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Background: The mechanisms by which moderate tidal volume ventilation (MTV)
exacerbates preexisting lung injury are unclear. We hypothesized that systemic
endotoxemia via the gut-lung axis would lead to non-canonical and canonical
inflammasome activation and pyroptosis in a two-hit model involving polyinosinic-
polycytidylic acid (Poly(I:C)), a synthetic analog of dsRNA and MTV and that this would
associate with acute lung injury (ALI).

Methods: Anesthetized mice were administered Poly(I:C) intratracheally and then 6 h
later, they were mechanically ventilated for 4 h with otherwise non-injurious MTV (10ml/
kg). Changes in intestinal and alveolar capillary permeability were measured. Further
documentation of ALI was assessed by evans blue albumin permeability, protein and IL-1
family concentration in bronchoalveolar lavage fluid (BALF) or plasma, and histopathology
in cohorts of wildtype (WT), whole body genetically ablated caspase-11 (caspase-11-/-),
caspase-1/caspase-11 double knockout (caspase-1/11-/-), gasdermin D (GSDMD)-/-,
nucleotide-binding domain leucine-rich repeat-containing protein 3 (NLRP3)-/- and
advanced glycosylation end product-specific receptor (RAGE) -/- mice.

Results: Non-injurious MTV exacerbated the mild lung injury associated with Poly(I:C)
administration. This included the disruption of alveolar-capillary barrier and increased
levels of interleukin (IL)-6, high mobility group proteins 1 (HMGB-1), IL-1b in BALF and IL-
18 in plasma. Combined (Poly(I:C)-MTV) injury was associated with increase in
gastrointestinal permeability and endotoxin in plasma and BALF. Poly(I:C)-MTV injury
was sensitive to caspase-11 deletion with no further contribution of caspase-1 except for
maturation and release of IL-18 (that itself was sensitive to deletion of NLRP3). Combined
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injury led to large increases in caspase-1 and caspase-11. Genetic ablation of GSDMD
attenuated alveolar-capillary disruption and release of cytokines in combined injury model.

Conclusions: The previously noted exacerbation of mild Poly(I:C)-induced ALI by
otherwise non-injurious MTV is associated with an increase in gut permeability resulting
in systemic endotoxemia. The gut-lung axis resulted in activation of pulmonary non-
canonical (cytosolic mediated caspase-11 activation) and canonical (caspase-1)
inflammasome (NLRP3) mediated ALI in this two-hit model resulting in GSDMD
sensitive alveolar capillary barrier disruption, pyroptosis (alveolar macrophages) and
cytokine maturation and release (IL-1b; IL-18). Pharmacologic strategies aimed at
disrupting communication between gut and lung, inhibition of inflammasomes or
GSDMD in pyroptosis may be useful in ALI.
Keywords: acute lung injury, Poly(I:C), mechanical ventilation, gut-lung axis, systemic endotoxemia, caspase-11,
caspase-1, pyroptosis
INTRODUCTION

Sepsis is the major underlying cause (~75%) of acute respiratory
distress syndrome (ARDS) and this often follows the onset of
pneumonia (1). ARDS also occurs in a large number of patients
from infections outside the lung and the mechanisms underlying
the development of lung injury from remote sources are
multifactorial and poorly understood (2). Both direct (e.g.
pneumonia) and indirect (extrapulmonary) sepsis routinely
require mechanical ventilation and it is well known that such
lifesaving therapy can exacerbate underlying lung injury in an
iatrogenic pathology of ventilator induced lung injury [VILI;
(3)]. Indeed, minimizing over distension (volutrauma) and/or
alveolar collapse and reopening (atelectrauma) by lung-
protective ventilation (4) has had an impact in reducing
morbidity and mortality from ARDS.

In preclinical studies, sensitization of VILI to preexisting
acute lung injury (ALI) secondary to pneumonia (5, 6),
intratracheal endotoxin (7–10), viral (11) and sterile injury
(12–14) is apparent. Although preclinical outcomes vary as a
function of magnitude of extrapulmonary septic condition and
the nature of mechanical ventilation parameters [tidal volume,
onset and duration; positive end expiratory pressure; (15)],
sensitization of VILI to events originating in distal site and
plasma space including exogenous endotoxin (16, 17) and
polymicrobial sepsis (18, 19) has also been documented.

