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Simple Summary: Breed undefinition boosts the risk of irreversible breed loss due to its substitution
by dominant breeds. Breed loss results detrimental for the fraction of the genetic pool which is
linked to the value of livestock as perfectly adapted elements of domestic ecosystems among other
desirable features. In turn, this ensures and maximizes population sustainability. The present
study aimed to design a biometric characterization tool in autochthonous avian breeds and their
varieties in Andalusia (south of Spain): Utrerana and Sureña breeds. For this, different quantitative
and qualitative measurements were collected in 473 females and 135 roosters belonging to these
breeds. Even though both genotypes belong to a common original trunk, discriminant canonical
analysis (DCA) revealed clear differences between both breeds and within the varieties that they
comprise. In particular, certain variables such as ocular ratio and phaneroptic characteristics, which
may be intrinsically related to the capacity of the breeds to adapt to the environmental conditions in
which they thrive, could allow breeders to develop breeding programs focused on the enhancement
productive potential of individuals.

Abstract: This study aimed to develop a tool to perform the morphological characterization of Sureña
and Utrerana breeds, two endangered autochthonous breeds ascribed to the Mediterranean trunk of
Spanish autochthonous hens and their varieties (n = 608; 473 females and 135 males). Kruskal–Wallis
H test reported sex dimorphism pieces of evidence (p < 0.05 at least). Multicollinearity analysis re-
ported (variance inflation factor (VIF) >5 variables were discarded) white nails, ocular ratio, and back
length (Wilks’ lambda values of 0.191, 0.357, and 0.429, respectively) to have the highest discriminant
power in female morphological characterization. For males, ocular ratio and black/corneous and
white beak colors (Wilks’ lambda values of 0.180, 0.210, and 0.349, respectively) displayed the great-
est discriminant potential. The first two functions explained around 90% intergroup variability. A
stepwise discriminant canonical analysis (DCA) was used to determine genotype clustering patterns.
Interbreed and varieties proximity was evaluated through Mahalanobis distances. Despite the adapt-
ability capacity to alternative production systems ascribed to both avian breeds, Sureña and Utrerana
morphologically differ. Breed dimorphism may evidence differential adaptability mechanisms linked
to their aptitude (dual purpose/egg production). The present tool may serve as a model for the first
stages of breed protection to be applicable in other endangered avian breeds worldwide.

Keywords: local breeds; genetic resources; biometric characteristics; phaneroptics; biodiversity

1. Introduction

In Spain, two hen trunks have historically been differentiated; the Atlantic trunk,
generally comprising larger-format dual-purpose birds, with red earlobes and brown-
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shelled eggs, and the Mediterranean trunk, consisting of lighter individuals, with white
earlobes and of a white-shelled egg-laying morphotype [1]. The aforementioned features
have been considered by breeders on a regular basis for breed ascription and animal
classification. This segregation of the Atlantic and Mediterranean trunks would later be
supported from a molecular perspective through the estimation of genetic distances using
microsatellite markers [2].

As a result, natural and human selection led to a high heterogeneity and variability of
morphological characteristics in avian breeds [3,4]. Such high heterogeneity was promoted
when breeding objectives (meat, eggs, or dual-purpose breeds) and, hence, morphological
characteristics started to differ and polarize among populations to adapt to environment
requirements at the minimum biological cost. These differentiation processes determined
breeds to base their adaptability strategies on their particular enhanced body features [5].

Andalusia (Southern Spain) is influenced by the Mediterranean climate, with max-
imum temperatures rising above 40 ◦C in summer, as reported by the Spanish State
Meteorological Agency (AEMET). In this context, very high temperatures are present from
late spring on and last for the whole summer. Among the breeds in the area, two laying hen
genotypes have traditionally configured poultry production under backyard and extensive
systems: the Utrerana and Sureña avian breeds [6,7].

The Utrerana and Sureña avian breeds share a common geographic location, socioeco-
nomic context, and history. In addition, four varieties of plumage color are present in both
breeds: White, Franciscan, Black, and Partridge in the Utrerana breed; White, Franciscan,
Black, Partridge, Blue, and Splash in the Sureña Breed. However, the Sureña hen has a
larger format than most Mediterranean hen breeds [8,9].

These widely accessible low-capital/input investment birds were historically kept in
sustainable systems for decades, thus becoming the source of production of high-biological-
value proteins in rural livelihoods until globalization called for the intensification of animal
production [10,11].

As a direct consequence, the population census of Spanish breeds suffered a regression
due to the introduction of selected commercial strains of birds with a higher production
during the last half of the 20th century [12,13]. In this way, the Utrerana avian breed became
classified as an endangered breed, according to Royal Decree 45/2019 of 8 February, while
the Sureña avian breed is in the process of being included in the Official Livestock Breeds
Catalog of the Ministry of Agriculture, Fisheries, and Environment (MAPA) of Spain.

Consumers’ interest in quality food products revolved around market demands as a
conscious response to the drawbacks implied by intensive production. Food alternatives
produced through sustainable production systems became popular, provided these systems
were characterized by a low impact on the environment and human health while they also
considered animal welfare [14]. Increased demands soon translated into commercial chains
starting to request differentiated products, whose properties significantly differed from
products obtained through hybrid commercial strains [15].

For local producers to be able to fulfill market demands, products and the elements
needed to ensure their constant supply must be defined through breed characterization
zoometrically, genetically, or even productively. Contextually, the characterization of local
populations, as well as the relationship among already established breeds, can provide
pieces of evidence on the mechanism and events that contributed to the origin and de-
velopment of native poultry breeds in the south region of Spain, as well as the adaptive
mechanisms that may have permitted their survival in time [16]. Additionally, breed stan-
dardization could be an important tool for the evaluation of birds within their flocks and
determine certain measurements for the selection of the best animals [17]. In this regard,
morphometric and phaneroptic approaches may be fundamental in poultry management
as they are fast and economically profitable [18].

