digital camera (Olympus America).

Timm’s staining
Mossy fibres are characterized by the presence of high

concentration of vesicular zinc (Zn2+). Visualization of this

vesicular Zn2+ was achieved with slight variations to

established Timm’s staining protocols (Proper et al., 2000).

Briefly, 300 mm vibratome sections were incubated in 4%

sodium sulfide in PBS for 30 min, followed by fixation in

1.25% glutaraldehyde, 1% PFA and 10% sucrose in PBS

overnight. Sections were mounted on to Vectabond (Vector

Laboratories)-coated slides, desiccated and stored temporarily

at 220 C̊. Slides were placed in Timm’s developing solution

(20% gum Arabic, 2 M sodium citrate, 4% dihydroquinone

and 1.5% silver nitrate) for 35–45 min and rinsed with warm

tap water. Sections were dehydrated with alcohols, cleared

with xylenes and cover-slipped with DPX (p-xylenebispyr-

idinium bromide).

IPB (infrapyramidal bundle) measurements
The length of the IPB was measured from images of calbindin

immunofluorescence and Timm’s staining using ImageProH
Plus 4. software 0 (Media Cybernetics). The length of positive

mossy fibres from the hilus to the point they cross the

pyramidal cell layer was divided by the total length of the most

medial aspect of the hilus to the apex of the curvature of CA3

as previously described (Bagri et al., 2003).

Statistical analyses
Results are expressed as means¡S.E.M. Significant differences

between means were determined by Student’s t tests using

GraphPad Prism software package 4 (GraphPad Software).

P,0.05 were considered statistically significant.

RESULTS

Laser capture and mRNA profiling of DGCs in
HuD-Tg mice
HuD is quickly down-regulated in DGCs after the first postnatal

week and it is not detected in mature cells (Figure 1A). In

contrast, DGCs from HuD-Tg mice express high levels of this

protein even in adult mice (Figure 1B). To identify gene

expression changes associated with the persistent expression

of HuD, DGCs from WT and HuD-Tg mice were laser-captured

(Figures 1C–1E) and RNA derived from these cells subjected to

analysis using Affymetrix 430 2.0 genomic arrays. Statistical

analyses revealed that 337 probe sets corresponding to 216

known transcripts and 63 ESTs (expressed sequence tags)

show a significant increase in DGCs from HuD-Tg mice (termed

herein HuD-DGCs) whereas 322 probe sets corresponding

to 204 known transcripts and 116 ESTs were significantly

decreased. Given the role of HuD in mRNA stabilization, we

focused our studies on the up-regulated genes and used the

list of down-regulated genes as a comparison set. The top 40

most-up-regulated mRNAs are shown in Table 1 and the com-

plete list is available in Supplementary Tables S1 (available

at http://www.asnneuro.org/an/003/an003e070add.htm). Of

this complete list of up-regulated mRNAs, 73 were previously

identified as HuD targets by RNA-IP (RNA-immunoprecipitation)

studies of mouse forebrain transcripts (Bolognani et al., 2010, see

validated target column in Supplementary Table S1) and the rest

were new targets.

Among the new targets identified in the DGCs, the mRNA

for the thyroid hormone- and retinol-binding protein TTR

Expression of axogenesis genes in HuD-Tg mice
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showed the highest levels of up-regulation and was chosen

for further validation by qRT–PCR and ISH (in situ

hybridization). As shown in Figure 2(A) and in agreement

with previous studies (Tsai et al., 2009), high levels of TTR

mRNA are observed in the CP (choroid plexus), while the

hippocampus shows very low levels of expression. In com-

parison, DGCs of HuD-Tg mice expressed much higher levels of

this mRNA (Figures 2A and 2B). The significant up-regulation

of TTR mRNA in DGCs of HuD-Tg mice was confirmed by qRT–

PCR using RNA from LCM-isolated DGCs from a different group

of animals (Figure 2B).

