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Abstract

Effective planning involves knowing where different actions take us. However natural 

environments are rich and complex, leading to an exponential increase in memory demand as 

a plan grows in depth. One potential solution is to filter out features of the environment irrelevant 

to the task at hand. This enables a shared model of transition dynamics to be used for planning 

over a range of different input features. Here, we asked human participants (13 male, 16, female) 

to perform a sequential decision-making task, designed so that knowledge should be integrated 

independently of the input features (visual cues) present in one case but not in another. Participants 

efficiently switched between using a low (cue independent) and a high (cue specific) dimensional 

representation of state transitions. fMRI data identified the medial temporal lobe as a locus for 

learning state transitions. Within this region, multivariate patterns of BOLD responses as state 

associations changed (via trial-by-trial learning) were less correlated between trials with differing 

input features in the high compared to the low dimensional case, suggesting that these patterns 

switched between separable (specific to input features) and shared (invariant to input features) 

transition models. Finally, we show that transition models are updated more strongly following 

the receipt of positive compared to negative outcomes, a finding that challenges conventional 

theories of planning. Together, these findings propose a computational and neural account of how 

information relevant for planning can be shared and segmented in response to the vast array of 

contextual features we encounter in our world.

Introduction

Effective goal-directed behaviour requires an agent to learn an accurate model of the world. 

Theories of reinforcement learning (RL) conceive of this model as a function p(s′|s, a) that 

encodes the probability of transitioning to a new state, s', given the current state, s, and 

action, a. Explicitly learning a state transition function permits agents to plan over possible 

futures (Sutton and Barto, 1998). This computational framework has been widely used to 

model simple laboratory behaviours that involve a limited number of state transitions (Daw 

et al,. 2011, Doll et al., 2015, Gläscher et al., 2010, Wunderlich et al., 2012). However, 
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it has well-known limitations, foremost among which is that computational cost grows 

exponentially with the number of states.

One way agents can reduce this computational cost is to selectively discard information – 

such as intervals of time (minutes, hours, days, etc.) and sensory cues – that can be used to 

segment experiences into separate states (Niv, 2019). For example, when planning a journey 

to work, travel delays when travelling by car (traffic jams), rail (train track repairs) or bike 

(getting wet) can all change from day to day. One way to reduce the cost of planning is to 

share knowledge of travel delays over multiple days where this is appropriate. For example, 

train delays might be invariant to whether one is travelling on a weekday or at the weekend.

Here, we developed an experimental paradigm that allowed us to test how the brain adapts 

the state representations it uses in order to plan efficiently. Our first question was whether, 

participants would flexibly adapt how information was recruited and updated, switching 

between low (cue independent) and high (cue specific) dimensional representations. Our 

question and approach here are similar to those described in a recent paper by Baram 

and colleagues (Baram et al., 2021), with a key difference being that our work examines 

how the transition function (how states of the world are associated), rather than the value 

function (the value of states and actions), is shared across or kept specific to the presence 

of different sensory cues. Our second question was posed at the neural level and addressed 

by recording fMRI data whilst participants performed the task. We focussed on the medial 

temporal lobe (MTL) which has previously been shown to be important for forming new 

associations between states (Eichenbaum et al., 1999, Miyashita, 1988, Yokose et al., 2017, 

Rey et al., 2018) and involved in bridging past memories to make new inferences on the 

basis of paired associations or transitive relations (Bunsey and Eichenbaum, 1996, Wimmer 

and Shohamy, 2012, Zeithamova et al., 2012, Kumaran et al., 2016, Koster et al., 2018, 

Park et al., 2019). We find that a cluster of regions in the MTL, including the hippocampus, 

amygdala and entorhinal cortex, display patterns of BOLD activity encoding transition 

probabilities that are more similar between sensory cues when model sharing is possible 

compared to when it is not. This suggests that the MTL maintains separable encoding 

patterns corresponding to each sensory cue in cases where state associations are cue specific, 

but uses a single cue independent encoding pattern when they are not. Finally, we designed 

our paradigm such that the transition function (the probability of moving from s to s' 
under action a) and the value function (when in state s, the expected value of taking the 

action a that led to s') were theoretically independent. This allowed us to ask whether state 

transition learning depends on whether an outcome is positive or negative. We show that 

belief updating of state transition knowledge occurs to a greater degree following positive 

outcomes compared to negative. This learning asymmetry is reflected by an interaction in 

the MTL whereby state prediction errors are expressed with greater fidelity for positive 

compared to negative outcomes. These findings nuance conventional models of planning 

that assume state transitions and outcomes are tracked and maintained separately from one 

another.
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Materials and Methods

Participants

A total of 62 healthy volunteers with no self-declared history of psychiatric or neurological 

disorders took part in the experiment. Thirty one took part in the pilot experiment (18 

female, mean [std.] age: 26.29 [5.50]), and thirty-one participated in the main fMRI 

study. From the latter, two participants were subsequently excluded. One was excluded 

because their structural fMRI revealed a possible brain abnormality. A second participant 

was excluded due to excessive head motion (more than 10% of images contained motion 

artefacts upon visual inspection). This left 29 participants (16 female; mean [std.] age: 25.86 

[3.59]) in the final sample. Participants were paid 10€/hour plus a bonus contingent on 

performance.

Ethics Statement

The fMRI study was approved by the ethics committee of the University of Granada where 

data collection was carried out. All participants gave written informed consent prior to 

scanning. The behavioural pilot was approved by the ethics committee at the University of 

Oxford where this data set was collected. We obtained written informed consent from each 

participant.

Heist Task

On each trial of the fMRI experiment, participants were presented with one of two doors 

(dark/light) on one (left/right) side of the screen (side counterbalanced), in one of two 

“contexts” within the current block (Figure 1a). Participants were instructed not to respond 

until an X appeared on the door. When an X appeared, on forced trials (24 per trials per 

block), participants were required to select the door initially presented. On free choice trials 

(8 per block), participants could either choose the door initially presented or opt to choose 

the alternate door which appeared on the opposite side of the screen also with an X (Figure 

1a). Participants had 1.5 seconds to respond otherwise the trial aborted. Missed trials (mean 

[std] = 6.41 [4.65]) were excluded from all analyses.

The selection of door influenced which of two possible 2nd stage states participants 

subsequently transitioned to. One of the doors transitioned with probability p to a heist 

state where participants could either win or lose money and transitioned with probability 1 – 

p to a neutral state in which participants would always receive 0 as an outcome (participants 

were only rewarded for free choice trials). The alternate door transitioned to the same 

second stage states but with the inverse probability (i.e., probability 1- p of transitioning to 

the heist state and probability p to the neutral state, Figure 1b). The value of p was was 

set to either 0.2 or 0.8, alternating randomly between these two values throughout the task 

(with probability of changing equal to 0.1 on every trial). This meant that one door was 

always likely to transition to one of the outcome states and unlikely to transition to the 

other. Participants were told state transitions could change but were not told the probability 

with which this could happen. Importantly, p always had the same value for both contexts 

in dependent blocks. In independent blocks, the values for p were independent in the two 

contexts. Participants were explicitly told this probability structure during the instructions 
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and the block type they were in (dependent/independent) was clearly signalled to them at the 

start of a new block of trials. The context of the current trial was signalled to participants 

by the colour of a gemstone presented in the centre of the screen (either green, yellow, 

blue or red). The assignment of gemstone to context was different for each participant but 

(after assignment) remained the same throughout the experiment. Alongside this contextual 

cue, during door and response presentation participants were also shown a stimulus (either 

swag bag or police) indicating whether they would receive a gain (if swag bag shown) or 

incur a loss (if police shown) if they reached the heist state (this changed randomly on 

every trial). They were also shown a sofa stimulus which indicated they would get 0 upon 

reaching the sofa state (this was the case in every trial). Since whether a gain or a loss was 

possible in the heist state alternated on each trial and was signalled to participants meant 

participants would want to try to reach the heist state on 50% of trials (when the swag bag 

was shown) and avoid this state (i.e. reach the sofa state) the other 50% (when they police 

was shown). Explicitly providing participants with this information was done to remove the 

need to actively learn the value of each bottom level state, emphasise the need to track the 

transition function and use current beliefs about this function to plan. After indicating their 

choice, participants were shown the state they transitioned to and the resulting outcome – 

either a gain or a loss if they transitioned to the heist state (depending on whether the police 

or swag bag stimuli had been presented at the time of choice) or zero if they transitioned to 

the neutral state.

The task took place in sessions of trials (2 blocks of 32 trials per session, 5 sessions total 

during the experiment, 320 trials total). The first session took place outside of the scanner. 

Each session contained one block of trials in the dependent condition and one block of trials 

in the independent condition. The order of the blocks was counterbalanced across sessions. 

Participants indicated their response using a computer keyboard (outside the scanner) or 

MRI compatible button box (inside the scanner). Participants were paid a base-rate bonus of 

2.50 Euro plus 2.5 times their percentage of correct free choice trials (up to 5 Euro total). 

The task was programmed in MATLAB using Psychtoolbox (Kleiner et al., 2007).

Behavioural analysis (adapting information integration between contexts)

To examine the extent to which participants updated beliefs about state transitions within 

and between contexts, logistic regression analyses were conducted (mixed-effects models 

using the fitglme fitting routine in MATLAB, version 2020 [https://www.mathworks.com/]). 

Models tested to what extent subjects’ choice behaviour on each trial (coded as: select dark 

door = 1; select light door = 0) was influenced by transitions experienced over the previous 5 

trials.

To examine this, we first constructed 5 variables that coded the evidence received from the 

state transition n trials back (relative to the current trial, t), where n ranged from 1 to 5. 

When trial t was a gain trial, previous transitions to the heist state were coded 1 (-1) if 

the dark (light) door was selected t-n trials back and participants transitioned to the heist 

state and coded -1 (1) if the transition encountered was to the neutral state. This coding 

was reversed for loss trials (Figure 2). The intuition implicit in this coding scheme is that 

participants would aim to repeat choices that previously transitioned to the heist state on 
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gain trials but to switch choices on loss trials (in an attempt to transition to the neutral state 

and avoid incurring a loss). We also partitioned trials according to whether evidence was 

received in the same or alternate context as the current trial t. This lead to a total of 10 

variables – 5 encoding evidence received 1 to 5 trials back from the same context and 5 

encoding evidence received 1 to 5 trials back from the alternate context. 0 was entered as a 

value for cases where a variable did not apply for a particular trial (for example, if 3 trials 

back a subject’s choice was executed in the alternate context, evidence 3 trials back in the 

same context would be assigned a value of 0 for this trial).

Next, to assess qualitatively whether the degree of information integration from each context 

(same and other) changed between conditions, we entered all 10 variables in separate mixed 

effects models: one for the dependent condition and one for the independent condition. Only 

choices from free choice trials were entered in the model as the dependent variable (however 

the information encoded in the independent variables used to predict choice could come 

from free or forced trials as participants could use transition information from both trial 

types). All regressors and the intercept were taken as random effects, i.e. allowed to vary 

across subjects.