In the current study, we approached connections of direct and
indirect lung injury that are predicted from possible gut-lung
e ventilation; Poly(I:C), polyinosinic-
LF, bronchoalveolar lavage fluid; WT,
, nucleotide-binding domain leucine-
advanced glycosylation end product-
high-mobility group box 1; TLR, toll
ess syndrome; VILI, ventilator induced
D, fluoresceine isothiocyanate dextran;
te buffered saline; RPMI, roswell park
n; SEM, standard error of mean; H&E,
ssociated speck-like protein; CARD,
; TNF, tumor necrosis factor.
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interactions and sensitization to subsequent non-injurious
moderate mechanical tidal volume ventilation (MTV). We (20)
and others (21) have shown that MTV can exacerbate lung injury
after intratracheal delivery of polyinosinic-polycytidylic acid [Poly
(I:C)], a synthetic analog of dsRNA (that itself can be produced by
many viruses during their replicative cycle). The gut plays an
important role in indirect lung injury by releasing infectious
microbes and inflammatory, injurious mediators directly into
the circulation or via the lymph system secondary to enhanced
gut permeability (22). Endotoxin [lipopolysaccharide (LPS)]
derived from gram negative microbes in the gut may thus be
liberated in large amounts in the circulation and contribute to lung
injury (23, 24). The canonical detection mechanism of LPS occurs
via cell-surface toll like receptor-4 (TLR4), however but it is
noteworthy that lung injury after Poly(I:C)-MTV (21) or
systemic endotoxemia (25) involve TLR4 independent
mechanisms. In this latter comprehensive study (25), the
authors noted that indirect lung injury due to systemic
endotoxemia involved non-canonical inflammasome caspase-11
mediated pyroptosis, an inflammatory programmed cell death, in
pulmonary endothelium of intact mice. Murine caspase-11 is the
cytosolic receptor for LPS. Activation of caspase-11 by LPS leads to
cleavage of gasdermin D (GSDMD) and the N-terminal cleavage
fragment (GSDMD-N) leads to cell permeabilization and
pyroptosis (26).

Accordingly, we: a) confirmed that pretreatment of intact
mice with intratracheal (i.t.) Poly(I:C) would lead to sensitization
to ALI due to otherwise non-injurious MTV; and b)
hypothesized that ALI after Poly(I:C)-MTV was associated
with gut derived LPS and caspase-11 non-canonical
inflammasome mediated pyroptosis.
MATERIALS AND METHODS

Experimental Protocols
The Animal protocols were approved by the Animal Care and
Use Committee and experiments were performed in strict
July 2021 | Volume 12 | Article 693874
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adherence to NIH Guidelines and followed current guidelines for
preclinical models in research. Protocols (with brief descriptions
below) included: a) MTV enhanced Poly(I:C) induced ALI is
associated with increased gastrointestinal permeability and
increased endotoxin in plasma and lung; b) MTV exaggerates
Poly(I:C) induced acute lung injury through a caspase-11
dependent process; and c) Regulation of caspase-11 expression
and activation, its relationship to canonical nucleotide-binding
domain leucine-rich repeat-containing protein 3 (NLRP3)
mediated caspase-1 activity and gasdermin cleavage dependent
pathways in whole lung and isolated macrophages after Poly(I:
C), MTV and their combination in intact mice.

In-Vivo Experimental Animal Model
C57 BL/6 mice (8-10 weeks old, male) were purchased from
Jackson Laboratories. Caspase-1/11-/- mice, caspase-11-/- mice,
TLR4-/- mice, NLRP3-/- mice, GSDMD-/- mice, advanced
glycosylation end product-specific receptor (RAGE)-/- mice
were bred and maintained in the University of Pittsburgh
animal facility according to NIH animal care guidelines and all
procedures were performed according to University of
Pittsburgh Animal Research Protocols. A total number of 168
wild-type (WT) mice, 88 Caspase-1/11-/- mice, 88 Caspase-11-/-
mice, 32 NLRP3-/- mice, 40 GSDMD-/- mice, 16 RAGE-/- mice
were used in this project.

The animal model protocols was as follows: Mice were
prospectively randomized to one of four groups (n=4-12 per
group): (a) SHAM: 100 µL endotoxin free water intra-tracheal
10h before the experimental endpoint with spontaneous
breathing; (b) Poly(I:C): 3 mg/kg intra-tracheal Poly(I:C) (tlrl-
picw, InvivoGen, USA), with spontaneous breathing for 10h;
(c) MTV: 6 h after receiving a volume of 100µL intra-tracheal
endotoxin free water then connected to a rodent ventilator, and
ventilated for 4 h with tidal volume of 10 mL/kg, positive end-
expiratory pressure of 0 cm H2O, FiO2 0.21, 140 breaths/min;
and (d) combined Poly(I:C)-MTV: 6h after an intra-tracheal
dose of 3 mg/kg Poly(I:C), mice were ventilated for 4h before
harvest. The ventilator parameters were the same of that in MTV
group. In all groups, ketamine and xylazine were used to
maintain anesthesia. Mean arterial blood pressure, heart rate
and oxygen saturation were recorded using a mouse STARR
system (Life Science Co.). Mice were sacrificed (10h after starting
each protocol) by injecting peritoneal pentobarbitone 300 mg/kg.
Additional details were previously described (20).

Additional cohorts of wildtype, Caspase-1/11-/- and Caspase-
11-/- mice were prospectively randomized to same four groups as
above. Lung tissue and freshly cultured primary alveolar
macrophages were obtained for determination of pro- and
cleaved caspases-11 and -1.