This information altogether enables the correct development and implementation of
the administrative structures needed to guarantee the stability and future viability of breeds
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through the development conservation and breeding programs, as well as the sustainable
commercialization of their products once censuses are enough.

In this context, this study aimed to determine the contribution of quantitative and
qualitative morphological-related traits to the zoometric characterization through the
development of a discriminant canonical analysis (DCA), as a tool that permits determining
phenotypic variability in the Andalusian avian breeds and within their varieties, as a
strategy to support the standardization of native breeds and implement conservation
strategies that ensure the consolidation of local genotypes as recognized breeds.

2. Materials and Methods
2.1. Animals, Sample Size, and Distribution

Biometric data were collected from 608 adult birds (from 1 to 7 years old, 1.94± 0.75 years),
473 hens (77.80%), and 135 roosters (22.20%), belonging to different varieties of Utrerana and
Sureña breeds, as described in Figure 1. The sample size accounted for at least 20 times as
many observations as variables. As this assumption was fulfilled, the study sample permitted
to obtain reliable estimates of the canonical factor loadings for interpretation and to draw valid
conclusions [19].
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Figure 1. Percentage and number of individuals (n) used in each studied genotype.

The sample was collected at 16 farms across the seven provinces in Andalusia (Cádiz,
Córdoba, Granada, Huelva, Jaén, Málaga, and Sevilla). All animals were reared under
extensive backyard conditions.

National guidelines for the care and the use of laboratory and farm animals, and
avian-specific codes for good practices were followed during the data collection. For this,
standards consistent with European Union legislation (2010/63/EU, from 22 September
2010) as transposed into Spanish law (Royal Decree Law 53/2013, from 1 February 2013).
The study protocol was submitted to The Ethics Committee of Animal Experimentation of
the University of Córdoba (Spain) and deemed exempt from review.

2.2. Biometric Measurement Collection

Biometrical analysis was performed in each bird, measuring 27 quantitative and five
qualitative variables, following the procedure for morphological characterization of native
chicken breeds described in previous studies [20,21]. A summary of the quantitative bio-
metric variables and how to measure them is shown in Table 1. All corporal measurements
were taken on the right side of the animal. Figure 2 shows details of the head measurements
taken. A suspended electronic scale (measurement precision = 5 g; Kern CH50K100, Kern
& Sohn, Balingen, Germany), a Vernier scale (Electro DH M 60.205, Barcelona, Spain), and
a tape measure were used for measurement collection.
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Table 1. Biometric variables and measuring procedures used in the present study.

Corporal
Region Variable Units Measuring Procedure

General characteristics

Bodyweight kg With an electronic scale

Ornithological measurement cm
Leaning the bird on its back, the distance between

the tip of the beak and the tip of a central rectrix, in a
straight line

Wingspan cm Distance between the ends of the longest primaries
with outstretched wings

Head

Skull length mm Taken between the most protruding point of the
occipital and the tip of the beak

Skull width mm Taken at eye level

Comb length mm Measured between the insertion of the comb in the
beak and the end of the comb’s lobe

Comb width mm
Measured from the tip of the central spike until the
insertion of the comb in the skull; when the number

of spikes was even, the highest was chosen
Number of spikes in the comb n By manual counting

Ocular length mm Measured between eyelid corners

Ocular width mm Measured including the folds of the eyelid,
perpendicular to the ocular length

Beak length mm Measured from the tip of the beak until the insertion
of the beak in the head

Beak width mm Measured at level of insertion of the beak in the head

Earlobe length mm Maximum length, keeping the bird’s head
perpendicular to the neck

Earlobe width mm As in the previous measure, measured the
second-largest dimension

Wattle length mm Measured from the insertion of wattle in the beak
until the end of the wattle, in a straight line

Wattle width mm As in the previous measure, measured the
second-largest dimension

Neck Neck length cm Distance from the base of the neck to the chest

Body

Back length cm Distance from the insertion of the neck into the body
to the tail insertion

Keel of sternum length cm Leaning the bird on its back, the distance between
the two vertices of the sternum

Breast circumference cm Measured at the level of the tip of the keel, passing
the tape measure through the back of the wing insert

Longitudinal diameter cm Measured from the cranial end of the coracoid to the
most caudal portion of the pubis

Tail length cm Distance from the tip of a central rectrix to the
insertion of the tail

Extremities

Folding wing length cm Distance from the carpal joint until the end of the
longest primary

Thigh length cm Distance from the middle region of the coxal bone to
the knee joint

Tarsus length cm Distance from the notch of the shinbone tarsus until
the tip of the nail of the middle finger

Anteroposterior tarsus
diameter mm Diameter of the tarsus in an anteroposterior

direction in the middle part of the metatarsus bone

Lateromedial tarsus diameter mm Diameter of the tarsus in a lateromedial direction in
the middle part of the metatarsus bone
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Figure 2. Detailed views of a hen and a rooster head with their corresponding measures. CL: comb
length, CW: comb width, OL: ocular length: OW: ocular width, SL: skull length, SW: skull width,
BL: beak length, BW: beak width, ELL: earlobe length, ELW: earlobe width, WL: wattle length, WW:
wattle width.

The following qualitative traits were evaluated in the present study: eye color, beak
color, presence or absence of spurs, tarsus color, and nail color. Moreover, skull ratio, ocular
ratio, beak ratio, and tarsus ratio were computed, as shown in Table 2.