The model was specified in the syntax of MATLABs fitglme routine as:

DarkDoor ∼ oneBackSame + twoBackSame + threeBackSame + fourBackSame + fiveBackSame + oneBackOther
+ twoBackOther + threeBackOther + fourBackOther + fiveBackOther + (1 + oneBackSame + twoBackSame
+ threeBackSame + fourBackSame + fiveBackSame + oneBackOther + twoBackOther + threeBackOther
+ fourBackOther + fiveBackOther subject)

To the extent that participants are using information from each context to a similar degree 

(which ought to be the case in dependent blocks), coefficient estimates ought to have 

a similar magnitude for same and other context. To the extent that participants ignore 

information from an alternate context to a similar degree (which ought to be the case in 

independent blocks), there ought to be separation between coefficient estimates from same 

versus other. Note that by controlling multiple trials back we guard against the possibility 

that information used in the alternate context can have an effect in the dependent condition 

by virtue of the fact the feedback of received is similar in the two contexts.

Finally, to assess quantitively whether differences in information integration between 

conditions were significant, we averaged each condition’s streams of evidence for picking 

the dark door on the current trial over the past five trials. This resulted in two quantities:

average_evidence_Same = (oneBackSame + twoBackSame + threeBackSame + fourBackSame + fiveBackSame)
/5

average_evidence_Other = (oneBackOther + twoBackOther + threeBackOther + fourBackOther + fiveBackOther)
/5

We then subtracted average_evidence_Other from average_evidence_Same providing a 

difference score:
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differential_evidence = average_evidence_Same − average_evidence Other

The differential evidence score reflects a relative preference in updating beliefs for 

information received from the same context over information received from the other 

context. When equal to 0, individuals are indifferent between evidence from the same and 

evidence from the other context. When greater than 0, individuals prefer (i.e. update beliefs 

to a greater degree) information received in the same context compared to the other context. 

When less than 0, individuals prefer information received in the other context compared to 

the same context.

We used this differential evidence score in a third mixed effects model to test whether 

preferences for the context in which information was received shifted with condition 

(captured in the model as a Differential Evidence by Condition interaction). The model 

was specified as follows:

DarkDoor ∼ differential_evidence * Condition + (1 + differential_evidence * Condition subject

Condition was again coded as 1 = Dependent condition, -1 = Independent condition.

Computational Model

Our model is not intended primarily as an account of the computations that humans 

undertake, but as an analytic tool. Participants are assumed to track the task’s underlying 

state transition structure in the form of p, an estimate of the probability that selection of 

one of the two doors (which of the two is arbitrary, but in our modelling this is taken to 

be the dark door) transitions to the heist state. This is assumed (as is the actual case in 

the experimental design) to be equal to the probability that the alternate door transitions 

to the neutral state. It is also assumed (as is the case) that 1- p is equal to the probability 

of each door going to the alternate state (dark goes to neutral and light to heist). Under 

these assumptions, maintaining a belief about a single quantity, p, enables computation of 

estimates for each door going to each 2nd level (terminating) state. Importantly, participants 

are assumed to maintain two sets of beliefs about p: pspecific
i  and pindependent ⋅ pspecific

i

maintains separate estimates of p, exclusive to each context where i indexes the 2 contexts 

in each block (i.e. pspecific
i = 1 , pspecific

i = 2 , ). pindependent maintains a single estimate of p which 

updates across contexts (within the same block). All estimates of p were initialised to 0.5 at 

the start of the experiment in all models. Estimates of p were allowed to carry over between 

blocks (i.e., p did not reset to 0.5 at the start of a new block).

At the time of choice, participants then combine the two sets of beliefs pspecific
i , pindependent

into a single estimate, pc, according to:

pc = w * pindependent + 1 − w ∗ pspecific
i
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We tested a baseline model in which w was held fixed between conditions. We refer to this 

as the fixed model. We tested this against a 2nd model which was identical in all respects 

except that it allowed w to reverse in the independent condition. In other words, in the 

dependent condition pc was calculated as:

pc = w * pindependent + (1 − w) * pspecific
i

In the independent condition pc was calculated as:

pc = 1 − w * pindependent + w * pspecific
i

We refer to this as the flexible model.

In both models, combined estimates of p (pc) were then used to calculate the value of 

selecting each door:

Qdark door = r ∗ pc
Qligℎt door = (r ∗ 1 − pc)

[r = 1 on gain trials, -1 on loss trials]

Following choice, after participants observed the 2nd level state they transitioned to, a state 

prediction error, δ, calculated as:

δ = x − pc

[x = 1 if chose dark door and transition to heist state OR

chose light door and transitioned to neutral state;

x = 0 if chose dark door and transitioned to neutral state OR

chose light door and transitioned to heist state]

This prediction error was then applied to update both sets of beliefs about p:

pindependent = pindependent + w * α * δ

pspecific
i = pspecific

i + 1‐ w * α * δ

Where the context indexing pspecific
i  can be context 1 or context 2.

The w used in each update is identical to w used to compute pc and was either held fixed 

(fixed model) or allowed to reverse between conditions (flexible model).
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To avoid probability estimates exceeding 1 or going below 0 (which in a small number of 

cases is possible in this setup), updates to beliefs were bounded to within this range.

The probability of choosing the dark door was then estimated using a softmax choice rule, as 

follows:

p cℎoice = dark door = 1
1 + exp β Qligℎt_door − Qdark_door

Altogether each model has 3 parameters: α, β and w. For each participant, we estimated the 

free parameters of the model by maximizing the likelihood of their sequence of choices, 

jointly with group-level distributions over the entire population using an Expectation 

Maximization (EM) procedure (Garrett and Daw, 2020, Huys et al., 2011) which maximises 

the joint likelihood of each participants sequences of choices where each individual’s 

parameter estimates are random effects drawn from group level Gaussian parameter 

distributions whose means and variances and also estimated) implemented in the Julia 

language (Bezanson et al., 2012), version 0.7.0. Note, similar to the behavioural analysis 

reported above, all trials (forced and free) were included in the model but only free choice 

trials were included in the likelihood calculation. Models were compared by first computing 

unbiased per subject log marginal likelihoods (using the Laplace approximation) via subject-

level cross-validation (iteratively holding out each subject and estimating the free parameters 

of the model for the remaining participants using the EM optimisation algorithm then 

using these estimates as a gaussian prior to optimise the left out subject choices) and then 

comparing these likelihoods (one per participant) between models (Flexible versus Fixed) 

using paired sample t-tests (two sided).

Computational Simulations

To examine the qualitative fit of each learning model to the data we ran separate simulations 

for the Fixed Model (in which w was held constant across conditions) and the Flexible 

Model (in which w was allowed to vary with condition). For each simulation (n = 504 for 

each model), we ran a group of 29 virtual participants. For each virtual participant, we 

randomly selected (with replacement) a set of parameters (ϐ, α and w) from the best fit 

parameters generated by the computational model (fit to actual participants choices). We 

then simulated the learning process by which estimates of p evolved (given door selection 

and state encountered), exactly as described for the respective computational models. To 

mimic the task as closely as possible, 25% of a virtual agents trials were free choice trials in 

which we simulated which of the two doors were selected (given current beliefs about p, and 

whether a gain or a loss was available in the heist state) and 75% were forced choice trials 

where the door selected was chosen for them (as a coin flip).

We then entered choices made by each virtual agent as the dependent variable in a binomial 

mixed effects model with regressors coding evidence received 1 to 5 trials back from 

the same and alternate context (10 regressors in total). This was run separately for each 

condition replicating the analysis conducted on the data (i.e., actual subjects’ choices) with 

the same model specification (as before, all regressors and the intercept were taken as 
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random effects). This generated a set of fixed effect parameter estimates for each simulation 

for each condition. We then averaged each fixed parameter estimate over the simulations and 

compared these to the parameter estimates generated from the data.

Finally, we used the fixed model to run a permutation test to estimate the extent to which 

an interaction between differential evidence and condition (our third mixed effects model) 

could arise under agents that did not change information integration between contexts which 

might occur due to feedback being more similar in the dependent condition compared to 

the independent condition. Specifically, we simulated choices for 500 groups made up of 29 

agents each, performing the task. For each agent, we randomly selected (with replacement) 

a set of parameters (β, α) from the best fit parameters generated by the fixed model (fit to 

actual participants choices). W could take any value between 0 and 1 (uniformly distributed) 

and could not reverse between contexts. For each group we then calculated differential 

evidence scores on each trial for each participant and entered these into a mixed effects 

model to predict choices (along with condition and their interaction) exactly as we did using 

participants data. This generated a distribution of fixed effects estimates and t statistics 

which we used to calculate a 95% confidence interval and compare against the estimates 

found in the data.

fMRI image acquisition, pre-processing and reporting

MRI data were acquired on a 3T Siemens Magnetom Trio MRI Scanner (Erlangen, 

Germany) scanner. A whole brain high-resolution T1-weighted anatomical structural scan 

was collected before participants commenced the four in-scanner blocks of the task (imaging 

parameters: 1mm3 voxel resolution, TR = 1900ms, TE = 2.52ms, inversion time (Tl) = 

900ms, slice thickness = 1mm, voxel resolution = 1mm3). During the task, axial echo planar 

functional images with BOLD-sensitive contrast were acquired in descending sequence 

(imaging parameters: 32 axial slices per image; voxel size = 3.5mm3, slice spacing = 

4.2mm, TR = 2000ms, flip angle = 80°, TE = 30ms). 462 volumes were collected per 

participant per session (total number of volumes over the 4 sessions = 1848), resulting 

in a scanning time of approximately 1 hour. Image analysis was performed using SPM12 

(http://www.fil.ion.ucl.ac.uk/spm). The following procedures were used for preprocessing of 

the raw functional files. Slice-time correction referencing was applied with reference to the 

middle slice to correct for/avoid interpolation errors due to the descending image acquisition 

sequence (Sladky et al., 2011 in Juechems et al. (2017)). Then, realignment of the images 

from each session with the first image within it was performed. The crosshair was adjusted 

to the anterior commissure manually to improve coregistration. After coregistration of 

the functional with the structural images was performed, segmentation, normalisation and 

smoothing of the epi files was undertaken. We then checked for motion artefacts and flagged 

scans as well as warping manually.

In all fMRI analysis (univariate and RSA searchlights) we report activation that survives 

small volume correction at peak level within an anatomical or functional ROI mask (see 

below for how these were defined). Other brain regions were only considered significant at 

a level of p < 0.001 uncorrected if they survived whole-brain FWE correction at the cluster 

level (p < 0.05).
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Anatomical masks

Anatomical masks were generated using the automated anatomical labelling (AAL) atlas 

(Tzourio-Mazoyer et al., 2002) and Talairach Daemon Atlas (Lancaster et al., 2000), 

which was used to define Brodmann area 28 as entorhinal cortex (Canto et al., 2008) 

and Brodmann area 17 as VI (Tootell et al., 1998) integrated in the WFU Pickatlas GUI 

(Maldjian et al., 2003):

(1) A bilateral medial temporal lobe mask used for small-volume correction, 

which was defined as including the bilateral hippocampus, entorhinal cortex, 

parahippocampus and amygdala and dilated by a factor of 1 in the WFU 

Pickatlas GUI.