In addition, wildtype mice were prospectively randomized to
these same four groups. Water bottles were removed from cages
in the morning and 100 mg/mL FITC-D (4 kD) in PBS was
administered (44 mg/100 g body weight) by oral gavage 4 hours
before sacrifice. After 4 hours, anesthetize the mice by injecting
peritoneal pentobarbitone and collect the blood using 1 ml
syringe with 25 G needle by cardiac puncture. Blood or
Frontiers in Immunology | www.frontiersin.org 3
bronchoalveolar lavage fluid (BALF) was placed in microtainer
tubes in the dark. Once blood and BALF have been collected
from all the mice and all the samples was placed at 37°C for more
than 1 hour, tubes were processed to centrifuge for 10 minutes at
800 grams. Concentration of fluoresceine isothiocyanate (FITC)
in serum of BALF determined spectrophotofluorometrically
(excitation 485 nm; emission 528 nm). A standard serially
diluted FITC-Dextran (0 to 8 µg/mL) was used. Serum from
mice not injected with FITC-D was used as blank. In addition,
endotoxin was measured (LAL Chromogenic endpoints assay,
Hycult biotech, PA, USA) in serum and BALF of wildtype mice
in these four groups.

An additional cohort of wildtype were assigned to four
protocols above and at time of sacrifice, alveolar macrophages
(AMs) and neutrophils, lymphocytes were obtained via
bronchoalveolar lavage for short term culture and
immunofluorescence staining. In brief, mice were bled by
cardiac puncture and a catheter (20 G) was inserted into
tracheal and connected to 1 mL syringe filled with phosphate
buffered saline [PBS (Ca2+/Mg2+ free)]. A total of 5 mL of PBS
was used to wash lungs (10x) and the lavage fluid was centrifuged
(600 g, 10 minutes) at 4°C. The diluted cells were distributed on
cell-counting plates and counted under a microscope. For
differential cell sorting, cells were stained with Wright-Giemsa
reagents (Baso, Zhuhai, China). The number of neutrophils,
macrophages, and lymphocytes per 200 cells was determined
based om morphology. Otherwise the diluted cells were
resuspended in Roswell Park Memorial Institute [RPMI (2x106

cells/mL)] with 12% serum and transferred to 35 mm petri dishes
with 10 mm microwells (Mat Tek corp, Ashland, MA) and placed
in incubator for 2 h to extract AMs. Media was changed and
adherent cells (e.g. enriched in alveolar macrophages) were
assessed for caspase-1 (FAM-FLICA® Caspase-1 Assay Kit
(ImmunoChemistry Technologies, ImmunoChemistry
Technologies, LLC), pyroptosis (In Situ Cell Death Detection Kit,
TMR red (Sigma-Aldrich), and nuclear staining (Bisbenzimide
Hoechst 33258) Imaging was observed and recorded with 600×
magnification using a Olympus confocal microscope.

Alveolar-Capillary Permeability
Evans blue (Sigma-Aldrich) albumin (EBA; 0.5%, 25 mg/kg) was
injected intravenously 1 h before euthanasia and lung harvesting.
Blood samples and lung tissue were obtained and processed as
described previously (18–20) and EBA permeability was
calculated by dividing pulmonary EBA absorbance at 620 nm/g
lung tissue by plasma EBA absorbance at 620 nm.

Histological Examination
For Hematoxylin & Eosin (H & E) staining, the left upper lobe
was inflated with 4% paraformaldehyde, embedded in paraffin
and assessed via semiquantitative histopathology at light
microscopic level including following features: edema,
hyperemia and congestion, neutrophil margination and tissue
infiltration, intra-alveolar hemorrhage and debris, and cellular
hyperplasia (18). Each feature was graded as absent, mild,
moderate, or severe, with a score of 0-3.
July 2021 | Volume 12 | Article 693874
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Western Blot Analysis
Cell lysis buffer (cell signaling technology) and a cocktail of
protease inhibitors (Sigma-Aldrich) were used to extract protein
in lung tissues and alveolar macrophages. 12% SDS gels was used
for electrophoresis, Electrophoresis was performed at 80 V for
120 minutes. Then the protein in gels was transferred for 120
minutes at 200 mA to nitrocellulose membranes. 5% milk in 1%
Tween-20 in PBS was used to block membranes. The membranes
were incubated with a primary antibody (anti-caspase-11
polyclonal antibody, 1:1000, abcam; anti-caspase-1 polyclonal
antibody, 1:1000; abcam) at 4°C overnight and washed three
times with PBST (0.1% Tween-20 in PBS). Secondary antibody
(1:5000; InvivoGen, USA) was then added and incubated at 37°C
for 1 h.

Cytokines
IL-1b (ELISA, R&D), IL-6 (ELISA, R&D), damage associated
molecular pattern molecules (HMGB1, ELISA, Shino-test
Corporation) concentrations in BALF and IL-18 in plasma
(ELISA, Medical and Biological Laboratories CO., LTD) were
determined by enzyme-linked immunosorbent assay (ELISA)
according to the manufacturer’s instructions.