Over-representation of HuD-binding motifs and
other U-rich elements in the 39-UTR of HuD-DGC
mRNAs
HuD and other Hu proteins are known to bind and stabilize

mRNAs containing U-rich instability conferring sequences

such as the classical ARE (Shaw and Kamen, 1986; Chen and

Shyu, 1995) and the GRE (GU-rich element; Vlasova et al.,

2008; Bolognani et al., 2010) in the 39-UTR. Therefore

subsequent analyses determined the frequencies of these

elements in the 39-UTRs of up-regulated HuD-DGC mRNAs

(DG-up, Figure 3). The number of transcripts with these

sequences was compared with both the total number of

transcripts in the Affymetrix 430 2.0 array (Affy-chip) and

the top 500 expressed (present) transcripts in DGCs whose

expression levels were not significantly different between

HuD-Tg and WT mice (DG-P500). As previously described

(Bolognani et al., 2010), typical ARE sequences include: (i)

consensus AREs motifs described in the ARED (ARE database;

ARED 3.0, Bakheet et al., 2006, http://brp.kfshrc.edu.sa/ARED/),

(ii) overlapping AUUUA motifs (AUUUA)n and (iii) the type I

and II AREs described by Wilusz et al. (2001). Analysis of indi-

vidual ARE sequences revealed that the percentage of transcripts

with (AUUUA)n and type II ARE motifs in the 39-UTR were

significantly increased in HuD-DGCs (DG-up) relative to those

present in the DG-P500 set, whereas there were no differences

in the percentage of other ARE motifs or GRE instability-sequences

(Figure 3).

Since HuD binds AU-rich and GU-rich sequences with high

affinity and CU-rich sequences with less affinity (Bolognani

et al., 2010), we also investigated the presence of transcripts

with the three consensus-binding motifs for HuD: motif 1,

CCCUCCCUCUCUC, motif 2, UUUUGUUUUGUUU and motif 3,

UUUUUUUUUUAAA. As shown in Figure 3, while only 13% of

all the transcripts in the chip and 14% of DG-P500 transcripts

contain the AUUUA-like motif 3 in the 39-UTR, the frequency

of these sequences was significantly increased in HuD-Tg

DGCs, reaching approximately 20% of all the up-regulated

transcripts. Likewise, we found significant increases in the

GUUUG-like (motif 2) and UCCCU-like (motif 1), which reached

to approximately 33% and 42% of all DGC overexpressed

transcripts, respectively (Figure 3). Overall we found that approxi-

mately 60% (161/279) of the up-regulated transcripts contained

at least one of the HuD-binding motifs and 80% of DGC

transcripts (223/279) contained at least one of the AU-rich or

GU-rich 39-UTR sequences described above (see Supplementary

Table S1). Collectively, these findings suggest that the majority

of HuD-DGCs transcripts were overexpressed because they

contain binding sites for this stabilizing RNA-binding protein.

To further illustrate this point, specific examples of mRNAs

containing these 39-UTR motifs are shown in Table 2. While

some transcripts like Kif11 and Gsn contain only one of these

Figure 1 LCM of DGCs in HuD-Tg mice and control littermates
(A, B) DGC from adult control mice (A) do not express HuD but high levels of the protein is expressed in HuD-Tg mice (B). Scale
bar5150 mm. (C–E) H/E (haematoxylin/eosin) staining demonstrating the successful laser capture of cells in the DGC layer.
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sequences, transcripts for Wnt5a, Dcx (doublecortin), Notch3,

UBe3a and Jag1 contain multiple copies of these U-rich

sequences and HuD-binding motifs in their 39-UTRs. As

shown in Supplementary Table S1, 51 up-regulated tran-

scripts did not contain any of these 39-UTR elements (e.g.

Agpat2, Cabp4, Gmfg, Il12rb1, Otud3, Nol3, Dgcr2, Hesx1,

Cldn5, Nfatc2, Plxnb1, Vill, Slc29a1, Neurl2, Myh14, Cd151,

Adra2c, Bad, Nat6 and Sema5b) suggesting that these

transcripts are indirectly regulated by HuD.

GO analysis of HuD-DGC of differentially
expressed transcripts
Two different bioinformatics tools were used to place HuD-

induced gene expression changes into a biological context:

the WebGestalt GO toolkit (http://bioinfo.vanderbilt.edu/

webgestalt/) and IPA software (http://www.ingenuity.com/).