(2) Bilateral amygdala (84 voxels), hippocampus (336 voxels), entorhinal cortex 

(53 voxels), and parahippocampus (404 voxels) masks (no dilation) used for 

anatomical definition of our ROI from fMRI general linear model 1 (see below) 

as well as post-hoc RSA tests (Figure 4).

(3) Bilateral V1 (121 voxels) and bilateral primary motor cortex (Brodmann area 4, 

240 voxels) used as a control region for the post-hoc RSA tests (see Figure 4).

All masks were resliced to match the dimensions of our data using the SPM fMRI Realign 

(Reslice) function.

fMRI general linear model 1

For each participant, the blood oxygen level-dependent (BOLD) signal was modelled using 

a General Linear Model (GLM) with time of door presentation and time of outcome 

presentation as onsets. Events were modelled as delta (stick) functions (i.e. duration set to 

0 seconds) and collapsed over our two experimental conditions (dependent and independent 

blocks).

To identify regions tracking state prediction errors, we extracted trial by trial estimates of 

unsigned state prediction errors, |δ|, from our computational model and entered these as 

parametric regressors, modulating the time of outcome for each participant. In addition, 

we also entered the following regressors: outcome received (1, 0 or -1), the interaction of 

outcome with unsigned state prediction error (i.e. the product of outcome received with |δ| 

on each trial) and trial type (1 = forced, -1 = free). Six movement parameters, estimated 

from the realignment procedure were added as regressors of no interest.

ROI definition

We identified region(s) in which the BOLD response was parametrically modulated by 

the magnitude of the unsigned state prediction error (|δ|), using a threshold of p < 0.001 

uncorrected, with cluster size > 10 voxels. Clusters identified were saved as binary regions 

of interest (ROIs; in SPM) and then combined into a single ROI using the MarsBaR 

toolbox (http://marsbar.sourceforge.net/). This functional ROI was then used for subsequent 

representational similarity analysis (RSA; see below). We divided the number of voxels that 

fell within both our functional ROI and each anatomical mask by the total number of voxels 
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in our functional ROI. This gave us the percentage with which our functional ROI was a 

conjunction of each anatomical region.

fMRI GLM 2a (door presentation)

For each participant, we created a design matrix in which each door presentation (32 per 

condition per session) was modelled as a separate event (without parametric regressors 

attached). Such a procedure has been used multiple times in the past (Charpentier et al., 

2014, Garrett et al., 2016). Outcome onset was entered as an additional event. Events 

were modelled as delta functions and convolved with a canonical hemodynamic response 

function to create regressors of interest. Six motion correction regressors estimated from the 

realignment procedure were entered as covariates of no interest.

RSA (door presentation)

To examine whether BOLD responses were more similar between contexts in the dependent 

versus independent condition, we used GLM3a to extract estimates of BOLD response on 

each trial in our functional ROI (identified from GLM 1) and partitioned these estimates 

into four linearly spaced bins according to how likely the door presented was to go to the 

heist state (P(state = heist | door_presented)). This was inferred by extracting trial by trial 

estimate of pcombined (from the flexible learning computational model) and using pcombined 

or 1-pcombined depending whether the dark or light door was presented respectively to 

estimate p(state=heist | door_presented).

We divided trials into quartiles based on p(heist state | door presented), resulting in the 

following average (standard deviation; SD) probability bins:

Bin 1: 0.04 < p (heist state | door presented) ≤ 0.21 (0.10)

Bin 2: 0.21 < p (heist state | door presented) ≤ 0.51 (0.09)

Bin 3: 0.51 < p (heist state | door presented) ≤ 0.80 (0.09)

Bin 4: 0.80 < p (heist state | door presented) > 0.96 (0.03)

This was done separately for each context that the participant (N = 29) encountered (2 in 

dependent blocks and 2 in independent blocks, 16 bins in total). We then averaged these 

estimates in each voxel in our functional ROI (collapsing across the 4 functional runs) for 

each bin generating an average BOLD response for each voxel.

To compare the similarity of responses between contexts we proceeded by first calculating 

the dissimilarity of BOLD responses in each of the 4 bins between contexts. This was 

computed using the pdist function in MATLAB using 1-pearson correlation as a measure of 

distance; hence high correlation indicates a low level of dissimilarity (conversely a high level 

of similarity). This generated an 8x8 dissimilarity matrix for each condition of which we 

subselected the 4x4 matrix displaying the dissimilarity of probability bins between the two 

contexts (i.e. context 1 vs context 2 for each level of p (heist state | door presented))

Dissimilarity scores were then converted into similarity scores (high scores indicating 

greater similarity) and Fisher transformed to allow inference at the group level. The four 
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similarity scores along the diagonal of each RSA matrix (where identical bins are compared 

between contexts) were averaged for each participant creating an on-diagonal similarity 

score which quantifies the extent to which identical values of transition probabilities are 

encoded similarly between the two contexts in a condition. The 12 similarity scores on the 

off-diagonal of each RSA matrix (where different bins are compared between contexts) were 

separately averaged together to create off-diagonal similarity scores. Note that unlike in 

regular RSA analyses, all 12 scores were averaged across rather than just the upper or lower 

triangle as the values in the 4x4 RSM are not identical about the diagonal (off-diagonal 4x4 

of a larger 8x8, see above). We then computed the difference between on and off diagonal 

scores separately for each condition. One sample ttests (versus 0) were conducted to assess 

whether significant differences between on an off diagonal similarity scores existed. Two-

tailed paired sample ttests were used to compare whether difference scores were greater for 

the dependent condition compared to the independent condition.

The same RSA procedure was applied to voxels within the four anatomical ROIs used 

to characterise the nature of the effect within the medial temporal lobe and the control 

regions V1 and M1 (see Figure 4). The interaction ANOVA result reported in-text are 

Greenhouse-Geisser corrected to adjust for violations of sphericity (both F value and degrees 

of freedom).

To check whether there is a relationship between the temporal proximity of trials between 

contexts and how similar the neural patterns are, we calculated the mean temporal distance 

between trials in the two contexts on the diagonal and the off-diagonal in each condition 

for each participant. We then correlated the difference in proximity between diagonal and 

off-diagonal trials with the difference in representational similarity between the diagonal and 

off-diagonal in the dependent and the independent condition.

Encoding model analysis

As a complementary approach, we built a linear encoding model, equivalent to a 

crossvalidated multinomial logistic regression, that mapped voxels (within an ROI) onto 

probabilities under different constraints. We evaluated this model in cross-validation, using 

independent held out data from across scanner runs. Briefly, we first extracted single-trial 

estimates of BOLD within the MTL ROI for each gem on each session, yielding data Y of 

size v × t, where v is the number of voxels and t the number of trials on which that gem 

was presented. We also recoded (scalar) single-trial, model-derived estimates of transition 

probability (converted to odds ratios) as input vectors in either a one-hot format (i.e. a 

one within the relevant bin and zeros elsewhere) or a Gaussian format (i.e. a Gaussian 

tuning curve that was maximal in the relevant bin but gradually tapered over adjacent bins). 

We used n bins falling within the range (in log odds) units of -2 to 2, where n varied 

exhaustively from 1-10. This yielded data X of size n × t. We estimated weights w by 

linear regression of Xi onto Yi for scanner run i and evaluated the fit of the model to help 

out probabilities Xj from multivariate patterns Yj acquired in scanner run j. We used a 

(mean) cross-entropy loss in validation. This exercise allowed us to verify, for each gem, 

the cross-validated loss when weights obtained with gem g were evaluated with gem g' 
with which it co-occurred, both in the independent condition (where the probabilities were 
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different) and the dependent condition (where they were not). We tested whether there 

was stronger cross-validation between gems (and across runs) in the dependent than the 

independent condition, for varying number of bins n and with both one-hot and Gaussian 

input functions.

Searchlight RSA analysis (door presentation; whole-brain)

To assess whether our ROI was the only brain area with dependent and independent block 

transition probability representations and potential differences between them or whether this 

representation was distributed across the brain (and thus potentially less meaningful), we 

also conducted a whole-brain searchlight analysis. The searchlight analysis was conducted 

using a combination of scripts from the RSA toolbox (Nili et al., 2014) and our own parser 

script feeding in the single-trial onset events generated in GLM3a. The searchlight radius 

used was 10.5mm (corresponding to 3 voxels). Neural representational dissimilarity maps 

for the two block types were separately correlated with model representational dissimilarity 

matrices (RDMs, Figure 3d) using Spearman’s correlation coefficient. The model RDM 

specified that the on-diagonal was more similar between contexts than the off-diagonal. 

This was done individually for each participant and the resulting maps of correlation 

coefficients were saved. Second-level analysis as described above was then applied to the 

r-maps to establish separate group-level effects for the two conditions, i.e. the dependent 

and independent blocks (Figure 3e). We report any brain regions that survive whole brain 

correction at the cluster level after thresholding at p < 0.001.

fMRI GLM 2b (outcome presentation)

For each participant, we created a design matrix in which each outcome presentation (32 

per condition per session) was modelled as a separate event (without parametric regressors 

attached). Door presentation onset was entered as an additional event.

RSA analysis (outcome presentation)

We used GLM2b to extract estimates of BOLD response on each trial in our functional ROI 

and partitioned these estimates into bins according to the combination of doors chosen and 

state encountered. These combinations (of which there are 4 in total) drive the direction 

and degree of update of beliefs (p) about state transitions in the computational model. 

Specifically, we divided responses into bins as follows:

Bin 1: dark door chosen + heist state encountered

Bin 2: dark door chosen + neutral state encountered

Bin 3: light door chosen + heist state encountered

Bin 4: light door chosen + neutral state encountered

This was done separately for each context that the participant encountered (2 in dependent 

blocks and 2 in independent blocks, 16 bins in total). We then averaged these estimates 

in each voxel in our functional ROI (collapsing across the 4 functional runs) for each bin 

generating an average BOLD response for each voxel.
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To compare the similarity of responses between contexts we followed a similar procedure 

to the RSA analysis conducted at door presentation. We first calculated the dissimilarity 

of BOLD responses in each of the 4 choice-outcome state combinations across the two 

conditions generating 2 separate 8*8 RSA matrices of which we subselected the off-diagonal 

4x4 for further analyses (context 1 vs context 2 for each of the four choice-outcome state 

combinations computed separately for each condition). After conversion to similarity scores 

and Fisher transformation, the four on-diagonal similarity scores and the 12 off-diagonal 

similarity scores of each RSA matrix were averaged to create 2 sets of similarity scores 

per condition. The mean on- and off-diagonal similarity scores were then entered into a 

paired ttest to assess differences between identical choice-outcome bins and non-identical 

choice-outcome bins in the two contexts. Then, to assess whether there were meaningful 

differences between conditions, the difference between the mean on and off-diagonal scores 

for each participant in each condition was entered into a paired ttest (dependent on-diagonal-

off-diagonal vs independent on-diagonal vs of-diagonal).