Statistical Analysis
Statistical analysis was performed in GraphPad PRISM 7 (Graph
Pad Software Inc.). All data were presented as the means ±
Standard Error of Mean (SEM). Data were analyzed by one-way
analysis of variance (ANOVA) and Student-Newman-Keuls test
if normally distributed. Mann-Whitney U-test was used for
analyzing nonparametric data. In figures asterisks denote
statistical significance (*p < 0.05; **p < 0.01; ***p < 0.001).
RESULTS

MTV Enhanced Poly(I:C) Induced ALI
Is Associated With Increased
Gastrointestinal Permeability and
Increased Endotoxin in Plasma and Lung
Patients with severe respiratory viral infection may require
ventilation and Poly(I:C) is a double stranded RNA immune
stimulant used to mimic the immune activation of viral
infections (27, 28). We (20) and others (21) have previously
shown that Poly(I:C) pre-treatment markedly increases lung
injury induced by moderate tidal volume ventilation
(MTV=ventilation at 8-10 mL/kg). We assessed intestinal and
alveolar-capillary permeability in Poly(I:C)-MTV mice by
measuring the transmigration of FITC-D (4 kD) from
gastrointestinal contents into plasma (Figure 1A) and BALF
(Figure 1B) spaces, respectively. There were modest increases in
both organs after either stimulus alone but the combination of 3
mg/kg intra-tracheal Poly(I:C) for 6 h followed by MTV for 4 h
led to large increases in both gastrointestinal permeability and
alveolar-capillary permeability to FITC-D. We then measured
endotoxin in plasma (Figure 1C) and BALF (Figure 1D) and
noted small increases after either stimulus alone but large
Frontiers in Immunology | www.frontiersin.org 4
increases in endotoxin in plasma and BALF after combined
Poly(I:C)-MTV. It is unlikely that endotoxin was due to
contamination of Poly(I:C) as the solution tested negative prior
to intratracheal instillation. Further refinement and quantitation
of lung injury (EBA permeability, BALF protein, histology,
cytokine release) was used to assess the nature of interaction of
Poly(I:C) and MTV in Figure 2.

Increased levels of circulating and intrapulmonary endotoxin
after combined injury prompted us to pursue potential role of the
intracellular endotoxin receptor caspase-11 (TLR4-independent)
in acute lung injury.

MTV Exaggerates Poly(I:C) Induced Acute
Lung Injury Through a Caspase-11
Dependent Process
Viral infection can activate interferon responses and this can
promote the up regulation of the caspase-11 non-canonical
inflammasome (27). To determine if up regulation of caspase-
11 in the lungs contributed to the pulmonary response to
ventilation, we pre-treated wild-type and caspase-11-/- mice
with Poly(I:C) followed 6 h later with MTV for 4 h. Caspase-
11 activation can promote the activation of the caspase-1
canonical inflammasome (29, 30). Therefore, to determine the
relative contribution of caspase-1 to the injury response we also
included mice deficient in both caspase-1 and caspase-11. As
shown in Figure 2 [and consistent with the above findings
(Figure 1) and our previous findings (18–20)], MTV alone for
4 h had no impact on indices of lung injury including leakage of
Evans blue dye into the lung (Figure 2A), accumulation of
protein into the BAL fluid (BALF; Figure 2B), or histologic
scoring of lung injury (Figures 2C, D). While Poly(I:C)
treatment alone induced modest increases in Evans blue dye
(Figure 2A) and protein accumulation (Figure 2B) in the BALF,
the initiation of MTV at 6 h after Poly(I:C) markedly increased
the appearance of these large molecular weight species as well as
histopathologic quantitative assessment of nature of ALI
(Figure 2D). The deletion of caspase-11 had no impact on the
mild lung injury induced by Poly(I:C) alone but almost
completely prevented the exaggerated injury induced by the
addition of MTV to Poly(I:C). No further protection was seen
in mice deficient in both caspase-11 and caspase-1 consistent
with caspase-11 being central to acute lung injury, induced by
sequential hits.

To assess the requirement for caspase-11 and caspase-1 on
inflammatory mediator production, IL-6, HMGB1 and IL-1b
were measured in BALF (Figures 3A–C) and IL-18 in plasma
(Figure 3D). Similar to the observations made on lung injury, the
addition of MTV to Poly(I:C) significantly increased levels of IL-
6, IL-1b and HMGB1 in the BALF and IL-18 in the plasma.
Deletion of caspase-11 alone or caspase-11 and caspase-1 together
significantly suppressed the increases in these mediators induced
by MTV+Poly(I:C). A significant difference in the degree of
mediator suppression between the mouse strains was seen for
BALF IL-1b levels and plasma IL-18 levels, where deletion of both
caspase-11 and caspase-1 lead to an even greater decrease in IL-
1b and IL-18 levels than that seen with deletion of caspase-11
July 2021 | Volume 12 | Article 693874
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alone (Figure 3D). These findings indicate that caspase-1
contributes to IL-6, IL-1b and IL-18 release into the circulation.

Regulation of Caspase-11 Expression and
Activation, Its Relationship to Caspase-1
Pathways in Whole Lung and Isolated
Macrophages After Poly(I:C), MTV and
Their Combination in Intact Mice
We quantified expression and activation of caspase-11 and
caspase-1 in whole lungs and freshly isolated alveolar
macrophages by Western blot after Poly(I:C) and/or MTV.
Compared to the control group, there was a slight increase of
procaspase-11 after Poly(I:C) administration while procaspase-
11 expression was not affected by MTV alone. MTV after Poly
(I:C) priming resulted in a significant increase in procaspase-11
in whole lung (Figure 4A) and alveolar macrophages
(Figure 4B). MTV after Poly(I:C) also resulted in a large
increase in the appearance of cleaved caspase-11 in whole lung
(Figure 4A) and alveolar macrophages (Figure 4B). Overall
levels of procaspase-1 were not influenced by either stimuli
alone (data not shown). There was a slight increase in cleaved
caspase-1 after Poly(I:C) but not MTV and this was greatly
Frontiers in Immunology | www.frontiersin.org 5
increased in the combined protocol in both whole lung
(Figure 4A) and alveolar macrophages (Figure 4B). Since
caspase-11 may affect caspase-1 activity (30), we repeated these
experiments in alveolar macrophages from caspase-11-/- mice
and noted that intrapulmonary cleaved caspase-1 levels were
significantly lower in both Poly(I:C) and Poly(I:C)+MTV in
caspase-11-/- mice compared to WT mice (Figure 4C).
Nonetheless, cleaved caspase-1 was still induced in caspase-
11-/- mice underscoring the partial interdependence of
caspases-1 and -11.