The top 10 GO categories of biological processes, molecular

functions, and cellular locations of the proteins encoded by

HuD-DGC up-regulated mRNAs are shown in Figure 4. In

each category, the number of expected (E) genes is based

upon the percentage of genes on the mouse Affymetrix 430

2.0 mouse genomic array with each category and the num-

ber observed (O) genes is the actual number of up-regulated

transcripts in each category. From these analyses, it is clear

that this dataset is enriched in genes involved in neural develop-

ment and axonogenesis (Figure 4A). Among these are positive

regulators of axogenesis such as plexins B1 and B2, Mtap1b

(microtubule associated protein 1b) and Sema5b, as well as

regulators of neurogenesis and neuronal differentiation such

as Hesx1, Dcx, Notch3 and Jagged 1, neurogenin 2 (Table 3).

Consistent with these biological categories, analysis of the

molecular functions (Figure 4B) and cellular components

(Figure 4C) revealed that many of the genes are associated with

Table 1 Top 40 up-regulated genes in DGCs of HuD-Tg mice

Affymetrix ID Gene symbol Gene name Fold change P-value

1455913_x_at TTR Transthyretin 57.04 0.0008
1454608_x_at TTR Transthyretin 39.52 0.011
1451580_a_at TTR Transthyretin 32.01 0.0127
1459737_s_at TTR Transthyretin 23.4 0.002
1433474_at Edil3 EGF-like repeats and discoidin I-like domains 3 4.827 0.000001
1450577_at Sstr3 Somatostatin receptor 3 4.465 0.016
1451246_s_at Aurkb Aurora kinase B 4.174 0.0037
1449011_at Slc12a7 Solute carrier family 12, member 7 3.778 0.0345
1441946_at Itih5 Inter-a (globulin) inhibitor H5 3.409 0.00498
1438387_x_at Top3b Topoisomerase (DNA) III b 3.396 0.00591
1418280_at Klf6 Kruppel-like factor 6 3.285 0.032
1459205_at Cpeb1 Cytoplasmic polyadenylation element binding

protein 1 (Cpeb1)
3.075 0.00746

1421964_at Notch3 Notch gene homologue 3 (Drosophila) 2.915 0.0209
1458458_at Slfn5 Schlafen 5 2.856 0.0273
1429011_x_at Snrp70 U1 small nuclear ribonucleoprotein polypeptide A 2.826 0.0386
1435306_a_at Kif11 Kinesin family member 11 2.796 0.0287
1446819_at Lrp1b Low-density lipoprotein-related protein 1B (Lrp1b) 2.773 0.0374
1434430_s_at Adora2b Adenosine A2b receptor 2.715 0.0485
1456976_at Wnt5a Wingless-related MMTV integration site 5A 2.71 0.0134
1445824_at Zfp458 zinc finger protein 458 2.708 0.00132
1430402_at Sucla2 Succinate-coenzyme A ligase, ADP-forming,

b-subunit
2.611 0.0439

1456936_at Cabp4 Calcium binding protein 4 2.559 0.0367
1456742_x_at Tm9sf2 Transmembrane 9 superfamily member 2 2.555 0.0134
1429462_at Slc25a32 Solute carrier family 25, member 32 2.549 0.0365
1419486_at Foxc1 Forkhead box C1 2.538 0.00644
1459116_at Ncam2 Neural cell adhesion molecule 2 (Ncam2), mRNA 2.538 0.0327
1419193_a_at Gmfg Glia maturation factor, gamma 2.535 0.0109
1443782_x_at Cyp20a1 Cytochrome P450, family 20, subfamily A,

polypeptide 1
2.525 0.0255

1422637_at Rassf5 Ras association (RalGDS/AF-6) domain family 5 2.472 0.0171
1456312_x_at Gsn Gelsolin 2.436 0.0307
1448768_at Mog Myelin oligodendrocyte glycoprotein 2.385 0.0236
1433742_at Ankrd15 Ankyrin repeat domain 15 2.375 0.0441
1418166_at Il12rb1 Interleukin 12 receptor, b1 2.37 0.0379
1427829_at Abcd4 ATP-binding cassette, sub-family D (ALD),

member 4
2.358 0.0467

1457692_at 2010013E08Rik THAP domain containing, apoptosis
associated protein 3, mRNA (cDNA clone
MGC:106590 IMAGE:5700290)