The same RSA procedure was applied to voxels within the four anatomical ROIs used to 

characterise the nature of the effect within the medial temporal lobe and the control regions 

V1 and M1 (see Figure 5). Again, the ANOVA results reported were Greenhouse-Geisser 

corrected due to violations of the assumption of sphericity.

Searchlight RSA analysis (outcome presentation; whole-brain)

The searchlight analysis was implemented in the same way as described above for the 

searchlight RSA at time of door onset. Here, the onset events read into the searchlight script 

were the outcome onset events generated in GLM3b. Again, the model RDMs specified 

that the on-diagonal (identical choice-outcome combinations for the two contexts within 

a condition) was more similar than the off-diagonal (Figure 5a) and the analysis was 

conducted separately for the two conditions.

Searchlight interaction analysis (outcome presentation; whole-brain)

The interaction analysis was also conducted similarly to the analysis described above for the 

time of door onset. In this case, if there is a difference between the difference scores for the 

two conditions, this means that the difference between the similarity in encoding of identical 

choice-outcome combinations and different choice-outcome combinations across the two 

contexts is different between the two conditions. If this difference is positive (as this analysis 

is coded as encoding similarity), it means the same choice-outcome combinations are 

encoded more similarly between contexts than non-identical choice-outcome combinations 

in dependent than in independent blocks and vice versa. As for door presentation, we report 

any brain regions that survive whole brain correction at the cluster level after thresholding at 

p < 0.001.

fMRI general linear model 3

To visualise the parametric effect of our interaction term (|δ| * outcome) in GLM1, we 

ran a separate GLM which included onsets of door presentation and outcome presentation 

with outcome onsets separated into 3 separate events: time of outcome presentation when 

participants received an outcome of +1, an outcome of 0 and an outcome of -1. Each of the 
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3 outcome onsets was modulated by 2 parametric regressors: unsigned state prediction error 

(extracted from our flexible RL model) and trial type (force/free). Events were modelled 

as delta functions and collapsed over our two experimental conditions (dependent and 

independent blocks), just as for fMRI GLM1. Six movement parameters, estimated from 

the realignment procedure were added as regressors of no interest. We then extracted the 

parametric betas for the state prediction error regressors for each participant from the 3 

outcome conditions using the Marsbar toolbox at the peak voxel of the |δ| * outcome cluster 

identified in GLM1.

Participants and task (behavioural pilot)

Thirty-one self-declared healthy individuals (18 female; M = 26.29 years, SD = 5.50) 

were recruited using opportunity sampling via the Oxford University Research Recruitment 

System. The task was the same as the fMRI cohort undertook described above) save for 

the following differences. Firstly, participants performed 8 blocks of 60 trials (480 trials 

total) and all trials in this design were free choice trials. This provided us with a higher 

powered design to detect differences in updating due to outcome received at the end of an 

episode. After an inter trial interval (0.3-0.5s) participants had up to 5 seconds to make 

their choice after which they received confirmation of their choice (0.5s) and feedback (1s). 

Second, participants were not informed about the differences between blocks. However, just 

as before each block had two different contexts, a dependent block in which transitions 

for the two contexts was the same and an independent block in which the transitions were 

independent.

Behavioural analysis (outcome valence and state transition updating)

To examine the effect of outcome valence on transition updating we calculated a consistency 

score for each participant. This is the percentage of times a participant’s choices were 

consistent given both: (1) the previous trials state-action-state sequence, (2) whether the 

current trial was a gain or a loss trial. Since the same state action state sequence can lead 

to repeating or switching being the correct thing to do – depending whether the next trial 

is a gain or a loss trial – we first divided trials into two types – repeat and switch. Repeat 

trials are those for which participants would want to revisit the terminating state from the 

previous trial. For example, participants would want to repeat their choice if they picked the 

grey door on the last trial, went to the heist state and the next trial is a gain trial. These trials 

comprised:

(i) Trials where they previously reached the heist state AND the current trial was a 

gain trial.

(ii) Trials where they previously reached the neutral state AND the current trial was 

a loss trial.

Switch trials are those where participants would want to avoid the terminating state from the 

previous trial. For example, participants should want to swich their choice if they picked the 

grey door on the last trial, went to the heist state and the next trial is a loss trial. These trials 

comprised:
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(i) Trials where they previously reached the heist AND the current trial was a loss 

trial.

(ii) Trials where they previously reached the neutral AND the current trial was a 

gain trial.

For both repeat and switch trials, the outcome on the previous trial can be positive or 

negative. For instance, whilst a participant ought to want to repeat selection of grey door 

if that took them to the heist state on the last trial and the next trial is a gain trial, the 

outcome on the last trial (when they went to the heist state) could have been positive or 

negative, depending whether the last trial was a gain or a loss trial. Hence we then further 

divided each trial type – repeat, switch – into those where they received a positive (+1 on 

gain trials, 0 on loss trials) or negative (-1 on gain trials, 0 on loss trials) outcome at the end 

of the previous transition. This gave us 4 types of trials – repeat positive, repeat negative, 

switch positive and switch negative. We calculated the % of trials participants repeated 

or switched choices (as appropriate) for these 4 trial types for each participant. We then 

calculated a consistency score for positive trials by averaging together repeat positive and 

switch positive. We also did the same for negative trials.

For the behavioural experiment dataset, all trials were used. In the fMRI dataset, only free 

choice trials were included (but transition sequences from the previous trial could be from a 

free or a force trial). Participants’ consistency scores for positive were compared to negative 

using paired sample ttests (two tailed). First we did this collapsing over contexts and 

conditions. This meant that the previous trial could have either been from the same or from 

the alternate context. Note that participants were not explicitly told of the conditions (i.e., 

whether to ignore or take notice of contextual cues) in the behavioural dataset. Although 

they were told this in the fMRI version of the task this ought not to bias this analysis. 

Nonetheless, we also repeated this analysis only using trials in the dependent condition.

Finally, we calculated a quantified each participants outcome valence effect as the difference 

between consistency scores for positive trials (i.e. repeat positive and switch positive 

trials) minus consistency scores for negative trials (i.e. repeat negative and switch negative 

trials). This indexed the degree to which participants updated state transitions preferentially 

following positive compared to negative outcomes over both types of trials. We then 

correlated each participants valence effect with their parametric betas extracted for the 

interaction regressor (|δ| * outcome) from GLM1.

Results

Task and design

Participants (n = 29) performed a planning task in an fMRI scanner (the “heist” task; Figure 

1a). The task was introduced to participants via a cover story that suggested they were a 

burglar involved in a heist at one of 4 contexts, each denoted by a unique coloured gem. 

Each trial occurred in one of these four (gem) contexts, and the relevant coloured gem icon 

remained on the screen throughout the trial to make this clear. After trial onset, participants 

chose one of two doors (light vs dark), which were respectively associated in context c with 

probabilities pc of transitioning to the (high-stakes) “heist” state and 1 − pc of transitioning 
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to the “neutral” state (Figure 1b). pc switched randomly between 0.2 and 0.8 across the 

course of the experiment, meaning that a door was always likely to transition to one of 

the outcome states and unlikely to transition to the other. Participants were told that the 

transitions could change but were not told that there were two possible values p could 

assume, what these values were, nor were they told how often p could change.

Before making their choice, participants were presented with an additional cue which 

signalled whether, in the heist state, the participant would be caught (signalled by police cue; 

incurring a loss) or commit a successful burglary (signalled by swag cue; incurring a gain), 

whereas no positive or negative outcomes occurred in the neutral state (outcome of zero). 

The optimal policy was thus to learn the transition probability in order to approach the heist 

state in the presence of the swag cue and avoid the heist state in the presence of the police 

cue. To decorrelate choices and probabilities for the scanner, 75% of trials were “forced” 

in which only a single door was available, but in which transition probabilities could still 

be updated on receipt of reward. In the remaining 25% of trials, participants could freely 

choose between the two doors. Participants were unaware during the initial door presentation 

whether the trial would be a forced or free choice and therefore needed to actively consider 

transition probabilities on every trial.

The task was performed in alternating blocks that we label “dependent” and “independent” 

conditions. In dependent blocks, the transitions probabilities associated with the two 

contexts (e.g. p1 and p2) were yoked so that p1 = p2 at all times (Figure 1c, top panel). In 

independent blocks, the transition probabilities associated with the other two contexts (e.g. 

p3 and p4) were unrelated (overlapping on average half of the time; Figure 1c, bottom panel). 

The two contexts that made up each condition were randomly interleaved within a block, but 

the dependent and independent conditions themselves occurred in temporally distinct blocks 

of trials. Participants were told before starting the task about the two conditions and were 

told at the start of each new block whether they were entering a dependent or independent 

condition block (see Methods for full details about the task).

Behavioural analysis

We first asked whether behaviour differed between the dependent and independent 

conditions. If participants generalised knowledge of the transition structure across contexts, 

then they should be more prone to use learning from context j to inform subsequent 

decisions in context i when in the dependent than independent condition (note that 

this behaviour is expected because participants were instructed about the dependence or 

independence among transition probabilities for the two gems in each block).

We used a logistic mixed effects regression to measure this effect in a trial-history dependent 

fashion, asking how choices made on each trial t in context i depended on the history of 

state transitions observed over the previous 5 trials that had occurred in the contexts i and j, 
where j was the alternate context within the relevant condition (dependent or independent). 

To conduct this analysis we recoded choices in a single frame of reference that removed 

the choice inversion between trials where police and swag cues were present. This was 

necessary because in our task, the transition history is relevant not for determining the 

specific response (light vs. dark door) but rather the choice contingent on the presence of the 

Glitz et al. Page 17

J Neurosci. Author manuscript; available in PMC 2022 July 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



swag or police cue. We call the historic information that is predictive of this recoded choice 

“transition evidence”.

The results are shown in Figure 2. In the dependent condition, transition evidence from the 

previous two trials (t-2) significantly predicted choice, both when it was experienced in the 

same (t-1: Fixed Effect β [95% CI] = 1.11 [0.76-1.46], Standard Error (SE) = 0.18, p < 

0.001, t-2: β = 0.43 [0.17-0.70], SE = 0.13, p < 0.001) and when it was experienced in 

the alternate context to the current trial (t-1: β = 0.72 [0.42-1.02], SE = 0.15, p < 0.001, 

t-2: β = 0.40 [0.17-0.63], SE = 0.12, p < 0.001; Figure 2a). In contrast, in the independent 

condition, choices were only influenced by transition evidence when this was accrued in the 

same context (Figure 2b). This was the case going 1, 2, 3 and 4 trials back (t-1: β = 0.62 

[0.24-1.00], SE = 0.19, p = 0.001; t-2: β = 0.30 [0.04-0.55], SE = 0.13, p = 0.02; t-3: β = 

0.35 [0.09-0.61], SE = 0.13, p=0.008; t-4: β = 0.32 [0.07-0.58], SE = 0.13, p = 0.01). When 

transition evidence was accrued in the alternate context, this did not influence participants 

subsequent choices, even on the immediately previous (t-1) trial (β = 0.07 [-0.12-0.27], SE = 

0.10, p = 0.47).