We assessed the activation of caspase-11 in advanced
glycosylation end product-specific receptor (RAGE) knock-out
mice. Supplementary Data 1 showed that the pro-caspase-11
expression was decreased by block of RAGE after Poly(I:C)+
MTV, and activation of caspase-11 was significantly inhibited in
RAGE-/- mice, indicating that gut-lung axis pathway may
depended on RAGE.

NLRP3 is part of a common canonical inflammasome that
includes apoptosis-associated speck-like protein (ASC), caspase
activation and recruitment domain (CARD) and caspase-1 (21).
Figure 5A shows a significant increase in NLRP3 mRNA level in
alveolar macrophages in Poly(I:C) group compared to sham
A B

DC

FIGURE 1 | Intestinal and alveolar-capillary permeability. Intestinal permeability of mice evaluated by FITC-D levels in serum (A) and in bronchoalveolar lavage fluid
(BALF) (B) 200 µL FITC-D (30 mg/mL) was instilled through orogastric feeding. Endotoxin levels in serum (C) and in BALF (D) were measured. All PBS and Poly(I:C)
used were endotoxin-free. Mice were divided into four groups treated with Sham as control, Poly(I:C), mechanical ventilation with tidal volume of 10mL/kg (MTV) and
Poly(I:C) followed with MTV as indicated in the figure. Results are shown as means ± SEM (n=6) and compared by one-way ANOVA and Student-Newman-Keuls
test. **p < 0.01, ***p < 0.001.
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A B

D

C

FIGURE 2 | Caspase-1 and caspase-11 prevented Poly(I:C)-MTV induced lung injury. Wildtype (WT), Caspase-1/11 null and Caspase-11 null mice (Caspase 1/11 KO
and Caspase 11 KO) were treated with four groups as indicated. EBA permeability (n=5) (A), total protein concentration in BALF (n=6 for WT mice, n=12 for caspase-
1/11 and caspase-11 KO mice) (B), H&E histology (n=5) (C) of the lung cross section from WT, caspase-1/11 KO, caspase-11 KO mice (Scale bars: 50 mm) and total
histopathologic scores of lung injury (D) were evaluated by two different authors calculated for each animal. Results are shown as means ± SEM and compared by
one-way ANOVA and Student-Newman-Keuls test. *p < 0.05, ***p < 0.001.
Frontiers in Immunology | www.frontiersin.org July 2021 | Volume 12 | Article 6938746
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group. There was no difference between the sham and MTV
groups. The combination of Poly(I:C) and MTV greatly
increased NLRP3 mRNA and this was partially sensitive to
genetic ablation of caspase-11 potentially placing caspase-11
upstream of this canonical inflammasome. The role of NLRP3
was further assessed by measuring IL-6 (Figure 5B) and IL-1b
(Figure 5C) secretion in BALF and IL-18 (Figure 5D) release in
plasma of wildtype and NLRP3-/- mice. As expected, increases in
these cytokines after Poly(I:C) and combined Poly(I:C)-MTV
were sensitive to ablation of NLRP3. These data underscore the
interdependent role of caspase-11 and caspase-1 in combined
Poly(I:C)-MTV acute lung injury.

Caspase-11 Cleavage of GSDMD and Poly
(I:C)-MTV ALI Including Pyroptosis in
Freshly Isolated Alveolar Macrophages
From Injured Lung
Activation of inflammatory caspases-11 and -1 may lead to
cleavage mediated activation of GSDMD that in turn is an
obligatory step in inflammatory programmed cell death
Frontiers in Immunology | www.frontiersin.org 7
(pyroptosis). We quantified expression and regulation of
GSDMD in alveolar macrophage by Western blot after Poly(I:
C) and/or MTV (Figure 6). MTV after Poly(I:C) resulted in a
significant increase in appearance of cleaved GSDMD in alveolar
macrophages (Figure 6).

Accordingly, we repeated experiments with Poly(I:C), MTV
and their combination in GSDMD-/- mice and noted GSDMD
sensitive Poly(I:C)-MTVmediated lung injury [as determined by
evans blue permeability (Figure 7A) and protein in BALF
(Figure 7B)] and increased cytokine release (Figures 7C–F).