Table 2. Mathematical description of biometric indices.

Trait Mathematical Expression

Skull ratio SI = SL/SW SI: skull ratio; SL: skull length;
SW: skull width

Ocular ratio OI = OL/OW OI: ocular ratio; OL: ocular length;
OW: ocular width

Beak ratio BI = BL/BW BI: beak ratio; BL: beak length;
BW: beak width

Tarsus ratio TI = APTD/LMTD
TI: tarsus ratio; APTD: anteroposte-

rior tarsus diameter;
LMTD: lateromedial tarsus diameter

2.3. Normality and Kruskall–Wallis Tests

The Shapiro–Francia W’ test (for 50 < n < 2500 samples) was used to discard gross
violations of the normality assumption. The Shapiro–Francia W’ test was performed using
the Shapiro–Francia normality routine of the test and distribution graphics package of
the Stata Version 16.0 software (College Station, TX, USA). The normality test suggested
normality assumption was not met. Hence, a nonparametric approach was followed. The
Kruskal–Wallis H test was performed to detect differences in the median across sexes and
genotypes. The Kruskal–Wallis H Test reported medians to significantly differ across all
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possibilities for sex and breed/variety combinations. Consequently, a separate DCA was
performed for males and females.

2.4. Discriminant Canonical Analysis (DCA)

In the present research, 36 explanatory variables were used to perform the DCA: body
weight, ornithological measurement, wingspan, skull length, skull width, ocular length,
ocular width, beak length, beak width, comb length, comb width, number of spikes in the
comb, earlobe length, earlobe width, wattle length, wattle width, neck length, back sternum
length, tail length, thigh length, folding wing length, tarsus length, anteroposterior tarsus
diameter, lateromedial tarsus diameter, eye color, beak color, presence or absence of spurs,
tarsus color, nail color, skull ratio, ocular ratio, beak ratio, and tarsus ratio. In each sex, the
breed and variety of the bird were used as classification criteria to measure the variability
in morphological traits between and within the used classification groups and establish
and outline population clusters [22,23].

The statistical analysis issued a set of discriminant functions that could be used as a
tool to determine the clustering patterns described by the population sample through a
linear combination of morphological-related traits. Furthermore, this canonical tool was
used to plot pairs of canonical variables and graphically depict the group differences into
an easily interpretable territorial map. Regularized forward stepwise multinomial logistic
regression algorithms were used to perform the variable selection. Priors were regularized
following the group sizes computed from the prior probability option in SPSS v26.0 soft-
ware (IBM, Armonk, NY, USA), instead of considering them to be equal, thus preventing
groups with different sample sizes from affecting the quality of the classification [24].

Previous studies have reported DCA to be robust and its outputs to be consistent
when sample sizes among groups were highly unequal. Potential distortion effects derived
from unequal sample sizing can be palliated using at least 20 samples for every four or
five predictors. Additionally, the maximum number of independent variables must be
n − 2 (where n = simple size). The present design was developed aiming at meeting these
requirements sufficiently, to ensure the validity of the conclusions drawn.

Before discriminant analysis, independence of regressors was ensured by multi-
collinearity analysis. The same variables were chosen by the forward and the backward
stepwise selection methods. Hence, the progressive selection method was chosen as
preferable since it is less time-consuming than the backward selection method.

The discriminant routine of the Classify package of SPSS v26.0 software (IBM, Armonk,
NY, USA) and the discriminant analysis routine of the analyzing data package of XLSTAT
2014 (Pearson Edition) (Addinsoft, Paris, France) were used to perform the DCA.

2.4.1. Multicollinearity Preliminary Testing

Redundancies in the variables used were identified after performing the multicollinear-
ity assumption before running the DCA. Multicollinearity analysis seeks to avoid the over-
inflation of the explanatory potential of variance due to the inclusion of an unnecessarily
large number of variables. As an indicator of multicollinearity, the variance inflation factor
was calculated using the following formula:

VIF = 1/
(

1− R2
)

(1)

where R2 is the coefficient of determination of the regression equation.
A recommended maximum VIF value of 5 was used in the study, as suggested by

Rogerson [25]. Tolerance (1 − R2) is the amount of variability in a certain independent
variable that is not explained by the rest [26]. When tolerance values are lower than 0 and,
simultaneously, VIF values ≥10, multicollinearity must be considered troublesome. VIF
was computed using the discriminant analysis routine of the analyzing data package of
XLSTAT 2014 (Pearson Edition).
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2.4.2. Canonical Correlation Dimension Determination

Pearson’s ρ was used to interpret canonical correlations. The maximum number of
canonical correlations between two sets of variables is the number of variables in the
smaller set. Although most of the relationships between different sets are explained by the
first canonical correlation, all canonical correlations must be considered. Dimensions with
canonical correlation values of ≥0.30 may be statistically significant.

2.4.3. Discriminant Canonical Analysis Efficiency

Wilks’ lambda test was used to evaluate variables that significantly contribute to the
discriminant function. When Wilks’ lambda approximates to 0, the contribution of the
variable to a discriminant function increases. The chi-square statistic was considered to
test the significance of Wilks’ lambda. If the significance is below 0.05, the function can be
concluded to adequately explain the group adscription [27].

2.4.4. Discriminant Canonical Analysis Model Reliability

Pillai’s trace criterion was used in the discriminant function analysis to test the as-
sumption of equal covariance matrices. This is the only acceptable test that must be used
in cases of unequal sample sizes [28]. Pillai’s trace criterion was calculated using the
discriminant analysis routine of the analyzing data package of XLSTAT 2014 (Pearson Edi-
tion). A significance below 0.05 indicates significant statistical differences in the dependent
variables across the levels of independence; hence, application of DCA is feasible.