To directly compare the relative weight participants placed on past evidence received from 

the same and alternate context in each of the two conditions (dependent, independent) 

we ran an additional mixed effects model. We computed the difference in transition 

evidence between the two contexts (averaged over the past 5 trials; we call this “differential 

evidence”) for each condition (dependent/independent) and their interaction as predictors 

in this model. This revealed a significant interaction between differential evidence and 

condition (β = -0.41 [-0.63, -0.18], SE = 0.11, p < 0.001) along with a main effect of 

differential evidence (β = 0.43 [0.20, 0.66], SE = 0.12, p < 0.001), but no main effect of 

condition (β = -0.05 [-0.13, 0.04], SE = 0.04, p = 0.27). The interaction between differential 

evidence and condition remained significant in a permutation test which guards against 

greater similarity of feedback (in the dependent condition compared to the independent 

condition) confounding the effect (β = -0.41, 95% range under the null distribution: [-0.25, 

0.08], p < 0.001). Together, these results suggest that the relative preference for information 

received from the same (versus the alternate) context shifted between conditions. This was a 

result of participants increasing integration of information from the alternate context in the 

dependent condition.

We also analysed data from an additional pilot experiment (n = 31; see Methods) with an 

identical structure except for two important differences: firstly, there were no forced choice 

trials, and secondly, participants were not instructed about the dependence or independence 

of the transition structure but were left to discover it for themselves. In contrast to the fMRI 

cohort, in the independent condition, choices were influenced by transition evidence that 

accrued in both the same context (t-1: β [95% CI] = 1.20 [0.95, 1.45], SE = 0.13, p < 0.001, 

t-2: β = 0.65 [0.49, 0.82], SE = 0.08, p < 0.001, t-3: β = 0.39 [0.26, 0.52], SE = 0.07, 

p<0.001, t-4: β = 0.25 [0.15, 0.34], SE = 0.05, p<0.001, t-5: β = 0.19 [0.09-0.29], SE = 0.05, 

p<0.001) and in the other context (t-1: β = 0.22 [0.07, 0.37], SE = 0.08, p = 0.004, t-2: β = 

0.15 [0.06, 0.24], SE = 0.05, p = 0.001, t-3: β = 0.10 [0.002, 0.20], SE=0.05, p=0.046, t-4: 

β = 0.09 [0.004, 0.179], SE=0.04, p=0.04, t-5: β = 0.09 [-0.001, 0.19], SE=0.049, p=0.05). 

Examining whether differential evidence interacted with condition revealed a significant 
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interaction between differential evidence and condition (β = -0.097 [-0.17, -0.02], SE = 0.04, 

p = 0.010) however this was not significant in the permutation test (β [95% range under the 

null distribution] = -0.097 [-0.25, 0.08], p=0.92). As discussed below, we think that together 

these results suggest that in the absence of instruction, participants may have a stronger prior 

that the two gems which co-occur in time belong to a shared latent context.

Computational model

Our modelling framework assumed that choices were determined by a mixture of 

associations learned in an independent and dependent fashion across contexts. We note at 

the outset that our model is not intended primarily as an account of the computations that 

humans undertake, but as an analytic tool that compactly parameterises human policy with 

just a few parameters which allows us to verify the degree to which humans share a model 

between contexts.

The model is composed of two learners, one which learns a shared transition function across 

a pair of contexts and another which learns a separate transition function for each context. 

On each trial, choices are determined by linearly mixing the estimated probabilities from 

each learner according to a weighting parameter w, and using the resulting probabilistic 

estimate pc to compute the relative expected value of heist and neutral states, according 

to which a choice was made via inverse temperature parameter β. The optimal policy 

(for an omniscient agent) would be to use w = 1 in the dependent condition and w = 0 

in the independent condition. On each trial, participants updated the context specific and 

the context independent transition functions according to a state prediction error, δ, which 

quantifies the degree of surprise at reaching a state given the option chosen and current 

estimates of the transition function. δ was also weighted by w and the degree of update 

governed by a learning parameter, α. Our rationale for modelling learning of transitions 

as an incremental process (rather than beliefs fluctuating between p=0.2 and p=0.8) is that 

we did not explicitly instruct participants that there were two levels of p, what these levels 

were, nor how often they could change. We assume that learning this underlying structure in 

practice would therefore be difficult (due to the stochasticity of the transitions, the existence 

of four different contexts, the frequency with which transitioned change and the heist state 

fluctuating between gains and losses) but caveat that alternate learning models could be used 

to formally test this assumption.

We compared two versions of this learning model. A fixed model in which w was held 

constant across the experiment was compared to a flexible model in which w was allowed 

to reverse between experimental conditions (i.e., Windependent = 1 − Wdependent). This feature 

of the flexible model gives it the capacity to shift between relying to a greater degree on 

separate transition functions in the independent condition (i.e., w towards 0) and relying on 

a shared transition function in the dependent condition (i.e., w towards 1). See Methods for 

full model specification.

Flexible model adapts information integration between conditions

We fit each model to single subject choices on a per-trial basis and compared fixed and 

flexible models by computing unbiased marginal likelihoods via subject-level Leave One 
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Out cross validation (LOOcv) for each participant. Comparison of LOOcv scores revealed 

significantly lower scores (indicating superior performance in cross validation at predicting 

participant choices) for the flexible model compared to the fixed model (t(28) = 2.72, p < 

0.01, paired sample ttest, see Table 1 for model parameters and LOOcv scores). 21 out of 

the 29 subjects (72% of subjects) were predicted better (had lower LOOcv scores) with the 

flexible model compared to the fixed model.

The best-fitting w parameter tended towards 1 in the dependent condition and 0 in the 

independent condition, consistent with the behavioural data. This indicates that participants 

learned a single transition function in dependent blocks but reverted to learning two different 

transition functions in independent blocks (by contrast, when w was held fixed across 

blocks it assumed an intermediate value of ~0.61). A flexible model with two separate w 
parameters (one per condition, fitted separately) did not account any better for participants 

choices than the flexible model with a single w that reversed between conditions (t(28) 

= -1.59, p = 0.12). Simulating choices using a population of subjects drawn according to 

best-fitting parameters of the flexible model showed that the flexible model qualitatively 

recapitulated the change in relative preference for information from the alternate versus 

same context between conditions (Figure 2a, b) to a greater degree than choices simulated 

from the fixed model (Figure 2c, d).

Neuroimaging data

Having established that participants behave differently in the dependent and independent 

conditions, we turned to the fMRI data to understand the neural mechanisms that 

supported this differential behaviour. Our goal was to use multivariate approaches (including 

representational similarity analysis, RSA) to examine how multivoxel patterns encoding 

transition probabilities (i.e. beliefs about the forthcoming state) were related in the 

dependent and independent conditions. However, we first adopted a univariate analysis to 

identify target sites for the coding of the state transition function, using the state prediction 

error (SPE) from the model. We expected that the MTL would be sensitive to SPEs, 

consistent with a long tradition implicating the hippocampus in the formation of state 

associations (Eichenbaum et al., 1999), and a detector of states that either match or violate 

the agent’s expectations (Kumaran and Maguire, 2007, Duncan et al., 2012).

Univariate analysis

We thus modelled BOLD responses at the time the transitioned-to state (“heist” or “neutral”) 

was revealed using a parametric predictor encoding the unsigned state prediction error 

|δ| extracted from the flexible model. This analysis collapsed over conditions (dependent, 

independent). This modulator was included alongside other quantities coding for outcome, 

trial type (forced/free choice) and the interaction of outcome and |δ| (see Methods).

The BOLD signal correlated negatively with |δ| in two MTL clusters (peak left: [x, y, z]: -20, 

-4, -28, t(28) = 5.01, p < 0.001 uncorrected for multiple comparisons; peak right: 18, -4, -21, 

t = 4.22, p < 0.001 uncorrected), which survived small volume correction using a bilateral 

anatomical MTL mask (peak left: -20, -7, -24; t(28) = 5.01, family wise error corrected 

at the peak level within bilateral MTL mask [pFWE] = 0.008; peak right: 18, -4, -21; 
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t(28) = 4.22, pFWE = .047). In total, 10.14% of voxels lay within the anatomically defined 

amygdala, 33.33% within the hippocampus, 49.28% within the parahippocampus and 5.80% 

in the entorhinal cortex (Figure 3a), determined by assessing overlap with anatomical masks 

generated in WFU pickatlas (see Methods).

The negative direction of the parametric effect indicates greater change in BOLD response 

to expected (compared to unexpected) state transitions. We combined these clusters 

(extracted at p < 0.001 uncorrected) into a single bilateral functional region of interest 

(ROI) mask (Figure 3b) which we then used for subsequent multivariate analyses.

Representational Similarity Analysis (RSA)

Next, we used a multivariate approach to assess the mapping from BOLD responses in 

our functional ROI to transition probabilities, and to measure how this mapping changed 

over contexts. We began with an analysis of BOLD signals at the time of choice, i.e. when 

the door was presented. This is the timepoint during which participants needed to consider 

the transition probability to each prospective 2nd level state. We first used representational 

similarity analysis (RSA), measuring the correlation distance across multivoxel patterns 

associated with transition probabilities p(heist state | door presented) derived from our 

flexible learning model into quartiles, both across blocks and across gems (Figure 3c). 

Note that our prediction is that neural patterns encoding transition probabilities should be 

more similar across contexts in dependent than in independent blocks. We thus computed 

a similarity score by averaging correlations in diagonal (same probability quartile) vs. 

off-diagonal (different probability quartile) cases, separately for the two contexts in the 

dependent and independent condition.

This revealed a significant condition (dependent, independent) x quartile (diagonal, off-

diagonal) interaction (t(28) = 4.02, p < 0.001, 95% CI [.11,.33], paired sample t-test). 

This was the result of a difference in similarity between on and off diagonal scores in the 

dependent condition (t(28) = 5.33, p < 0.001, 95% CI [.11,.26], one sample t-test versus 0) 

which was absent in the independent condition (t(28) = -0.82, p = 0.42, 95% CI [-.11, .05], 

one sample t-test versus 0, see Figure 3d).

One interpretation of this finding is that in the dependent condition, the MTL encodes the 

state transition function for each context with a common neural pattern. However, we also 

considered some alternative possibilities. First, we examined whether the results held if 

we allocated trials to bins using fixed probabilities across the unity range (i.e., quartile 1: 

0.00-0.25, quartile 2: 0.26-0.50, quartile 3: 0.51-0.75 & quartile 4: 0.76-1.00) rather than 

adapting bins for each participant according to the specific distribution of probabilities they 

used. This revealed the same pattern of results (condition*diagonal interaction: t(28) = 4.20, 

p < 0.001; 95% CI [.10, .30]; difference in similarity between on and off diagonal bins in 

the dependent condition: t(28) = 5.73; p < 0.001; 95% CI [.13, .28]; difference in similarity 

between on and off diagonal bins in the independent condition: t(28) = 0.04; p = 0.97; 95% 

CI [-.07, .08]). Second, we checked that the number of trials in each probability quartile 

were well matched between contexts, finding that they were (t(28) = 1.50, p = 0.55, 95% 

CI [-.02, .15]). Finally, we were concerned that the effect might arise as a spurious effect 

of closer temporal proximity between trials in the same transition probability quartile in 
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dependent blocks. To address this, first we checked whether the average difference between 

the temporal distance of trials in on versus off diagonal quartile combinations was correlated 

with the difference in representational similarity (see Methods). This was neither the case 

in the dependent condition (r = -.20, p = 0.32), nor the independent condition (r = .15, p = 

0.44).