GSDMD sensitive injury is consistent with pyroptosis and
thus we determined whether pyroptosis occurred in freshly
isolated alveolar macrophages from wildtype mice after Poly
(I:C), MTV or their combination (Figure 8). Macrophages,
neutrophils and lymphocytes in BALF were harvested to assess
the cell recruitments by Poly(I:C)/MTV. Here we show a
significant increase of total cell numbers in BALF in Poly(I:C)
+MTV group compared that in sham, Poly(I:C) or MTV group,
and the neutrophils contributed the most increase (78%) in the
BALF (Supplementary Data 2).
A B

DC

FIGURE 3 | Caspase-1 and caspase-11 alleviated Poly(I:C)-MTV induced pulmonary informatory response. IL-6 (A), HMGB1 (n=5) (B) and IL-1b (C) in BALF as well
as IL-18 levels (D) in plasma were significantly decreased in Caspase 1/11 KO and Caspase-11 KO mice compared to WT mice. In (A, C, D), n=6 for WT mice,
n=12 for caspase-1/11 and caspase-11 KO mice. Results are shown as means ± SEM and compared by one-way ANOVA and Student-Newman-Keuls test.
**p < 0.01, ***p < 0.001.
July 2021 | Volume 12 | Article 693874

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


FIGURE 4 | Alterations of protein levels of cleaved caspase-1, procaspase-11
and cleaved caspase-11 following Poly(I:C)-MTV. MTV following Poly(I:C)
instillation resulted in a significant increase in procapase-11 and, large increase
in appearance of cleaved caspase-11 in whole lung (A) and alveolar
macrophages (B). Cleaved caspase-1 expression levels were inhibited in
caspase-11 KO mice in Poly (I:C)-MTV compared to that in WT mice (C).
Results are shown as means ± SEM (n=12) and compared by one-way ANOVA
and Student-Newman-Keuls test. *p < 0.05, **p < 0.01, ***p < 0.001.
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Alveolar macrophages were harvested at end of exposure and
stained with Alexa Fluor 488-labeled caspase-1 FLICA, Alexa
Fluor 546-labeled in situ cell death reagent-TMR and Hoechst
dye (Figure 8A). Quantitation of colocalization of caspase-1 and
TUNEL positive cells showed slight increase in pyroptosis after
either Poly(I:C) or MTV and a very large increase after combined
exposure in situ (Figure 8B).
DISCUSSION

We note that otherwise non-injurious moderate tidal volume
ventilation exacerbates ALI after i.t. Poly(I:C) in intact mice.
Disruption of the alveolar-capillary barrier (Figures 1 and 2) in
this two-hit model, as previously reported by Chun et al. (21) and
us (20), is a central feature of ALI and thus provides a useful
preclinical framework in identifying pathways that underscore
the major contribution of sepsis to ARDS. Although
epidemiologic studies suggest that direct (e.g. pneumonia)
sepsis comprises a large component of the risk factors in the
development of ARDS, a less understood multifactorial
extrapulmonary (indirect or systemic) sepsis is also important
(2). In the current study, we note (Figure 1) that combined Poly
(I:C)-MTV enhanced permeability of gastrointestinal tract and
introduced endotoxin to the vascular space and lung. The
association of systemic sepsis and ALI (via gut-lung axis) was
reinforced by intracellular activation of caspase-11 in the lungs
(Figure 4A) and alveolar macrophages (Figure 4B). Systemic
endotoxemia also activated caspase-1 and non-canonical
activation of inflammasome (Figure 5) with synthesis and
release (Figures 3, 5 and 6) of IL-1 cytokines (IL-1b and IL-
18) and HMGB1. Interactions between caspase-11 and caspase-1
led to GSDMD dependent barrier disruption (Figure 7) and
pyroptosis in alveolar macrophages (Figure 8). A schema
outlining these pathways is presented in Figure 9 and
underscores the complexities of direct lung injury combined
with extrapulmonary sepsis.

Mechanical ventilation is a common clinical strategy to rest
injured lung and improve gas exchange in critical care setting (3)
and to deliver anesthetic agents intraoperatively. The
proinflammatory and injurious nature of high tidal volume
ventilation has led to adherence to lung-protective ventilation
protocols minimizing ventilator induced lung injury (VILI) and
greatly reducing morbidity and mortality in ARDS (2–4).
Nonetheless, otherwise non-injurious lower tidal volume
ventilation may exacerbate preexisting acute lung injury due to
bacterial (5, 6) or viral (11) infection, intratracheal endotoxin
A

B

C

FIGURE 4 | Continued
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(7–10) or sterile injury such as hyperoxia (14) or acid instillation
(12, 13). Sensitization of VILI to events originating at distal sites
or plasma space including exogenous endotoxin (16, 17) or
polymicrobial sepsis (18, 19) has also been documented. We
confirmed (20) that MTV exacerbated modest acute lung injury
secondary to intratracheal instillation of Poly(I:C). Poly(I:C), a
TLR3 ligand, is a synthetic analog of double stranded RNA that
can be produced by many viruses during their replicative cycles
(31). The precise mediators or pathways underlying the
synergistic effect of Poly(I:C) and MTV are unknown but are
largely independent of TLR4 (21). In the current study, we add
the possibility that extrapulmonary endotoxemia secondary to
enhanced gastrointestinal permeability with Poly(I:C)-MTV
underlies this synergistic effect and reveal a role for
intracellular LPS mediated caspase-11 activation, a non-
canonical inflammasome pathway and interactions of caspase-
11 and caspase-1 in lung injury.