2.4.5. Variable Dimensionality Reduction

A preliminary principal component analysis (PCA) was computed to minimize overall
variables into few meaningful variables that contributed to the morphological characteriza-
tion of males and females in different genotypes. PCA was performed automatically using
the discriminant analysis routine of the analyzing data package XLSTAT 2014 (Pearson
Edition) (Addinsoft, Paris, France).

2.4.6. Canonical Coefficient and Loading Interpretation and Spatial Representation

The percentage of allocation of an individual within its group (defined by its genotype)
was calculated using a discriminant function analysis. Values ≥|0.40| in the discriminant
loading of a variable were considered to be significantly discriminant. Thus, nonsignificant
variables were excluded from the function using stepwise procedures. Higher values for
absolute coefficients for each particular variable determine better discriminating power.
Afterward, data were standardized following the premises reported by Manly and Al-
berto [29], and Mahalanobis distances were calculated using the following formula:

D2
ij = (Ui −Uj) COV−1(Ui −Uj) (2)

where D2
ij is the distance between population i and j, Υi and Υj are the means of variable x

in the i-th and j-th populations, respectively, and COV−1 is the inverse of the covariance
matrix of measured variable x. The squared Mahalanobis distance matrix was converted
into a Euclidean distance matrix.

Afterward, dendrograms were built using the underweighted paired-group method
arithmetic averages (UPGMA) from the Rovira i Virgili University, Tarragona, Spain, and
the Phylogeny procedure of MEGA X 10.0.5 from the Institute of Molecular Evolutionary
Genetics, The Pennsylvania State University, State College, PA, USA.

2.4.7. Discriminant Function Cross-Validation

The percentage of correctly classified cases can be defined as the hit ratio. The leave-
one-out cross-validation procedure was used to consider if the discriminant functions can
be validated. Classification accuracy is achieved when the classification rate is at least
25% higher than obtained by chance.



Animals 2021, 11, 2211 8 of 20

Press’s Q statistic can support these results since it can be used to compare the discrim-
inating power of the cross-validated function, as follows:

Press′s Q =
[n− (n′K)]2

n(K− 1)
(3)

where n is the number of observations in the sample; n’ is the number of observations
correctly classified, and K is the number of groups.

The value of the Press’s Q statistic must be compared with the critical value of 6.63 for
χ2 with a degree of freedom in a significance of 0.01. When Press’s Q exceeds the critical
value of χ2 = 6.63, the cross-validated classification can be regarded as significantly better
than chance.

2.5. Data Mining CHAID Decision Tree

The chi-squared automatic interaction detection (CHAID) decision tree (DT) data min-
ing method was used for classification, prediction, interpretation, and discrete categorized
data manipulation. The tree routine of the Classify package of SPSS v26.0 software (IBM,
Armonk, NY, USA) was used. Each internal node was built in the tree around a zoometric
or phaneroptic trait (input variables), while a chi-squared test significance split criterion
(p < 0.05 at least) was fulfilled in the so-called pre-pruning process.

Breiman, et al. [30] suggested that pre- or post-pruning methods prevent over-dimension
of trees to prevent the failure to pursue the addition of traits (branches) which add significantly
to the overall fit. As a result, a tree that exhaustively depicts the significant relationships
across independent variables is one from which those nodes that do not contribute to the
overall prediction have been discarded. Furthermore, CHAID additionally penalizes model
complexity. In this regard, the Bonferroni inequality significant adjustment for significance
levels was used.

Breiman’s method uses chi-squared tests to determine to configure the tree building
process. Each branch represents an outcome of the test (in a number of two or more),
and each leaf node (or terminal node) represents a category level of the target variable
(breed/variety). The root node in the tree is the one that is located at the top. The decisions
are made at each node, and each record of data continues through the tree along a path
until the record reaches a leaf or terminal node of the tree [31].

Afterward, cross-validation was performed to validate the set of predictors considered
measuring the differences between the prediction error for a tree applied to a new sample
and a training sample. Cross-validation of the decision tree was performed using the
“complexity parameter” and cross-validated error to estimate how accurately the model
performs data prediction. Tenfold cross-validation [32] was performed using every sample
record in the training sample and study data. The resubstitution error rate measures
the proportion of original observations that were misclassified by various subsets of the
original tree.

Tenfold cross-validation was used to obtain a cross-validated error rate, from which the
optimal tree was selected to prevent bias and outlier overfitting. Tenfold cross-validation
involves creating 10 random subsets of the original data, setting one portion aside as a
test set, constructing a tree for the remaining (10 − 1) portions, and evaluating the tree
using the test portion. This was repeated for all portions, and an estimate of the error was
evaluated. Adding up the error across the 10 portions represented the cross-validated error
rate. Afterward, the tree yielding the lowest cross-validated error rate was selected as the
tree that best fit the data.

3. Results
3.1. Discriminant Canonical Analysis Reliability

Values of ρ < 0.05 obtained for Pillai’s trace criterion suggested the appropriateness of
data to perform the DCA (Table 3). The contribution of canonical functions to the meaning
of each discriminating function was assessed by Wilks’ lambda statistic (Table 4).
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Table 3. Summary of the results of Pillai’s trace of equality of covariance matrices of canonical
discriminant functions.