We then repeated our analysis in cross-validation across sessions. In other words, we 

measured the similarity between quartile/bin ni and nj where i and j are drawn from different 

scanner runs and computed the average for each similarity bin across all possible c1i and 

c2j Combinations where i ≠ j. This revealed the same (albeit weaker) pattern of results 

with fixed probability bins (condition*diagonal interaction: t(28) = 2.04, p = 0.05; 95% CI 

[-.00, .06]) and probability quartiles (t(28) = 1.89, p = 0.069; 95% CI [-.00, .07]). Finally, 

we repeated this cross-validation analysis, this time comparing similarity scores within the 

same context (separately for each condition). Contrary to what we had expected, this did not 

reveal a significant difference in either condition (dependent condition: t(28) = 1.09, p = .29, 

95% CI [-.01, .03]; independent condition: t(28) = .42, p = .68, 95% CI [-.01, .02], paired 

ttests comparing on with off diagonal similarity scores). In other words, whilst we were able 

to successfully decode probabilities between contexts in cross validation (Figure 3d) in the 

dependent condition, this was not the case within context (for either condition). We caution 

that this does question the robustness of the between context RSA analysis. Reassuringly 

however, we also did not observe the condition*diagonal interaction we had observed for 

the between context case (t(28) = - 0.53, p = .60, 95% CI [-.03, .02]). Furthermore, we 

did not find evidence to suggest that decoding was stronger for the between context RSA 

compared to the within context RSA in the dependent condition (t(28) = -0.69, p=0.49, 

paired ttest comparing the difference in on and off diagonal similarity scores within vs 

between contexts), an effect which would have been at odds with participants using a shared 

transition model. Comparing scores between conditions also revealed a weak effect in the 

direction we would predict under the hypothesis that participants would switch to use of a 

context specific model in the independent condition with the difference in decoding accuracy 

being greater for the within versus the between context RSA in the independent condition 

compared to the dependent condition (t(28) = 1.69, p(one tailed) = 0.05).

Multivariate encoding model

Next, taking a complementary approach, we built an encoding model that mapped transition 

probabilities (in the frame of reference p(state = heist|door presented) derived from the 

flexible learning model as before) flexibly onto voxels within the MTL ROI, separately 

for each context ca. We then inverted this model to predict transition probabilities both 

for the same context cb and the other three (held out) contexts (contexts) cb where a ≠ 
b (see Figure 3e for a schematic of this analysis). This approach allowed us to train and 

test in cross-validation, by obtaining weights from session (scanner run) i and then using 

these to predict the probabilities for each context on session j. The model output was a 4 

x 4 (context x context) matrix of predicted vs. true (model-derived) transition probabilities, 

which we compared via cross-entropy loss. This allowed us to measure whether, within 

the MTL, neural patterns coding for probabilities were more similar across contexts in the 

dependent condition (e.g. c1 → c2 and c2 → c1) than in the independent condition (e.g. 
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c3 → c4 and c4 → c3). Unlike the RSA approach, this also allowed us to compare two 

different coding schemes. It could either be the case that state associations are encoded in 

a high-dimensional format in which probabilities map onto bins with no input structure. 

This can be implemented via a one-hot input function in the encoding model which also 

enables us to test various levels of granularity of binning, to verify that the RSA results were 

not specific to our choice of having 4 bins. Alternatively, it could instead be the case that 

probabilities are encoded in a low-dimensional format, whereby neural patterns are more 

similar for closer probabilities (e.g., bin 1 is more similar to bin 2 than to bin 4). This can 

be implemented via an Gaussian input function (effectively, a tuning curve for probability) 

in the encoding model. Probabilities were converted to odds ratios for this exercise (see 

Methods).

The results validated and extended those of the RSA. Using one-hot encoding of probability, 

we found stronger evidence of shared encoding of probability in the dependent condition 

compared to the independent condition. Furthermore, this effect was independent of the 

number of bins chosen, as long as there were more than 3 bins (Figure 3f). We obtained 

the most robust effects with ~6 bins (implying a psychologically plausible granularity to the 

estimation of transition probabilities), for which the cross-validated loss was substantially 

higher between contexts in the independent condition than those in the dependent condition 

(t(28) = -3.12, p = 0.002). When cross-validation was performed across sessions only, 

reconstructing both probabilities in the other context as well as in the same context using 

information from another session (e.g. c1 session 1 → c1 session 2) we found the same 

pattern of results (t(28) = -3.80, p < 0.001. Similar results were also obtained at different 

granularities. Interestingly, we were unable to recreate these effects under the additional 

constraint imposed by Gaussian encoding of probability ratios. This implies that whilst 

there is a consistent code for transition probabilities, its similarity structure does not map 

smoothly onto the one-dimensional axis given by probability.

Replication of results using anatomical ROI of the medial temporal lobe

To investigate whether the effects we observed were specific to our choice of functional 

ROI, we conducted a subsequent RSA analysis. This was exactly as described above 

(for between contexts) only this time we used voxels from a bilateral anatomical MTL 

mask comprising 4 subregions of the MTL. Specifically: hippocampus, parahippocampus, 

entorhinal cortex and amygdala. Replicating the effects we observed in our functional 

ROI, this revealed a significant condition (dependent, independent) x quartile (diagonal, 

off-diagonal) interaction (t(28) = 5.23, p<.001, 95% CI [.11,.25], paired sample t-test, 

Figure 4a). This was the result of a difference in similarity between on and off diagonal 

scores in the dependent condition (t(28) = 6.12, p<.001, 95% CI [.10, .21], one sample 

t-test versus 0) which was absent in the independent condition (t(28) = -0.96, p =.345, 

95% CI [-.07, .03]). We also observed the same pattern of results (i.e. cross-validated 

loss substantially higher between contexts in the independent condition than those in the 

dependent condition) rerunning the multivariate encoding model using this anatomical ROI 

in place of the functional ROI (4 bin case: t(28) = -2.85, p = 0.02, 6 bin case: t(28) = - 3.23, 

p=0.002).
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Characterising the nature of the effect in the medial temporal lobe

Next, to investigate whether the observed effects were specific to particular subregion(s) 

of the MTL, we conducted four further RSA analyses on voxels using separate anatomical 

masks for each of the 4 MTL subregions (hippocampus, parahippocampus, entorhinal cortex 

and amygdala). Fisher transformed similarity scores were then entered into a region by 

condition (dependent/ independent) 4*2 repeated measures analysis of variance (ANOVA). 

This revealed a main effect of condition (F(l,28) = 29.40, p < 0.001) with the difference in 

similarity (M) between on and off diagonal scores greater in the dependent than independent 

condition (Mhippocampus = .26, Mparahippocampus =.13, Mentorhina cortex = .15, Mamygdala = .16) 

as well as a region x condition interaction (F(2.45, 68.54) = 3.91, p = 0.018; Greenhouse-

Geisser corrected).

To better understand the interaction, we proceeded to test the difference in similarity 

scores between conditions in each region with every other region (correcting for multiple 

comparisons). This revealed a larger difference between conditions in the hippocampus 

compared to each of the other 3 MTL subregions (entorhinal cortex, amygdala and 

parahippocampus, all p < 0.05, paired sample t-test) with the parahippocampus surviving 

correction for multiple comparisons (t(28) = 3.91, p = 0.001, significant at Bonferroni-

corrected threshold of p < 0.008). There was also a main effect of region (F(3, 84) = 3.33, 

p = 0.023), with the difference across both conditions being significantly greater in the 

amygdala than in both parahippocampus (t(28) = 3.07, p = 0.005) and entorhinal cortex 

(t(28) = 2.81, p = 0.009). Together, these results suggest that greater similarity in transition 

encoding in the dependent compared to the independent condition was not exclusive to a 

particular subregion of the MTL but was most pronounced in the hippocampus (see Figure 

4a).

Finally, to test if the differences between our conditions was selective to the MTL or present 

over the whole brain, we conducted the same RSA analysis using voxels in two control 

regions: early visual cortex (V1) and primary motor cortex (M1). There was no significant 

difference between conditions in either control region (V1: t(28) = -0.28, p = 0.78, 95% CI 

[-.08,.06]; M1: t(28) = -0.22, p = 0.83, 95% CI [-.09,.08], Figure 4c).

RSA whole-brain searchlight

Next, we repeated the same RSA as described above across the whole brain using 

a searchlight approach. In the dependent condition, this identified activity within our 

functional ROI (right peak: 22, -7, -18; t(28) = 4.31, family-wise error corrected at peak 

level within functional ROI mask, pFWE = 0.005; left peak: -24, -7, -18; t(28) = 4.92, 

family-wise error corrected at peak level within functional ROI mask, pFWE = 0.001). The 

cerebellum also survived family wise error correction for multiple comparisons at the cluster 

level (cluster-defining threshold p < 0.001, uncorrected). We did not find any evidence for 

differences in similarity in or outside our functional ROI in the independent condition, even 

at very lenient thresholds (p < 0.01 uncorrected).

Next, we conducted a new searchlight that directly tested the difference in similarity for on 

versus off diagonal bins between conditions (Figure 4d). This also revealed activation in our 
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functional ROI (right peak: 22, -7, -18; t(28) = 3.55, family-wise error corrected at peak 

level within functional ROI mask, pFWE = 0.02; left peak: -27, -10, -14; t(28) = 4.02, family-

wise error corrected at peak level within functional ROI mask, pFWE = 0.006). A cluster in 

the right dorsal striatum (29, -7, -7: t(28) = 5.80, p < 0.001, FWE cluster-level corrected, 

Figure 4e) which extended into the hippocampus, as well as the inferior frontal gyrus 

adjacent to Brodmann area 47 (-16, 14, -18: t(28) = 5.08, p = 0.007) and left cerebellum 

(-2, -46, -21: t(28) = 4.92, p = 0.03) also survived family wise error correction for multiple 

comparisons over the whole brain at the cluster level (cluster-defining threshold p < 0.001 

uncorrected).

Multivariate analysis during transition probability updating

The analyses described so far focus on the timepoint when planning takes place (door 

presentation). What happens during updating? To examine this, we conducted a related 

analysis at the time of transition outcome, i.e. when participants learned whether, conditional 

on their choice, they had reached the “heist” or the “neutral” state. We reasoned that in order 

to update the state action representations appropriately (in a shared or unshared manner 

across contexts) it would be necessary to re-encode both the selected action (light vs. dark 

door) and encountered state (heist vs. neutral). We thus partitioned data according to these 

factors and investigated whether BOLD signals were more similar when both state and 

action matched (i.e. on-diagonal elements) vs where they did not (off-diagonal elements) 

at the time of updating, separately for the dependent and independent conditions (Figure 

5a) in our functional ROI. This analysis also revealed a significant condition x diagonal 

interaction (t(28) = 2.67, p = 0.01 95% CI [.03,.22], paired sample t-test, Figure 5b), driven 

by a significant difference in similarity between matched and mismatched choice-state 

combinations (the on versus off diagonal in Figure 5a) in the dependent condition (t(28) 

= 2.35, p = 0.03 95% CI [.01, .18], one sample t-test versus 0) which was absent in the 

independent condition (t(28) = - 0.78, p = 0.44, 95% CI [-.12, .05]).