2.338 0.0233

1428821_at Agpat2 1-Acylglycerol-3-phosphate O-acyltransferase
2 (lysophosphatidic acid acyltransferase, b)

2.33 0.0293

1442697_at Ipo11 Importin 11, mRNA (cDNA clone MGC:39010
IMAGE:5364208)

2.295 0.00212

1418706_at Slc38a3 Solute carrier family 38, member 3 2.292 0.049
1446577_at Pde4b C57BL/6J phosphodiesterase 4B (Pde4b) 2.286 0.0448
1449009_at Tgtp T-cell specific GTPase 2.277 0.0358
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actin binding (e.g. Gsn and Ermn), vesicle-mediated transport

(e.g. Dab2 and Hip1) and myelination (e.g. MBP and PLP).

To visualize how genes in our dataset may interact with

each other to influence development, we used IPA to

generate a sublist of the up-regulated genes that are

associated with neuronal development according to their

Knowledgebase dataset. We then used this sublist of

development-associated genes to perform dynamic path-

way analysis. Figure 5 shows numerous interactions among

the protein products of the development-associated

genes present in our list (shown in red) as well as other

developmentally-regulated proteins that interact with gene

products from our gene list (shown in blue). In particular,

several members of the Jagged/NOTCH pathway are in our

list, as well as several protein products that interact with the

cytoskeletal proteins actin and tubulin. The majority of

the remaining proteins shown in this biological network

interact with either the pro-growth kinase Akt (also known as

protein kinase B) or the MAPK (mitogen-activated protein

kinase) ERK (extracellular-signal-regulated kinase).

In contrast with the up-regulated mRNAs, GO analyses of

down-regulated transcripts did not show any significantly

enrichment in canonical pathways at P,0.001 (Supplemen-

tary Table S2 available at http://www.asnneuro.org/an/003/

an003e070add.htm). Interestingly, fold changes in this set

(average 21.54) were less drastic than the fold changes in

the up-regulated set, reflecting HuD’s role as a stabilizer of

mRNA transcripts. Furthermore, in agreement with our previous

Figure 2 Increased TTR mRNA levels in DGCs of HuD-Tg mice
(A) TTR FISH images from WT and HuD-Tg mice. Low magnification taken using a 64 objective show expression of TTR mRNA in CP
in WT and HuD-Tg mice and in the dentate gyrus of HuD-Tg mice. Scale bar5750 mm. High magnification (620) images show
increase TTR mRNA in DGC of HuD Tg mice. Scale bar5150 mm. (B) Quantification of TTR mRNA levels in DGCs of WT and HuD-Tg by
ISH and qRT–PCR was performed as described in the Materials and methods section. *P,0.05 and ***P,0.001.

Figure 3 Analyses of 39-UTR motifs in HuD-DGCs up-regulated mRNAs
The frequencies of the different types of ARE motifs, including the consensus motif in the ARED, GRE motif and HuD-binding motifs
(see text for details) in the 39-UTRs of HuD-DGC transcripts (DG-up, black bars) were analysed and compared with all the genes
present in the Affymetrix 430 2.0 chip (Affy-chip white bars), and a list of the top 500 DG expressed transcripts that are present in
control mice and whose expression levels are not significantly different in HuD-Tg mice (DG-P500, grey bars). Statistical analyses
were performed using a one-tail x2 test: ****P,0.00001, DG-up compared with both DG-P500 and Affy-chip, ***P50.0024, DG-up
compared with Affy-chip, **P50.0093 DG-up compared with Affy-chip and *P50.040 compared with DG-P500.
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observation of compensatory decreases in other ELAV-like

transcripts in the hippocampus of HuD-Tg mice (Bolognani

et al., 2006) we found that HuR mRNA was also decreased in the

DGCs. In contrast with HuR, mouse HuD transcripts were also

increased in the DGCs (Supplementary Table S1) in the presence

of the human HuD transgene that does not contain the 39-UTR

and thus cannot be detected by the mouse 39-UTR specific

probes present in the Affymetrix chip. These results suggest that

HuD increases its own expression while blocking the expression

of the ubiquitously expressed ELAV-like protein HuR.