Females

Pillai’s trace criterion 2.8664
F (Observed value) 7.1227

F (Critical value) 1.1540
df1 261
df2 3978

p-value <0.0001
alpha 0.05

Males

Pillai’s trace criterion 3.8256
F (Observed value) 2.7989

F (Critical value) 1.1740
df1 252
df2 954

p-value <0.0001
alpha 0.05

F, Snedecor’s F; df1, numerator degrees of freedom for the F-approximation (groups minus 1); df2, denominator
degrees of freedom for the F-approximation (observations minus 1).

Table 4. Canonical discriminant analysis efficiency parameters to determine the significance of each
canonical discriminant function.

Test of
Function(s)

Wilks’
Lambda Chi-Square df Sig.

Females
1 through 7 0.045 1436.63 63 0
2 through 7 0.411 410.85 48 0
3 through 7 0.814 95.218 35 0

Males
1 through 4 0.017 515.527 36 0
2 through 4 0.242 180.18 24 0
3 through 4 0.813 26.252 14 0.024

Supplementary Tables S1 and S2 show a summary of the values of tolerance and VIF
for those variables for which VIF < 5 was reported and, thus, those which were included
in the analysis across sexes. VIF values > 5 were discarded from further analyses; skull
width, anteroposterior tarsus diameter, eye color, beak ratio, tarsus color, tarsus length,
skull length, lateromedial tarsus diameter, and wingspan were the variables discarded for
females, while lateromedial tarsus diameter, ocular width, skull width, beak ratio, nail
color, tail length, eye color, tarsus color, wattle width, tarsus length, and skull length were
the traits discarded before DCA in male individuals.

3.2. Canonical Coefficients, Loading Interpretation, and Spatial Representation

DCA determined three discriminating canonical functions for both sexes (Tables 4 and 5).
Lower Wilks’ lambda values and respective higher eigenvalues were indicative of higher dis-
criminating power. In females, 90.37% of the total variance was explained by functions F1 and
F2 (eigenvalues of 9.66 and 5.17 for F1 and F2, respectively). In males, functions F1 and F2
(eigenvalues of 26.91 and 7.34 for F1 and F2, respectively) explained 88.49% of the total variance.

Table 5. Canonical variable functions and percentage of self-explained and cumulative variance.

Sex Function Eigenvalue Discrimination (%) Cumulative %

Females
F1 9.6611 58.8681 58.8681
F2 5.1701 31.5034 90.3716
F3 0.7705 4.6950 95.0665

Males
F1 26.9110 69.5353 69.5353
F2 7.3362 18.9561 88.4914
F3 2.7997 7.2342 95.7256
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After discarding redundant variables, variables were ranked by the test of equality of
group means across groups depending on their discriminating properties (Tables 6 and 7).
Lower values of Wilks’ lambda and greater values of F indicated a better discriminating
power, which translated into a better position in the rank.

Table 6. Results for the tests of equality of females group means to test for difference in the means across groups once
redundant variables were removed in the female population.

Variables Lambda F df1 df2 ρ-Value Rank

Nail color (white) 0.1911 217.2864 9 462 <0.0001 1
Ocular ratio 0.3571 92.3999 9 462 <0.0001 2
Back length 0.4291 68.3067 9 462 <0.0001 3
Body weight 0.4318 67.5522 9 462 <0.0001 4
Ocular length 0.4982 51.6983 9 462 <0.0001 5

Longitudinal diameter 0.5184 47.6874 9 462 <0.0001 6
Keel of esternum length 0.5262 46.2222 9 462 <0.0001 7

Wattle length 0.5381 44.0615 9 462 <0.0001 8
Folding wing length 0.5691 38.8630 9 462 <0.0001 9

Comb length 0.5828 36.7513 9 462 <0.0001 10
Wattle width 0.5986 34.4272 9 462 <0.0001 11

Breast circumference 0.6052 33.4926 9 462 <0.0001 12
Thigh length 0.6358 29.4067 9 462 <0.0001 13

Nail color (black/corneous) 0.6736 24.8741 9 462 <0.0001 14
Ornithological measurement 0.6831 23.8125 9 462 <0.0001 15

Comb width 0.6868 23.4102 9 462 <0.0001 16
Beak width 0.6935 22.6921 9 462 <0.0001 17

Earlobe width 0.7001 21.9939 9 462 <0.0001 18
Tail length 0.7660 15.6822 9 462 <0.0001 19

Beak length 0.7855 14.0167 9 462 <0.0001 20
Earlobe length 0.8005 12.7947 9 462 <0.0001 21

Nail color (slate/corneous) 0.8156 11.6036 9 462 <0.0001 22
Nail color (slate) 0.8426 9.5928 9 462 <0.0001 23

Skull length 0.8629 8.1568 9 462 <0.0001 24
Number of beaks in comb 0.9095 5.1094 9 462 <0.0001 25

Tarsus ratio 0.9416 3.1857 9 462 0.0009 26
Skull ratio 0.9703 1.5692 9 462 0.1217 27

Nail color (black/white) 0.9869 0.6793 9 462 0.7279 28
Presence or absence of spurs 0.9903 0.5005 9 462 0.8743 29

F, Snedecor’s F; df1, numerator degrees of freedom for the F-approximation (groups minus 1); df2, denominator degrees of freedom for the
F-approximation (observations minus 1).
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Table 7. Results for the tests of equality of group means test for difference in the means across groups once redundant
variables were removed in the male population.