Once again, this effect was not specific to a particular subregion of the MTL. We 

entered similarity scores from RSAs conducted in subregions of the MTL into a condition 

(dependent, independent) by region (hippocampus, parahippocampus, entorhinal cortex, 

amygdala) ANOVA. This revealed a main effect of condition (F(l,27) = 10.05 p = 0.004). 

There was no main effect of region (F(3,81) = 0.95, p = 0.42), nor a region by condition 

interaction (F(3,81) = 1.21, p = 0.31). There was no difference between conditions in two 

control brain regions (V1: t(28) = 1.16, p = 0.26, 95% CI [-.04,.16]; M1: t(28) = 1.66, 

p = 0.11, 95% CI [-.02,.15]). Finally, a whole brain searchlight comparing the difference 

in similarity scores between on and off diagonal between conditions revealed a significant 

interaction within our state prediction error ROI (left: [-16, -4, -32], t(28) = 3.47, p = 0.02 

cluster level corrected within our SPE mask), as well as in a cluster comprised of right 

hippocampus extending into pons (t(28) = 5.05, p < 0.0001 uncorrected, [12, 18, -18], p = 

0.04 cluster level corrected across the whole brain with cluster-forming threshold of p < .001 

uncorrected). No other significant effects were observed.

Glitz et al. Page 25

J Neurosci. Author manuscript; available in PMC 2022 July 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Outcome valence modulates updating of state transitions

An interesting feature of our design is that the transition function changes (with reversals 

of p) in a way that is unrelated to outcomes. This means that in theory, any learning about 

the transition function should not depend on whether the outcome was positive or negative. 

To test whether participants might be biased to update the transition function more or 

less according to the outcome, we calculated a consistency score (see Methods) for each 

participant. This measured the consistency of each choice given transitions experienced on 

the previous trial. A high consistency score indicates that a participant updates transitions 

strongly on the basis of feedback. This was calculated separately for trials in which 

participants received a positive outcome (+1 on a gain trials or 0 on a loss trial) and those 

where they received a negative outcome (-1 on a loss trial or 0 on a gain trial) on the 

previous trial. Notably, this is not the same as a win- stay, lose-switch bias, as a choice 

would be considered consistent only if it considered both past transitions and the current 

reward/loss incurred when reaching the heist state (i.e. if choosing the dark door on trial t-1 

had resulted in monetary gain, but the current trial t was a police trial (monetary loss), the 

consistent choice would be to choose the light door on trial t).

We first conducted this analysis in a separate behavioural experiment (described as “pilot” 

above; n = 31, see Methods). This experiment included exclusively free choice trials, giving 

us greater power to be able to detect valence effects. In this version of the task, participants 

were not told about any structure between contexts and integrated information from each 

context in each condition.

Participants integrated evidence from the other context in the dependent condition (1-4 

trials back) in this dataset but also did so in the independent condition - therefore we 

remain agnostic as to whether participants adjusted how they integrated feedback from 

state transitions between the two conditions and primarily use this dataset to examine 

how outcome interacts with learning the state transitions. This revealed that transition 

updating was greater following positive compared to negative outcomes (t(30) = 9.79, p < 

0.001, paired sample ttest, Figure 6a). In other words, participants updated state transition 

knowledge and adjusted their subsequent behaviourto a greater degree when outcomes were 

positive compared to negative. Note that this analysis collapses over contexts (see Methods). 

However the main effect remains (t(30) = 8.14, p < 0.001) when we run this same analysis 

restricted to the dependent condition.

Next, we ran the same analysis on our fMRI participants (restricted to free choice trials, 

Figure 6b). We again observed a main effect of outcome with greater updating following 

positive compared to negative outcomes (t(28) = 2.24, p = 0.03). This effect remained when 

analysis was restricted to trials from the dependent condition (t(28) = 2.60, p = 0.015).

In two data sets, our participants’ behaviour suggested that rewards received influenced the 

degree to which the transition function was updated with a greater update following positive 

compared to negative outcomes. If this is the case, we would predict that SPE signals in 

the MTL – which drive updates to the transition function – ought to be larger following 

positive outcomes compared to negative. To test this, we examined the interaction of the 

unsigned state prediction error regressor and outcome in a univariate whole-brain analysis 
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(controlling for the main effects of each, see Methods). This revealed a negative effect in a 

cluster in the left MTL (peak [x,y,z]: -13, -10, -18, p = 0.018 whole brain FWE cluster level 

corrected after thresholding at p < 0.001) which included voxels within our functional ROI 

(peak [x,y,z]: -16, -7, -18, t(28) = 4.08, small volume corrected using functional ROI mask). 

No other regions survived whole brain correction. Note that since the main effect of SPE is 

also negative (Figure 3a), the sign of this interaction suggests a greater parametric effect of 

unsigned SPEs in the MTL following positive versus negative outcomes.

Finally, we examined whether there was a relationship between this interaction effect in the 

MTL (i.e., the degree to which unsigned SPEs were modulated by outcome valence) and 

participants’ behaviour (the degree to which consistency scores were greater for positive 

outcomes compared to negative outcomes). We quantified each participant’s behavioural 

outcome valence effect (Figure 6b) by taking the difference in consistency scores between 

positive and negative outcomes and correlated these with each participants parametric 

SPE *outcome interaction beta (this quantifies the degree to which the parametric effect 

of unsigned SPEs vary are modulated by outcome). This revealed a negative correlation 

that was robust to outliers (Spearman’s rho = -0.41, p < 0.03); specifically, the greater 

participants showed a bias towards integrating information following transition sequences 

that ended in a positive outcome (versus negative) in their choices, the greater extent 

to which unsigned SPEs expressed in the MTL were greater for higher (versus lower) 

outcomes.

Discussion

We studied the neural and computational mechanisms by which humans combine or segment 

information about the transition structure of the world. For the fMRI experiment, we chose 

to directly instruct our participants, as our hypothesis was agnostic to whether model sharing 

occurred because of instruction or trial-and-error learning. Consequently, our computational 

model is an analytic tool and does not offer a process-level account of model sharing. 

Previous structure learning tasks have suggested that participants are able to use the 

similarity of latent variables such as value estimates, prediction errors and their covariation 

over time to draw links between different contexts (Wunderlich et al., 2011, Acuña and 

Schrater, 2010). Bayesian inference models in which latent causes are inferred and used to 

group together experiences (Gershman and Niv, 2010, Gershman et al., 2015, Sanders et al., 

2020, Niv, 2019) could also be a means that participants learn to group different contexts 

together in practice. Another possibility is that neural geometry actively represents the 

relational organisation of task elements (Bernardi et al., 2020, Luyckx et al., 2019, Sheahan 

et al., 2021). However, our encoding model did not find a smoothly-varying relationship 

between neural coding and probability, which seems like it would follow naturally from such 

a representation.

To address the question of how neural population activity encoded transition probabilities 

within and between contexts, we began by identifying voxels that responded differentially 

according to whether a transition between states was expected or unexpected, using 

estimates of state prediction errors (SPEs) to parameterise this effect. We found that 

responses to SPEs correlated with BOLD responses in brain regions that overlapped with 
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the bilateral hippocampus (Figure 3a). Of note, the parametric effect of SPEs in the MTL 

were negative. This might seem surprising given the past implication of the (more anterior) 

hippocampus in novel or surprising stimuli (Strange et al., 2005). We speculate that such a 

signal might occur however if internal representations were strengthened following evidence 

that confirms prior beliefs.

We first focussed our analysis on voxels in this region and measured the consistency in 

neural patterns in these voxels in encoding transition probabilities between conditions. First, 

we adopted an RSA-based method to show that encoding of probability was more similar 

across contexts in the dependent condition than the independent condition. We caveat that 

we were not able to decode probabilities within context using this same approach and 

caution that this challenges the robustness of this analysis. It may be that there is a confound 

that gives rise to between context decoding that leaves within context decoding unaffected, 

or that the identical gem features present when decoding within gem (e.g., colour, shape 

of each gem) make decoding transition probabilities more difficult or better suited to a 

different RSA analysis than we use for the between context case (e.g., dividing probability 

into a different number of bins rather than 4 quartiles). Other explanations could also give 

rise to this discrepancy. Comparing the difference in within and between context decoding 

between conditions yielded a pattern (albeit weakly and with due caution in respect to the 

possibility of a type I error) of results in line with what we would expect. Namely, that 

the difference in within versus between context decoding was stronger in the independent 

compared to the dependent condition, consistent with a switch between context specific and 

context nonspecific models.

Next we adopted a more flexible encoding modelling pipeline as a complementary 

multivariate approach. This told a similar story: that the brain learned a representation that 

was similar across contexts when this was beneficial, but partitions probability encoding 

into different patterns when it is necessary to disambiguate the predictions for different 

contexts. The encoding model also enabled us to examine the pattern of results under 

two different coding schemes – a Gaussian input function and a one-hot input function. 

Interestingly, whilst the one-hot input function replicated the pattern of RSA and was robust 

to a range of different probability bins being used, the Gaussian input function did not. We 

are not entirely clear about why this is the case. Previous theories have emphasised that 

neural populations in cortex may encode probability distributions in smoothly-varying ways, 

permitting forms of function approximation or Bayesian inference (Ma et al., 2006, Orhan 

and Ma, 2017), and there is even some support for this class of theory from studies involving 

BOLD recordings (Van Bergen et al., 2015). However, the nature of the coding scheme 

for transition probabilities in hippocampus remains unclear. Future work could potentially 

develop this encoding model approach to examine whether other task variables influence 

the representational structure encoded in the hippocampal formation (such as the level of 

uncertainty in beliefs, priors, anticipatory (state) prediction errors and the degree to which 

predictions diverge for different actions).