Increased length of the infrapyramidal mossy
fibre bundle in HuD-Tg mice.
Given the increased enrichment in genes associated with

axogenesis in DGCs from HuD-Tg mice and our previous

findings that these animals also show increased sprouting of

GAP-43 positive mossy fibres into the CA3 region (Tanner

et al., 2008), we next asked whether HuD overexpression

altered mossy fibre length. As shown in Figure 6(A), mossy

fibres form two separate bundles: the SPB (suprapyramidal

bundle) that travels above the CA3 pyramidal layer and the

IPB that originates below this layer and later crosses it to

join the SPB (see arrows in Figures 6B and 6C). Mossy fibres

were stained using either antibodies against the calcium-

binding protein calbindin (Figure 6B) or the Timm’ zinc stain

(Figure 6C). The relative length of the IPB was calculated

using the length of the SPB as reference as described by Bagri

et al. (2003) (Figure 6C). As shown in Figure 6(D), the relative

length of the IPB was significantly increased in the HuD-Tg

mice, supporting the results of the gene expression studies.

Overall, our data indicate that HuD target mRNAs are impor-

tant for the regulation of multiple aspects of development and

axonogenesis. Furthermore, our data supports the hypothesis

that appropriate regulation of RNA-binding proteins is critical

for normal development and adult plasticity.

DISCUSSION

The neuron-specific RNA-binding protein HuD plays a critical

role in the post-transcriptional regulation of neuronal gene

expression during neural development and adult synaptic

plasticity. This protein is known to stabilize GAP-43 mRNA

and other neuronal mRNAs containing U-rich sequences in

their 39-UTR. In this study, we examined the effect of

overexpression of this RNA-binding protein in DGCs of adult

mice. Normally, these cells only express HuD during the first

postnatal week. Our results indicate that persistent expression

of HuD in adult DGCs induced the expression of devel-

opmentally-regulated neural genes in these cells and

increased the length of their axons in the IPB. Together with

previous studies (reviewed by Perrone-Bizzozero and Bolognani,

2002; Deschênes-Furry et al., 2006), these results emphasize

the role of HuD in controlling the expression of genes impor-

tant for neuronal development and axonal outgrowth.

The most drastic gene expression change in HuD-Tg mice

was a 50-fold increase in mRNA levels of the transporter of

thyroxine and retinol, TTR. We confirmed this large over-

expression using ISH as well as qRT–PCR. While this result was

Table 2 Number of U-rich 39-UTR motifs in select up-regulated mRNAs in DGCs of HuD-Tg mice

Affymetrix ID
Gene
symbol Gene name ARE U-rich GRE

HuD-binding
motifs* Ensembl gene ID

1455913_x_at TTR Transthyretin 0 14 0 1 (3) ENSMUSG00000061808
1433474_at Edil3 EGF-like repeats and

discoidin I-like domains 3
1 43 0 1 (2) ENSMUSG00000034488

1441946_at Itih5 Inter-a (globulin)
inhibitor H5

1 4 1 7 (1) ENSMUSG00000025780

1459205_at Cpeb1 Cytoplasmic polyadenylation
element binding protein 1

0 0 9 0 ENSMUSG00000025586

1421964_at Notch3 Notch gene homologue 3
(Drosophila)

0 21 0 5 (1) ENSMUSG00000038146

1458458_at Slfn5 Schlafen 5 0 0 0 14 (1) ENSMUSG00000054404
1435306_a_at Kif11 Kinesin family member 11 0 5 0 1 (1) ENSMUSG00000012443
1456976_at Wnt5a Wingless-related MMTV

integration site 5A
3 96 6 10 (1), 16 (2) ENSMUSG00000021994

1419486_at Foxc1 Forkhead box C1 0 7 1 0 ENSMUSG00000050295
1459116_at Ncam2 Neural cell adhesion

molecule 2
0 31 0 2 (2) ENSMUSG00000022762

1446577_at Pde4b Phosphodiesterase 4B 0 0 0 2 (1) ENSMUSG00000028525
1456312_x_at Gsn Gelsolin 0 9 0 1 (2) ENSMUSG00000026879
1418140_at Dcx Doublecortin 0 47 0 41 (1) ENSMUSG00000031285
1422839_at Neurog2 Neurogenin 2 1 12 0 4 (1), 1 (2) ENSMUSG00000027967
1445727_at Ube3a Ubiquitin protein ligase

