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Abstract
1.	 The “habitat heterogeneity hypothesis” predicts positive effects of structural com-
plexity on species coexistence. Increasing habitat heterogeneity can change the 
diversity (number of species, abundances) and the functional roles of communities. 
The latter, however, is not well understood as species and individuals may respond 
very differently and dynamically to a changing environment.

2.	 Here, we experimentally test how habitat heterogeneity affects generalist ar-
thropod predators, including epigaeic spiders, carabid and staphylinid beetles, 
under natural conditions by assessing their diversity and directly measuring 
their trophic interactions (which provide a proxy for their functional roles). The 
experiment was conducted in spring barley fields in Southern Sweden where 
habitat heterogeneity was manipulated by increasing within-field plant 
diversity.

3.	 Increased habitat heterogeneity triggered rapid changes in the feeding behav-
iour of generalist predators characterized by lower trophic specialization at 
both network (H2’, degree of interaction specialization in the entire network) 
and species level (d’, degree of interaction specialization at the species level). 
We presume that this is because spatial separation resulted in relaxed competi-
tion and allowed an increased overlap in resources used among predator spe-
cies. Predators collected from heterogenous habitats also showed greater 
individual-level dietary variability which might be ascribed to relaxed intraspe-
cific competition.

4.	 Our results provide conclusive evidence that habitat heterogeneity can induce 
rapid behavioural responses independent of changes in diversity, potentially pro-
moting the stability of ecosystem functions.
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1  | INTRODUCTION

The “habitat heterogeneity hypothesis” (MacArthur, 1972) states 
that the number of available ecological niches will increase as hab-
itats become more complex, and that this will have positive effects 
on the ability of species to coexist (e.g. McClain & Barry, 2010; Stein, 
Gerstner, & Kreft, 2014; Tews et al., 2004). This predicted increase 
in the number of species and their abundances (hereafter jointly re-
ferred to as diversity) assumingly causes a range of cascading effects 
on ecological processes (Lovett, Jones, Turner, & Weathers, 2005), 
and may positively affect the stability of ecosystem functions (e.g. 
Cardinale et al., 2012; Hector et al., 2010; Tilman, Reich, & Knops, 
2006). Support for a stabilization effect has been found, for example, 
in agroecosystems. Here, changes in heterogeneity due to manage-
ment can be key drivers of arthropod diversity, which critically affect 
the delivery of ecosystem services (e.g. Haddad, Crutsinger, Gross, 
Haarstad, & Tilman, 2011; Langellotto & Denno, 2004; Letourneau 
et al., 2011).

As species within a community may not respond equally to 
changes in habitat heterogeneity, effects on ecosystem functions 
are best explained by assessing changes in their functional roles (e.g. 
functional traits: Gagic et al., 2015 or network metrics: Tylianakis, 
Laliberté, Nielsen, & Bascompte, 2010). Assessing these roles in nat-
ural systems is, however, not trivial as species, or individuals, con-
tinuously adapt to a changing environment (e.g. Ives, Gross, & Klug, 
1999; Loreau & de Mazancourt, 2013; Tilman et al., 1997). These 
dynamics affect key components of coexistence between species 
such as the relative strength of intra- vs. interspecific competition, 
prey attack rate or vulnerability to enemies (Bolnick et al., 2011). 
Consequently, the behavioural response of whole communities 
to changes in habitat heterogeneity and its temporal variation is 
not well understood (e.g. Loreau & de Mazancourt, 2008; but see 
Valladares, Salvo, & Cagnolo, 2006; Foulquier, Dehedin, Piscart, 
Montuelle, & Marmonier, 2014). This is particularly true for highly 
dynamic ecosystems which undergo periodic disturbances, such 
as seasonal changes, floods or agricultural management (Gerisch, 
Agostinelli, Henle, & Dziock, 2012).

Trophic interactions can, in a network context, be a proxy for func-
tional roles represented in communities (Heleno et al., 2014; Poisot, 
Mouquet, & Gravel, 2013). As such, they are very useful parame-
ters that allow mechanistic links between habitat heterogeneity and 
ecosystem functions to be investigated (e.g. Pages, Gera, Romero, & 
Alcoverro, 2014; Tylianakis, Tscharntke, & Lewis, 2007; Vucic-Pestic, 
Birkhofer, Rall, Scheu, & Brose, 2010). A small number of empirical 
studies has so far shown that higher habitat heterogeneity influences 
predator–prey interactions by reducing intraguild predation (Finke 
& Denno, 2002) or by strengthening dietary preferences (Birkhofer, 
Wise, & Scheu, 2008a; Hughes & Grabowski, 2006). However, this 
knowledge is primarily inferred from changes in the abundance of 
interacting species (i.e. from observation-  or count-based studies), 
rather than based on directly measured interactions. Capturing and 
quantifying these interactions as they naturally occur is urgently 

needed to unravel which of the potential mechanisms cause the ob-
served changes in the functional role of predator communities (see 
e.g. Diehl, Mader, Wolters, & Birkhofer, 2013). This can now be done 
as techniques for molecular diet analyses have reached a level of de-
tail at which trophic interaction networks can be constructed in com-
plex multispecies systems (Clare, 2014; Traugott, Kamenova, Ruess, 
Seeber, & Plantegenest, 2013).