Observing these effects in the MTL is consistent with past findings that have identified the 

involvement of the MTL in learning state associations (Eichenbaum et al., 1999, Miyashita, 

1988, Yokose et al., 2017, Rey et al., 2018, Schapiro et al., 2012, Schapiro et al., 2013, 

Glitz et al. Page 28

J Neurosci. Author manuscript; available in PMC 2022 July 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Deuker et al., 2016, Garvert et al., 2017), encoding relational knowledge that can be 

used to generalise and draw inferences across contexts (Bunsey and Eichenbaum, 1996, 

Wimmer and Shohamy, 2012, Zeithamova et al., 2012, Kumaran et al., 2016, Koster et 

al., 2018, Park et al., 2019) and its role in model based planning (Bradfield et al., 2020), 

including in two stage sequential planning tasks similar (Vikbladh etal., 2019, Miller et 

al., 2017), potentially via representation of task structure (Geerts et al., 2020). Our initial 

analysis focused on a region that included different subregions of the MTL. But when we 

repeated our RSA approach separately in 4 different anatomical subregions of the MTL – 

hippocampus, entorhinal cortex, amygdala and parahippocampus – we found a significant 

effect in each of these (an effect which was absent in two control regions). This is suggestive 

that a network of MTL regions is involved in encoding the predictive relationships between 

states necessary for planning – consistent with past findings using a similar paradigm to 

ours (Boorman et al., 2016) – and that each component in this network has the capacity to 

flexibly adapt the representations it uses to facilitate the sharing of models between contexts 

when prudent to do so. The involvement of a number of subregions might account for why 

disabling a specific part of the MTL does not always lead to reductions in goal directed 

behaviour (Corbit and Balleine, 2000, Gaskin et al., 2005). Interestingly, the effect we 

observed was strongest in bilateral hippocampus, in line with its involvement in modulating 

pattern separation between contexts and memories via inputs from other MTL brain regions 

including the entorhinal cortex (Yassa and Stark, 2011). However, future work – ideally 

with higher resolution fMRI or direct recordings – is needed to help characterise the precise 

functional contribution each of these subregions.

We also examined whether there were other regions of the brain in which representations 

had a similar selective pattern similarity between contexts by running a whole brain 

searchlight analysis. In addition to confirming the involvement of the MTL, this detected 

a strong effect in the dorsal striatum and the left IFG. This analysis was exploratory and 

neither of these brain regions were hypothesised to be involved from the outset. Whilst 

the IFG and adjacent OFC have previously been shown to be involved in inferring task 

states using fMRI multivariate approaches (Niv, 2019, Schuck et al., 2016), the striatum was 

particularly unexpected given its well established role in model free learning (Geerts et al., 

2020, Joel et al., 2002, Montague et al., 1996, O'Doherty et al., 2004) although (and with 

the necessary caveats with regard to retrospective inference), there is some evidence from 

fMRI and lesion studies that the dorsal striatum – along with prefrontal cortex (Balleine and 

O'Doherty, 2010, Niv, 2009) – may also play an important role in model based planning 

behaviour (Yin et al., 2005a, Yin et al., 2005b). Exactly what the functional role either 

region fulfils here in the service of our task though is unclear.

Examining participants stay/switch behaviour revealed an effect of valence whereby 

following positive outcomes, participants updated transition probabilities to a greater degree 

than following negative outcomes. We note that these findings are unlikely to be accounted 

for by purely model free state-action learning since our task and updating metric includes 

cases where participants should (if using model based control and updating the transition 

function) repeat choices following negative outcomes and switch choices following positive 

outcomes. These cases would cancel out the effect of valence we actually observe in the data 

under a model free controller (which would repeat following positive and switch following 
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negative outcomes). An effect of valence on updating was also observed in the fMRI data 

which revealed a greater parametric effect of SPEs for positive outcomes relative to negative 

in the MTL. Interestingly, this pattern of asymmetric updating is reminiscent of confirmation 

bias (Nickerson, 1998), a recent account of which (Lefebvre et al., 2020) has shown that 

this learning asymmetry can in fact be beneficial by driving apart the difference in value 

between the different options. Future theoretical work may help shed light on whether a 

similar normative account exists behind the asymmetry we observe here in planning.

Together these results shed important light on the computational processes by which the 

MTL maintains and adapts knowledge about the consequences of our choices and actions in 

the world. By relying on a common representational code, knowledge can be shared across 

different contexts that we interact with.
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Significance Statement

Effective planning involves maintaining an accurate model of which actions take us to 

which locations. But in a world awash with information, mapping actions to states with 

the right level of complexity is critical. Using a new decision-making “heist task” in 

conjunction with computational modelling and fMRI we show that patterns of BOLD 

responses in the medial temporal lobe – a brain region key for prospective planning – 

become less sensitive to the presence of visual features when these are irrelevant to the 

task at hand. By flexibly adapting the complexity of task state representations in this 

way, state-action mappings learned under one set of features can be used to plan in the 

presence of others.
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Figure 1. Task Design.
(a) Trial sequence in the fMRI experiment. Each trial begins with a fixation cross after 

which participants are shown one of two options (a dark and a light door) along with one 

of 4 contextual cues (red gem in the example) and two stimuli (sofa plus either police or 

swag) indicating the outcome if they transition to the heist state (if police shown: -1, if swag 

shown: +1) or the neutral state (always sofa = 0). In forced choice trials (75% of trials), 

participants are then required to select this option via a button press. In free choice trials 

(25% of trials) they can choose between this option and the alternate option. Participants 

were instructed to respond when an X appeared on one or both doors. Feedback - the 

subsequent state along with the outcome – is then revealed, (b) State transition dynamics: 

at the first stage, each option (framed as two doors) transitions participants to one of two 

2nd level states; a “neutral state” in which an outcome of 0 (sofa/chair stimuli) is always 

obtained, or a “heist state” in which an outcome of 1 (swag bag stimuli) or -1 (police 

stimuli) can be obtained (note which of these two outcomes will be obtained at the heist 

state is signalled to participants in advance by the presence of one of these cues at choice). 

One first stage option (light door in the figure) transitions with probability p to the neutral 
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state and with probability 1 - p to the heist state; the alternate option (dark door) has the 

opposite transition probabilities, p changes at random points in the task (c) In dependent 

blocks (not real data), p is the same in each context; changes to p occur simultaneously over 

the two contexts, (d) In independent blocks (not real data), p alternates independently in 

each context, p was set to be either .2 or .8 at any given time.
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Figure 2. Behavioural data.
Parameter estimates predicting choice from state transitions experienced 1-5 trials back, 

separated according to whether transitions occurred in the same (blue) or alternate (red) 

context to the current trial context in (a) the dependent condition and (b) the independent 

condition. Bars represent fixed effects regression coefficients from a mixed effects logistic 

regression on participants’ choices. Triangles represent the mean fixed effects regression 

coefficient estimates generated via the same mixed effects logistic regression as the data but 

for choice simulated for agents under a flexible computational learning model which enables 

evidence integration to adapt to the condition in which choices are being made (dependent or 

independent), (c, d) Plot the same parameter coefficients now with choices under simulated 

agents from the fixed learning model (in diamonds) which does not permit adaptation in 

evidence integration). *p < 0.05 (human data). Error bars express 95% confidence intervals.
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Figure 3. 
(a) The magnitude of (unsigned) state predictions errors related negatively to the degree of 

BOLD response in bilateral MTL. Image shown at p < 0.001 uncorrected, (b) Voxels in 

this contrast were converted to a bilateral mask and used as a functional ROI in subsequent 

analysis, (c) Schematic of the RSA analysis at the time of planning (door presentation). In 

each context, trials were divided into quartiles, according to participants’ current estimates 

of p (heist state | door presented) extracted from the computational learning model (mean 

quartile ranges: bin 1: p <= 0.21, bin 2: 0.21 < p <= 0.51, bin 3: 0.51 < p <= 0.80; bin 

4: 0.80 < p <= 0.96). (d) Difference scores were significantly greater for dependent than 

independent blocks. Dots represent individual participant data, grey lines indicate datapoints 

belonging to the same participant. Red line indicates the median, box represents the 25th 

and 75th percentile of data, whiskers extend to any data point that is not outside 1.5 

times the interquartile range (e) Schematic of the encoding model analysis (example shown 

for one-hot case). (f) Difference in cross-entropy loss from the encoding model between 

dependent and independent blocks (predicting probability bins in one context in a condition 

using weights trained on the other context in that condition; in crossvalidation) for a range of 

probability bins (one hot case). Error bars show standard error of the mean; *significant at p 
<0.05, **significant at p < 0.01., ***significant at p < 0.001
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Figure 4. 
RSA analysis in Figure 3c was repeated using (a) anatomical mask of the entire MTL 

and (b) subregions of the MTL, specifically: bilateral hippocampus, parahippocampus, 

entorhinal cortex and amygdala, (c) as well as in VI and Ml (control regions), (d) illustration 

of the whole brain searchlight interaction analysis; the difference between on diagonal 

and off-diagonal similarity was contrasted between conditions, (e) whole-brain searchlight 

interaction analysis revealed greater similarity between on versus off diagonal in the 

dependent condition compared to the independent condition in our functional ROI, right 

dorsal striatum (top panel) and left inferior frontal gyrus/OFC (bottom panel). Brain images 

shown at p < 0.001 uncorrected, thresholded at t > 3. Error bars show standard error of the 

mean; * significant at p < 0.05, ** significant at p < 0.01., *** significant at p < 0.001
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Figure 5. 
(a) Model representational dissimilarity matrix. We examined the BOLD similarity at 

the time of outcome between matched choice (door) – outcome state combinations and 

mismatched combinations between contexts in the two conditions, (b) In our MTL ROI, 

the difference between representational similarity of matched and mismatched combinations 

was significantly greater in dependent than independent blocks.
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Figure 6. 
Outcome on the previous trial influenced the degree to which transition knowledge was 

updated. Specifically, when participants received a positive outcome (+1 on gain trials or 

0 on loss trials) consistency scores (indexed as percentage repeat choices for desirable 

trials and percentage switch choices for undesirable trials) were higher compared to when 

they received a negative outcome. This was observed in (a) participants that completed a 

behavioural study outside the scanner (b) our fMRI cohort, (c) Unsigned state prediction 

errors were modulated by outcome valence in the MTL (peak [x,y,z]: -13, -10, -18), t(28) 

= 4.87, p = 0.018 FWE whole brain cluster level corrected), image displayed at p < 0.001 

uncorrected, (d) The magnitude of the valance effect observed behaviourally (quantified as 

green minus red in (b)) correlated with the size of the interaction betas observed in the fMRI 
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data in (c) (Spearman’s rho = -0.41, p < 0.03). *p < 0.05, +0.05 < p < 0.10: one sample ttest; 

n.s., non significant
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Table 1
Model fitting and parameters.

The table summarizes for each model its fitting performances and its average parameters: LOOcv: leave one 

out cross validation scores, mean (standard error of the mean) over participants; free parameters: number of 

free parameters in each model; α: learning rate; ϐ: softmax slope (sensitivity to the difference in the value 

of choosing dark versus light door (on free choice trials), w: weighting parameter (governs the weighted 

combination of context independent and context dependent transition functions). Data for model parameters 

are expressed as mean and 95% confidence intervals (calculated as the sample mean +/- 1.96 x standard error). 

*p < 0.01 comparing LOOCV scores between the two models (paired sample t-test). Lower scores indicate 

superior performance in cross validation.

LOOcv 
scores

free 
parameters β α w (fixed) w (dependent 

condition)
w (independent 

condition)

fixed 
model

47.47
(+/- 1.26) 3

1.80
[95% CI = 
1.40, 2.20]

0.65
[95% CI = 
0.47, 0.80]

0.61
[95% CI = 
0.49, 0.70]

flexible 
model

46.32*
(+/- 1.47) 3

1.59
[95% CI = 
1.24, 1.95]

0.56
[95% CI = 
0.38, 0.73]

0.85
[95% CI = 0.66, 

0.95]

0.15
[95% CI = 0.05, 

0.34]
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