E3A
1 70 0 8 (2) ENSMUSG00000025326

1421105_at Jag1 Jagged 1 9 74 0 1 (1), 15 (2) ENSMUSG00000027276
1421851_at Mtap1b Microtubule-associated

protein 1B
3 18 0 1 (1), 15 (2),

1 (3)
ENSMUSG00000052727

1445634_at Mapt Microtubule-associated
protein tau

0 0 1 5 (1) ENSMUSG00000018411

* Number and type (in parentheses) of HuD-binding motifs in the 39-UTR.
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unexpected, TTR overexpression may help to account for the

increased axon length observed in these mice. The most

obvious explanation for the role of TTR in the observed

phenotype of HuD-Tg mice is the gene product’s traditional

role as transporter of T4 (thyroxine) in the brain. The CP

secretes TTR into the CSF (cerebrospinal fluid), where it acts

to transport the prohormone T4 into the brain (Richardson

et al., 2007). Once in the brain, deiodinases convert T4 into

the more active hormone T3 (3,39,5-tri-iodothyronine).

Thyroid hormone levels have been shown to increase

expression of NGF (nerve growth factor) as well as several

neurotrophic factors (Lüesse et al., 1998). Administration of

high levels of T4 to neonatal rats during the critical period

of mossy fibre development (P0–P21), results in lasting

Figure 4 GO analysis of up-regulated transcripts
GO analyses were performed as indicated in the Materials and methods section. Panels show the observed (blue bars) and expected
(red bars) number of genes in the biological process, molecular function and cellular component categories. The top ten significantly
enriched categories are presented.
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changes in the distribution of IP mossy fibres in the

hippocampus (Lauder and Mugnaini, 1980), which are similar

to those reported here. Not surprisingly, TTR-null mice have

been shown to contain only 36% of WT thyroid hormone

levels in their brains (Palha et al., 1997). The critical role of T3

and TTR in hippocampal development and function is further

demonstrated by the findings that prenatal and neonatal

hypothyroidism cause learning and memory defects, includ-

ing mental retardation in children (Zoeller and Rovet, 2004).

Although thyroid hormone levels are important for growth

and development, the protease activity of TTR might also

help explain the increased axonal length that we observed.

TTR has been shown to cause increased neurite outgrowth

in PC12 cells incubated in medium from normal mice as

compared with PC12 cells incubated in medium from TTR KO

mice (Fleming et al., 2007; Liz et al., 2009). This increased

outgrowth is reduced to TTR KO levels when the proteolytic

activity of TTR is inhibited (Liz et al., 2009), although the

substrate responsible for increasing neurite growth has not

been identified.

As shown in Figure 4 and Table 3, many up-regulated

genes encode proteins associated with axonal outgrowth (e.g.

Mapt, Mtap1b, Ncam2, Cacna1a, Ermn, Plxnb1 and Plxnb2),

actin dynamics (e.g. Gsn, Myh14, Tagln2 and Tnnc1) and

neuronal differentiation (e.g. Aplp2, Dcx, Neurog2, Notch3,

Hesx1, Jag1, Sema3e, Sema5b, Socs2 and Tgfbr2). Other HuD-

up-regulated transcripts are known to be increased in the

hippocampus during development (e.g. Sstr3; Stanić et al.,

2009) or contextual fear conditioning (e.g. Itih5 and Edil3;

Keeley et al., 2006). Besides, we noticed that the mRNAs for

a couple of axogenesis-related HuD targets, GAP-43 (also

known as neuromodulin) and cgp-15 (also known as neuritin;