The influence of interactions between gut and lung
microbiota in respiratory health is firmly established in chronic
(32) and acute (23, 24) disease. Evidence of such microbial
mingling in ARDS has suggested therapeutic strategies for
ARDS of probiotics (33), novel bio-engineered delivery systems
(34) and antimicrobial agents (23). In the current study,
combined injury led to an increase in gut permeability with the
A B

DC

FIGURE 5 | NLRP3 was required for Poly(I:C)-MTV induced lung injury. Poly(I:C)-MTV increased NLRP3 mRNA levels in alveolar macrophages in WT mice but was
partially inhibited by caspase-11 KO mice, (n=12) (A). NLRP3 was required for Poly(I:C)-MTV induced IL-6 (B), IL-1b release in BALF (C) and IL-18 (D) secretion in
plasma. In (B–D), n=6 of each group for WT mice, n=8 for NLRP3-/- mice. Results are shown as means ± SEM and compared by one-way ANOVA and Student-
Newman-Keuls test. ***p < 0.001.
FIGURE 6 | Alterations of protein levels of cleaved GSDMD in alveolar
macrophages following Poly(I:C)-MTV. Compared to the sham group, there was
no significant increase in GSDMD expression in alveolar macrophages from
mice treated with Poly(I:C) or MTV alone. MTV following Poly(I:C) instillation
resulted in a significant increase of cleaved GSDMD in alveolar macrophages.
Results are shown as means ± SEM (n=4) and compared by one-way ANOVA
and Student-Newman-Keuls test. **p < 0.01, ***p < 0.001.
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introduction of endotoxin to the circulation and lung (Figure 1).
We did not attempt to identify mediators released from lung that
might account for this effect on the gut but it is noteworthy that
macrophages isolated from Poly(I:C)-MTV treated mice (20)
release tumor necrosis factor (TNF)-a and anti-TNF-a
antibodies have been shown to abrogate the increase in gut
permeability (and lung edema) in high volume ventilation in rats
(35). We assumed that endotoxemia in our model was secondary
to increased gut permeability as Poly(I:C) mixture was endotoxin
free and neither intubation nor circuitry for mechanical
ventilation introduced significant amounts of endotoxin in
Frontiers in Immunology | www.frontiersin.org 10
lung (Figure 1D). The identification of systemic endotoxemia
in the combined Poly(I:C)-MTV protocol motivated us to pursue
caspase-11 mediated pyroptosis in lung as Chun et al. (21)
reported a TLR-4 independent pathway in this model and
Cheng et al. (25) noted that introduction of systemic
endotoxin caused TLR-4 independent, caspase-11 mediated
pyroptosis in mice. HMGB1 is known to deliver extracellular
LPS via RAGE to cytosolic caspase-11 (36). We observed
elevated levels of HMGB1 after Poly(I:C)-MTV and implicate
RAGE in the pulmonary changes after Poly(I:C)-MTV by
showing that RAGE-/- mice fail to increase procaspase-11 and
A B

D

E F

C

FIGURE 7 | GSDMD was required for Poly(I:C)-MTV induced lung injury. Poly(I:C)-MTV increased EBA permeability, (A), total protein (B), IL-6 (C), HMGB1 (D), and
IL-1b (E) in BALF as well as IL-18 levels (F) in plasma in WT but were inhibited in GSDMD KO mice. n=5 of each group for WT mice and GSDMD-/- mice. Results
are shown as means ± SEM and compared by one-way ANOVA and Student-Newman-Keuls test. ***p < 0.001.
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cleaved caspase-11 in lungs of mice subjected to Poly(I:C)-MTV
(Supplementary Data 1). Future experiments to neutralize
systemic endotoxemia or eliminate of gut microbes in general
(e.g. gnobiotic mice or combined antibiotic therapies) will help
advance gut-lung axis hypothesis beyond associative
observations in the current study.

Pyroptosis is an inflammatory programmed cell death
pathway activated by murine caspase-1 or caspase-11 (caspase-
4 and -5 are human orthologs) and requires cleavage and
activation of pore-forming effector protein, GSDMD (27). It
appears to be a key component of innate immunity and
teleologically is an effective means of eliminating intracellular
Frontiers in Immunology | www.frontiersin.org 11
pathogens and signaling host via release of inflammatory
mediators (25). Nonetheless, excessive activation is implicated
in human diseases including sepsis (37). For example,
dihydromyricetin, an inhibitor of NLRP3, alleviated cecal
ligation and puncture-induced lung histopathologic injury in
mice (38). As cell death, per se, and inflammatory mediators are
essential components of disruption of alveolar capillary barrier in
ALI and ARDS, insight into relevant pathways may be
informative of pathogenesis and therapeutic strategies.
Caspase-1 activation is well known to be activated via a
canonical inflammasome pathway (including but not limited to
NLRP3) as well as a caspase-11 mediated non-canonical
A