Variables Lambda F df1 df2 ρ-Value Rank

Ocular ratio 0.1797 63.4040 9 125 <0.0001 1
Beak color (black/corneous) 0.2102 52.1922 9 125 <0.0001 2

Beak color (white) 0.3489 25.9192 9 125 <0.0001 3
Wingspan 0.3765 22.9996 9 125 <0.0001 4

Beak color (black) 0.4526 16.7993 9 125 <0.0001 5
Back length 0.4547 16.6534 9 125 <0.0001 6

Ocular length 0.5279 12.4222 9 125 <0.0001 7
Longitudinal diameter 0.5536 11.1984 9 125 <0.0001 8

Anteroposterior tarsus diameter 0.5576 11.0173 9 125 <0.0001 9
Body weight 0.6399 7.8142 9 125 <0.0001 10

Breast circumference 0.6511 7.4427 9 125 <0.0001 11
Folding wing length 0.6653 6.9859 9 125 <0.0001 12

Earlobe width 0.7245 5.2821 9 125 <0.0001 13
Beak color (corneous) 0.7272 5.2092 9 125 <0.0001 14

Keel of sternum length 0.7424 4.8184 9 125 <0.0001 15
Wattle length 0.7819 3.8731 9 125 0.0002 16
Comb length 0.7899 3.6936 9 125 0.0004 17
Beak width 0.7903 3.6848 9 125 0.0004 18
Beak length 0.8000 3.4712 9 125 0.0007 19

Earlobe length 0.8194 3.0609 9 125 0.0024 20
Number of beaks in comb 0.8225 2.9981 9 125 0.0029 21

Thigh length 0.8296 2.8519 9 125 0.0043 22
Neck length 0.8707 2.0623 9 125 0.0378 23

Ornithological measurement 0.8798 1.8980 9 125 0.0580 24
Comb width 0.9029 1.4932 9 125 0.1574 25
Tarsus ratio 0.9072 1.4215 9 125 0.1858 26
Skull ratio 0.9254 1.1189 9 125 0.3544 27

Beak color (caramel/corneous) 0.9300 1.0460 9 125 0.4077 28

F, Snedecor’s F; df1, numerator degrees of freedom for the F-approximation (groups minus 1); df2, denominator degrees of freedom for the
F-approximation (observations minus 1).

Figure 3 presents a graph of standardized discriminant coefficients across discriminant
functions. These analyses not only allowed us to easily identify those variables accounting
for higher repercussions on the discriminant power of functions overall, but also the
possibility of a reduction in the discriminant power of individual variables as a result of
multicollinearity between pairs.

The substitution of the values for biometric-related traits into the first three discriminating
functions was performed to obtain x-, y-, and z-axis coordinates, for the first, second, and third
dimensions, respectively. In these coordinates, each observation was sorted and classified
across the different groups. A territorial map was depicted for each sex (Figure 4).

Mahalanobis distance represents the probability that an observation presenting an
unknown background belongs to a particular group (breed/variety). It can be computed
through the relative distance of the problem observation to the centroid of its closest
group. Then, the hit ratio was calculated. The hit ratio is the rate of successfully clas-
sified cases across breed/varieties (which was performed across sexes) (Supplementary
Tables S3 and S4). Mahalanobis distances obtained after the evaluation of the discriminant
analysis matrix were transformed into squared Euclidean distances, and the results are
represented in Figures 5 and 6, following Hair et al. [33].
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Supplementary Tables S3–S6 report the results obtained in the classification and leave-
one-out cross-validation for the observations in the present study. Here, 71.82% and 81.48%
of original grouped cases were correctly classified for females and males, respectively. From
these results, 59.96% and 49.63% of clustered observations were cross-validated. Press’s Q
values of 2004.41 and 1060.27 were obtained from females and males, respectively; hence,
it can be considered that predictions were significantly better than chance at 95% [34].

3.3. Data Mining CHAID Decision Tree

The underlying basis for these classification patterns was found after the evaluation
of the data mining CHAID decision tree obtained for the chi-square dissimilarity matrix.
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Classification trees of groups by genotypes produced simple trees with terminal nodes
(Supplementary Figures S3 and S4). Chi-squared-based branch and node distribution
suggested females significantly (p < 0.001) differed depending on their values of nail
color and, thus, were classified into four subgroups (black corneous/slate corneous, slate,
corneous, and white). Nail color was the best discriminant phaneroptic trait and helped
to distinguish among black Utrerana, black Sureña, Partridge Utrerana, and Franciscan
Utrerana). Afterward, ocular ratio helped to discriminate across the varieties of Utrerana
and Sureña hens (p < 0.001), with the Utrerana animals presenting ocular indices over 0.986,
while Sureña ocular indices were equal to or below 0.986 (Supplementary Figure S1).

By contrast, chi-squared-based branch and node distribution suggested males only
significantly (p < 0.001) differed depending on their values of ocular ratio. Ocular ratio
helped to discriminate between varieties of Utrerana and Sureña roosters (p < 0.001), with
the Utrerana animals presenting ocular indices over 1.015, while Sureña ocular ratios were
equal to or below 1.015 (Supplementary Figure S2).

Female data mining decision tree tenfold cross-validation reported closely similar
resubstitution (probability of misclassifying an unseen instance) and cross-validation error
rate estimates of 0.484 and 0.510, for which the standard error was 0.023, respectively.
For the male tree, 0.726 and 0.867 values of resubstitution and cross-validation error rate
estimates were obtained with standard errors of 0.038 and 0.029, respectively. Although
data resubstitution can underestimate the classifier error, it has less variability than other
methods, such as cross-validation, especially for small sample sizes. As cross-validation
error rate estimates were close to resubstitution ones, albeit lower, trees were not overfitted,
confirming the robustness of the results obtained and the validity of the conclusions drawn.