Akten et al., 2011), were not detected in the chip as being up-

regulated. Although GAP-43 mRNA was detected by ISH in

HuD-DGC (Bolognani, et al., 2006) and this mRNA was

validated as a target of HuD by RNA-IP followed by qRT–PCR

Table 3 Genes in top enriched GO categories in DGCs of HuD-Tg mice

Probe set ID Gene symbol Gene title

Positive regulation of axogenesis
1416683_at Plxnb2 Plexin B2
1435254_at Plxnb1 Plexin B1
Axon ensheathment
1456228_x_at Mbp Myelin basic protein
1416003_at Cldn11 Claudin 11
1425467_a_at Plp1 Proteolipid protein (myelin) 1
Cell development
1422839_a_at Neurog2 Neurogenin 2
1437341_x_at Cnp1 Cyclic nucleotide phosphodiesterase 1
1420498_a_at Dab2 Disabled homologue 2 (Drosophila)
1418140_at Dcx Doublecortin
1416683_at Plxnb2 Plexin B2
1421851_at Mtab1b Microtubule-associated protein 1B
1421964_at Notch3 Notch gene homologue 3 (Drosophila)
1425468_at Plp1 Proteolipid protein (myelin) 1
1448105_at Prm2 Protamine 2
1448260_at Uchl1 Ubiquitin C-terminal hydrolase L1
1435254_at Plxnb1 Plexin B1
Cell morphogenesis during differentiation
1422839_at Neurog2 Neurogenin 2
1437341_x_at Cnp1 Cyclic nucleotide phosphodiesterase 1
1420498_a_at Dab2 Disabled homologue 2 (Drosophila)
1416683_at Plxnb2 Plexin B2
1448260_at Uchl1 Ubiquitin C-terminal hydrolase L1
1435254_at lxnb Plexin B1
Nervous system development
1422839_at Neurog2 Neurogenin 2
1437341_x_at Cnp1 Cyclic nucleotide phosphodiesterase 1
1418140_at Dcx Doublecortin
1416683_at Plxnb2 Plexin B2
1420604_at Hesx1 Homeo box gene expressed in ES cells
1421105_at Jag1 Jagged 1
1456228_x_at Mbp Myelin basic protein
1421851_at Mtab1b Microtubule-associated protein 1B
1421964_at Notch3 Notch gene homologue 3 (Drosophila)
1416003_at Cldn11 Claudin 11
1425468_at Plp1 Proteolipid protein (myelin) 1
1425146_at Sema5b Semaphorin 5B
1448260_at Uchl1 Ubiquitin C-terminal hydrolase L1
1435254_at Plxnb1 Plexin B1
Positive regulation of development
1416683_at Ptxnb2 Plexin B2
1421105_at Jag1 Jagged 1
144829_at Hps4 Hermansky–Pudlak syndrome 4 homologue
1435254_at Plxnb1 Plexin B1
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(Bolognani et al., 2010), we have previously found that the

single probe available in the mouse Affymetrix 430 2.0 chip

showed very low signal and failed to detect changes in this

transcript in both studies. In contrast, we found that the

signal of neuritin was very high in both control mice and

HuD-Tg DGCs, suggesting that it may not be possible to

detect increases in its levels due to ceiling effects. Besides

the neuronally expressed axonal outgrowth-related proteins,

some of the HuD-DGC up-regulated transcripts were found to

encode myelin proteins (e.g. Plp1, Mal, Mog, Mbp, Cldn11 and

Cnp). It is likely that these gene-expression changes take place

in oligodendrocytes located in the DGC layer and constitute an

indirect response to the increases in axonal length observed in

the HuD-Tg mice. Alternatively, although HuD is not normally

expressed in mature oligodendrocytes, the aCaMKII promoter

used here to express transgenic HuD was shown to be active in

oligodendrocyte precursor cells (Mason et al., 2003). Thus, this

activity could account for some of the observed changes in

myelin gene expression. Finally, it is also well established that

thyroid hormone increases myelination and re-myelination

and promotes the differentiation of oligodendrocyte precursor

cells (Balázs et al., 1971; Fernandez et al., 2004; Barres et al.,

1994) suggesting that the increased expression of TTR in HuD-

Tg mice may contribute to these effects.

In conclusion our results support the notion that persistent

expression of HuD in DGCs of transgenic mice has significant

functional consequences on the differentiation and matura-

tion of these cells, as shown by the increased mossy fibre

length in the IPB. These results are in agreement with our

previous findings of the effect of HuD overexpression on the

rate of neurite outgrowth (Anderson et al., 2000, 2001) and

with observations from other laboratories supporting a role

of Hu proteins in neuronal development (Wakamatsu and

Weston, 1997; Akamatsu et al., 1999; Kasashima et al., 1999).