B

FIGURE 8 | MTV induced alveolar macrophage pyroptosis after Poly(I:C) priming. Alveolar macrophages on and maturation and release of cytokines in combined
Poly(I:C)-MTV injury model. The gut-lung axis resulted in activation of pulmonary non-canonical (cytosolic mediated caspase-11 activation) and canonical (Caspase-1)
inflammasome (NLRP3) mediated ALI in this two hit model resulting in GSDMD sensitive alveolar capillary barrier disruption, pyroptosis (in alveolar macrophages) and
cytokine maturation and release (IL-1b; IL-18) were isolated immediately after mice scarification and adhere for at least 2 hours before staining. Caspase-1 activation
was labeled with FLICA caspase-1 and DNA fragmentation was labeled with TUNEL by confocal microscopy (A). Quantification was done by Image J (B). Results
are shown as means ± SEM (n=12) and compared by one-way ANOVA and Student-Newman-Keuls test. ***p < 0.001.
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inflammasome pathway (27). Canonical activators include
dsRNA [and mechanical ventilation (39)] as well as bacteria;
non-canonical activators include gram negative bacteria.
Accordingly, there is interaction of these caspases in the
maturation and release of cytokines of IL-1 family (IL-1b and
IL-18), as well as pyroptosis (27, 30). In the current study, Poly(I:
C) is likely to activate the canonical pathway as noted by: a)
increase in mRNA of NLRP3 (Figure 5A) in alveolar
macrophages of Poly(I:C)-MTV treated mice that was only
partially sensitive in the caspase-11 null mice; and b) synthesis
and release of IL-1b, IL-6 and IL-18 that was sensitive to genetic
deletion of NLRP3 (Figures 5B–D). Mechanical ventilation has
also been shown (39) to activate NLRP3 inflammasome in
alveolar macrophages in a caspase-1 dependent fashion
underscoring an additional stimulus of canonical pathway in
our combined Poly(I:C)-MTV model. Alveolar-capillary barrier
disruption was only partially sensitive to genetic ablation of
GSDMD (Figures 7A, B) as was release of alarmins (HMGB1;
Figure 7D) whereas release of IL-18 to plasma space (Figure 7F)
was highly sensitive to GSDMD deletion in combined injury
protocol further underscoring the interaction of these pathways
and resultant phenotype (Figure 9). To the best of our
knowledge, in situ identification of cellular components of
pyroptosis remains challenging in murine tissue. As such, we
Frontiers in Immunology | www.frontiersin.org 12
utilized an ex vivo strategy involving isolation and short-term
culture of murine alveolar macrophages from Poly(I:C)-MTV
treated mice (Figure 8) and quantified pyroptosis via co-
expression of caspase-1 and TUNEL. Although macrophages
(and precursor monocytes) are prototypic of death by pyroptosis,
it is noteworthy that other investigators have utilized primary
cultures of murine pulmonary endothelial cells isolated from
systemic endotoxemic mice (25) or cultured pulmonary
epithelial cells (35) directly exposed, in vitro, to reveal presence
(and differences) in pyroptosis and release of cytokines. Within
the limits of our study, we suggest that combined Poly(I:C)-MTV
activates both canonical and non-canonical inflammasome
pathways involving both caspase-11, caspase-1 and their
interaction and GSDMD dependent pyropotosis in at least
alveolar macrophages (Figure 9). Further cellular origins, aside
from alveolar macrophages, awaits improvements in antibody
dependent immunohistochemistry in murine lung and
pharmacologic separation of caspase-1 and caspase-11 and
relevant inflammasome pathways.

In conclusion, By revisiting (25) a two hit model (Poly(I:C)-
MTV) of acute lung injury noted to be TLR4 independent, we
have detected an additional stimulus, e.g. systemic endotoxemia;
as a result of gut-lung axis, both non-canonical caspase-11 [via
presumptive cytosolic endotoxemia (28)] and canonical [via
FIGURE 9 | Schematic graph of gut-lung axis. Combined (Poly(I:C)-MTV) insult results in increase in gastrointestinal permeability and endotoxin in plasma and BALF.
Poly(I:C)+MTV insult was sensitive to Caspase-11 deletion with no further contribution of caspase-1 but led to large increases in procaspase 11 and its cleaved
product as well as cleaved product of caspase-1. Genetic ablation of Gasdermin D (GSDMD) attenuated alveolar-capillary disruption.
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NLRP3 inflammasome (38, 39)] and their interactions led to
pyroptosis in alveolar macrophages, disruption of alveolar
capillary barrier and proinflammatory state within lung.
Pharmacologic strategies at disrupting communication between
gut and lung, inhibition of inflammasomes or effector molecules
(GSDMD) in pyroptosis may be useful in acute lung injury.
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Supplementary Data 1 | Alterations of protein levels of procaspase-11 and
cleaved caspase-11 are dependent on RAGE in the Poly(I:C)-MTV model.MTV
following Poly(I:C) instillation resulted in a significant increase in procapase-11 and
cleaved caspase-11 in alveolar macrophages from WT mice. The increases were
not observed in RAGE KO mice in Poly (I:C)-MTV compared to that in WT mice.
Results are shown as means ± SEM (n=4) and compared by one-way ANOVA and
Student-Newman-Keuls test. ***p < 0.001.

Supplementary Data 2 | Cell recruitment and classified cell counts in BALF after
Poly(I:C)-MTV.MTV following Poly(I:C) instillation resulted in a significant increase of
total cell numbers in BALF (A). Neutrophils increased most among all the cells (B).
Results are shown as means ± SEM (n=4) and compared by one-way ANOVA.
***p < 0.001.
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