4. Discussion

Differential sex-linked hormonal and genetic regulation patterns of the expression
of growth have been reported to occur in local poultry breeds [35,36]. Dimorphism and
dichromatism could be a consequence of sexual selection and might provide an adaptative
advantage of one population over others. For instance, in the context of the conditions
found in rustic backyard environments, even if there is a lower selective pressure focused
toward production, male-to-male competition has induced roosters to increase the size,
giving an advantage against the opponent [37].

In the context of multizoometric and phaneroptic analyses, it has been suggested that
it is necessary to check for the different relationships across explanatory variables and select
independent variables that do not overlap when deciding on the factors which determine
the efficiency of predictive models [23]. High correlations between skull length and skull
width (i.e., skull ratio) were revealed by the multicollinearity analysis since the formula for
skull ratio calculation comprises the aforementioned measurements. The same happened
with anteroposterior (in both sexes) and lateromedial (only in hens) tarsus diameters as the
elements which determine the tarsus ratio. The calculation formula of beak ratio, which
includes the remaining beak measurements, was eliminated from further analysis due to
multicollinearity problems (VIF > 5).

Lastly, the ocular width variable was discarded from the analysis of male individ-
uals since this variable is contained within the formula of ocular ratio (VIF > 5). These
results are supported by those in Ning et al. [38], who found multicollinearity problems
when formulae were developed after the inclusion of explanatory variables which were
already included.

Phaneroptic variables have been reported to be highly significantly interrelated [39].
Even if most qualitative variables were discarded after the multicollinearity analysis, nail
color in hen and beak color in roosters were the only qualitative variables that remained in
the DCA. Thus, results suggest that multicollinearity problems between different qualitative
measurements in birds may have occurred.

White nails was reported to be the best discriminating feature in hens (Table 6). Only
seven individuals of White, Splash, and Franciscan Sureña showed dark nails, while no
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hen of White and Franciscan varieties showed nails of a different color than white. In
roosters, black/corneous and white colors in the beak were also reported to have high
discriminant power.

Previous studies have reported that phaneroptic features are somehow correlated in
native chicken breeds, provided they may derive from the expression of the same gene
background across the body parts [40]. Additionally, it has been suggested that these
qualitative traits have significant effects on other quantitative traits such as body weight
and daily gain in chicken [40,41].

Our results are indicative of the fact that qualitative variables, with high discriminant
ability to discern among local hen genotypes, must be considered as efficient selection
criteria in breeding programs, as an effective method to identify the individuals presenting
the most desirable production-related characteristics at the most convenient earlier age.

Furthermore, certain phaneroptic variables may be associated with consumers’ trends
and their cultural preferences. For instance, while North American consumers have strong
preferences for white-skin meat [42], meat from dark-skin poultry is preferred by producers
and consumers in South America [14]. Hence, multivariety breeds accounting for a wide
variety of feather and skin color patterns such as Utrerana and Sureña could satisfy the
needs of a wider scope of targets in different market niches.

Feather coloration strongly conditions the camouflage abilities of birds. In this regard,
Dohner [43] suggested that the less aggressive strains developed for confinement may be
less self-sufficient and may not be as alert to predators. In hens, this has been ascribed to
the association of specific quantitative trait loci with behavioral traits [44]. As an example,
birds carrying the ancestral junglefowl allele (i) of the PMEL17 locus are black, while White
Leghorn (I) birds are white (with heterozygotes frequently being less pigmented).

Contextually, i/i alleles carriers have been reported to be more vocal, less prone to
develop fearful attitudes toward humans, and more aggressive, social, and explorative
(enhanced foraging behavior) [44]. These enhanced behavioral features may make these
dark-colored breeds less susceptible to predation by hawks [43]. The PMEL17 locus
has simultaneously been associated with feather-pecking and bullying behavior toward
counterparts [45], with darker birds tending to be rather affected by feather-pecking than
their white counterparts [46]. It is still unknown whether feather-pecking may exclusively
be attributed to plumage color or to the behavior of i/i carrier individuals to become targets
of pecking attacks.

Alternatively, Tickell [47] stated that coloration-related costs in higher rates of bird
predation may also translate into the enhancement of other tactics for evading capture [6].
This was reflected in our study (Figures 5 and 6) with Sureña presenting smaller ocular
indices in comparison to Utrerana hens, albeit with darker Sureña individuals being
closer to white Utrerana animals and white-feathered Sureña located further away when
morphological traits were considered.

Ocular ratio was ranked second and first regarding its discriminant ability in hens and
roosters, respectively. The relevance of ocular ratio may be ascribed to higher adaptability
to the environment and improved capacity to seek food as a result of improved vision
skills. Indeed, except for certain occasions, birds have a highly developed vision.

In relationship to the size of the skull, the avian eye is very large. While humans
have an eye relative size of 5% with respect the skull, in hens, 50% of the cranial volume is
occupied by the orbit [48]. High visual acuity is advantageous for hens relying heavily on
their ability to navigate surroundings to find and acquire food, to identify potential mates,
and to quickly escape from predators [49,50]. Hall and Ross [51] reported that the light
level, which is highly correlated with bird activity pattern, has a more significant influence
on eye shape and body size than other factors, such as phylogeny.

Birds with a higher adaptation to darkness habits, such as brooding and nesting
abilities, exhibit larger axial and corneal lengths and, therefore, a higher eye size diameter
than the rest of the birds [52,53]. On the other hand, larger individuals with larger eyes have
the potential for more sensitive and acute vision than smaller individuals with smaller eyes.
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This could suggest that the Sureña breed, with a significantly larger eye size, has a sharper
vision. However, each breed has developed an ideal eye design for conditions in which
it is produced. Larger eyes need more brain space for information processing. Therefore,
evaluation of ocular size in each breed must be performed taking into account body size [54].
Thus, the higher size of Sureña eyes could be mainly ascribed to a proportionally larger
body shape.