Furthermore, these findings are consistent with recent studies

demonstrating that the interaction of HuD with the SMA

(spinal muscular atrophy) protein SMN (survival of motor

neurons) is critical for localizing and stabilizing mRNAs in

Figure 5 Biological network of genes involved in nervous system development
IPA showing interactions of gene products from HuD-Tg overexpressed genes. Proteins that are involved in nervous system development and
function and whose transcripts were up-regulated in our dataset are shown in red, whereas transcripts that were absent in our dataset but
whose products are involved in nervous system development are shown in blue. Continuous lines represent direct relationships, whereas
broken lines represent indirect relationships. The biological activities associated with each protein symbol are indicated in the key box.
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motor neuron axons and for rescuing SMA-associated deficits

(Akten et al., 2011; Fallini et al., 2011; Hubers et al., 2011).

Although increased axonal outgrowth may be a desirable

outcome in some conditions, such in the response to nerve

injury or disease, this can also lead to problems in inappro-

priate innervation of target tissues and synaptic maturation.

In fact, our previous studies demonstrate that, similarly to

developing mossy fibres (Mori-Kawakami et al., 2003), mossy

fibres in adult HuD-Tg mice have abnormally increased PPF.

These maturation problems could also explain the deficits in

hippocampal dependent learning observed in these animals

(Bolognani et al., 2007b). Ongoing studies are characterizing

the behaviour of other neuronal circuits in these mice,

particularly in their response to injury.
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Bizzozero NI (2006) In vivo post-transcriptional regulation of GAP-43
mRNA by overexpression of the RNA-binding protein HuD. J Neurochem
96: 790–801.

Bolognani F, Tanner DC, Nixon S, Okano HJ, Perrone-Bizzozero NI (2007a)
Coordinated expression of HuD and GAP-43 mRNA in the hippocampus
during developmental and adult plasticity. Neurochem Res 32:2142–
2151.

Bolognani F, Qiu S, Tanner DC, Paik J, Perrone-Bizzozero NI, Weeber EJ (2007b)
Associative and spatial learning and memory deficits in transgenic mice
overexpressing the RNA-binding protein HuD. Neurobiol Learn Mem
87:635–643.

Figure 6 Increased length of the infrapyramidal mossy fibre bundle in HuD-Tg mice
(A) Shows the distribution of IPB and SPB bundles in WT and HuD transgenic mice. Mossy fibres were stained using either calbindin
antibodies (B) or Timm’s stain (C). The IPB length was calculated from the hilus to where the fibres cross the pyramidal cell layer
(arrows), and the length of the SPB was measured from the hilus to the apex of the curvature of area CA3 (C). The length of the IPB
was normalized to that of the SPB in the same section (D). Scale bar5300 mm. **P,0.01.

Expression of axogenesis genes in HuD-Tg mice

E 2011 The Author(s) This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Licence (http://creativecommons.org/licenses/by-nc/2.5/)
which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

269



Bolognani F, Perrone-Bizzozero NI (2008) RNA-protein interactions and
control of mRNA stability in neurons. J Neurosci Res 86:481–489.

Bolognani F, Contente-Cuomo T, Perrone-Bizzozero NI (2010) Novel
recognition motifs and biological functions of the RNA-binding protein
HuD revealed by genome-wide identification of its targets. Nucleic Acids
Res 38:117–130.

Bullock WM, Bolognani F, Botta P, Valenzuela CF, Perrone-Bizzozero NI (2009)
Schizophrenia-like GABAergic gene expression deficits in cerebellar Golgi
cells from rats chronically exposed to low-dose phencyclidine. Neurochem
Int 55:775–782.

Chen CY, Shyu AB (1995) AU-rich elements: characterization and importance
in mRNA degradation. Trends Biochem Sci 20:465–470.

Clayton GH, Perez GM, Smith RL, Owens GC (1998) Expression of mRNA for
the ELAV-like neural-specific RNA binding protein, HuD, during nervous
system development. Brain Res Dev Brain Res 109:271–280.
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