It has also been suggested that lower values for ocular ratio may act as an adaptation
to optimal antipredator behavior since larger ocular width could suppose an advantage
in the lateral visual field [55,56]. Thus, results obtained in the present study may suggest
that Utrerana eyes make it more adapted to survival in free-range systems. Furthermore,
smaller birds have developed rather improved adaptative qualities such as hardiness,
agility, scavenging ability, and less time needed for flight [57]. The Utrerana breed, with
lower body weight and ocular ratio, may be better adapted to free-range systems through
its enhanced rusticity, even if the literature indicates that both breeds can easily thrive and
are well adapted to the environmental conditions present in these alternative production
systems [9,58].

Back length was the third best discriminant variable in hens. These results agree with
those presented by previous research [59,60]. In this sense, back length has been reported
to be highly correlated with other important traits. As a consequence, it plays an important
role as a linear body measurement when the aim is to predict for body weight, as well as to
develop and to implement productive selection strategies during breeding in laying hens.

Size-related parameters such as body weight (in hens) and wingspan (in roosters)
play a pivotal role in the classification of individuals (Tables 6 and 7). These traits allow us
to delimitate those animals belonging to the Sureña breed. Sureña individuals typically
account for larger body sizes than Utrerana individuals.

Lighter hens have been reported to present higher egg productions and lower feed
conversion rates and, therefore, a better laying ability [61]. On the other hand, breeds
characterized by larger individuals may be prone to become dual-purpose genotypes in
alternative production systems, in which both sexes are reared together, to later, at an
advanced age, separate males for final fattening and slaughtering, while females are kept
during several laying cycles [62,63]. Bearing this in mind, focusing efforts on the selection
of the Utrerana breed toward an egg production aptitude and Sureña as a dual-purpose
breed may be the most effective and profitable productive alternative.

Although Sureña and Utrerana breeds were presumably selected from a common
origin [8], the graphic representation of the observations assessed in the present study
(Figure 4) reports a clear differentiation of morphological characteristics between the two
breeds. While three clear clusters are shown in Utrerana breed (Partridge, Black, and
Franciscan/White varieties), the closeness of the six varieties of the Sureña avian breed
suggests a likely lack of reproductive management and crossbreeding among the different
varieties of this breed.

This proves that, once official breed recognition occurs, an incorrect application of
a breeding program in local breeds can lead to a deterioration of the phenotypic and
genotypic identity of the individuals, which directly results in the partial or total loss of
the genetic pool of these local resources [64,65].

Contextually, Partridge Utrerana was reported to be the most differentiated variety
from all studied varieties. These results are supported by those in Macrì et al. [6], who
reported Partridge Utrerana individuals to be placed the farthest away from the rest of
Utrerana varieties.

More than 75% of hens in each Utrerana variety were correctly classified (Supple-
mentary Table S3), except for the individuals of the White variety, whereby 50% of hens
were notably classified as Franciscan Utrerana hens. This Utrerana White/Franciscan
misclassification is supported by the results in Figures 5 and 6. Franciscan and White
Utrerana varieties were closely clustered (Figures 5 and 6). This finding may indirectly
indicate reminiscences of hybridization between White and Franciscan Utrerana varieties,
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with both presenting white legs and beak, which may be the result of the attempts of
breeders to decrease the consanguinity within the White Utrerana variety, given that this
variety has historically been the subpopulation accounting for the smallest census and that
which faces the highest endangerment risk [22].

Blue Sureña variety females were those for which a rather frequent misclassification
rate occurred (Supplementary Table S3). This finding may stem from the fact that breeding
practices performed in the area may seek the obtention of individuals presenting blue
plumage patterns through a cross between other varieties, such as Black or Splash [66].

Biometric studies have been performed worldwide to make breed characterization
feasible and to be considered during the implementation of conservation strategies and
policies [16]. This suggests that the preservation of the breed diversity may be one of the
motor elements ensuring the future survival of a breed. This future survival may rely on
the enhancement of a breed’s ability to cover a wider scope of market demands, thereby
reaching a broader audience [67]. The present methodological proposal is framed in the
context of opportunity and resurgence of a potential production industry that intends to
lay the base for a sustainable selective breeding program in avian breeds. Certain easily
measurable traits, such as phaneroptic variables and ocular ratio, can efficiently play a
pivotal role in the classification of birds. In this context, the discriminant tool designed in
the present research allows efficiently classifying individuals considering biometric and
phaneroptic traits. This is supported by the 71.82% and 81.48% of individuals correctly
ascribed to their prior hen breed/variety cluster.

5. Conclusions

Sexual selection of larger males in backyard production systems may evidence clear
sexual dimorphism in Utrerana and Sureña breeds. The use of these multivariate breeds is
productively advantageous since a broader scope of market demands could be satisfied
in terms of carcass organoleptic characteristics. This research confirms that native breeds
in the south of Spain may be well adapted to extensive and backyard systems, but also
that their differential zoometric adaptation may make them more suited for the aptitude
that they were selected to perform. Nevertheless, the Utrerana breed showed a better
morphological adaptation to optimal antipredator behavior and rusticity. In any case,
both breeds should follow different breeding programs considering alternative routes; the
Sureña breed has greater potential as a dual-purpose breed, while morphometric traits of
the Utrerana breed may be indicative of higher profitability in egg-producing farms. The
present research validates the efficiency of the discriminant tool designed while performing
individual selection and breed ascription considering easily measurables traits such as
ocular ratio and phaneroptic variables, which may simultaneously ensure the survival of
these local genetic resources.
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