Here, we experimentally assess the effects of habitat heterogeneity 
by directly measuring the trophic interactions between multiple preda-
tor and prey taxa in a natural setting, including their temporal dynamics. 
We conducted a field experiment in cereal systems where habitat het-
erogeneity was manipulated by increasing within-field plant diversity 
(i.e. the occurrence of arable weeds). In the resulting structure-rich and 
structure-poor habitats, we quantified both the diversity of the ground-
dwelling arthropod predator community and the individual trophic in-
teractions of these generalist predators using novel molecular methods. 
Our experimental design was laid out to capture a real-field scenario in 
freely developing communities. Two sampling dates were selected to 
reflect different levels of habitat heterogeneity due to increasing weed-
iness in arable fields over time and to account for the phenologies and 
abundance dynamics of predator and prey species. The latter aspect is 
particularly important in our study system as, for example, cereal aphid 
populations (a numerically dominant herbivore prey in this system) are 
known to increase towards the second sampling date.

In line with the “habitat heterogeneity hypothesis,” we expected 
positive effects of increased complexity in structure-rich habitats on 
species richness and activity density (number of specimens caught) 
of arthropod predators. In addition, we predicted that as habitat het-
erogeneity increases, trophic interaction networks will follow a simi-
lar pattern and become more complex. This prediction was originally 
proposed by MacArthur (1972) arguing that species will be offered a 
greater choice in how they respond to the environment as structural 
complexity increases. This may, for example, make refuges for preda-
tors more available and facilitate their coexistence by reducing nega-
tive interactions (Finke & Denno, 2002; Janssen, Sabelis, Magalhães, 
Montserrat, & Van der Hammen, 2007). If this prediction is supported 
in our study, food webs in structure-rich habitats will be characterized 
by a more general network structure (Hypothesis 1). Our reasoning 
here is that when predators become more able to separate in space, 
they will also less frequently encounter one another. Consequently, 
they will be able to share similar prey. As at the same time refuges for 
prey also increase, prey may become more difficult to find for pred-
ators (Denno, Finke, & Langellotto, 2005), which should force them 
to more extensively explore their available niche space in search for 
prey. As they do so, subsets of individuals within predator species in 
a more complex environment will do this in slightly different micro-
habitats. Following this rationale, we also predict a greater variability 
in individual-level predator diet (Hypothesis 2). Furthermore, these 
effects on the feeding behaviour of generalist predators should get 
more pronounced over time, as availability of ecological niches and 
resources increases with advancing growth of arable weeds, that is, 
with increasing habitat heterogeneity (Hypothesis 3).
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2  | MATERIALS AND METHODS

2.1 | Field experiment

To manipulate habitat heterogeneity, four conventional spring barley 
(Hordeum vulgare) fields located in Southern Sweden (Scania) were 
chosen for the experiment: field 1 (N56° 11.19425’ E13° 5.49467’; 
51 m a.s.l.), field 2 (N56° 6.97797’ E13° 6.786’; 35 m a.s.l.), field 3 
(N55° 49.28393’ E13° 41.53262’; 136 m a.s.l.), and field 4 (N56° 
1.76755’ E12° 51.84857’; 49 m a.s.l.). The barley was sown in April 
2012. At two opposing sides of each field, experimental areas of 
c. 30 × 60 m were established and randomly assigned to two dif-
ferent treatments. One area was not treated with herbicides, allow-
ing arable weeds to grow, whereas herbicides (sprayed during the 
last 2 weeks of May) were applied to the remainder of the field, in-
cluding the second area (Figure 1). Weed species were identified 
and their percentage ground cover was estimated within four 1 m2 
areas in each sampling plot (see below; Appendix S1: Figure S1-1 in 

Supporting Information). In all four fields, herbicide application lead 
to significantly lower weed ground cover (2.3% ± 1.9% [M ± SD, 1st 
sampling session; see below, Figure 2] and 2.0% ± 1.8% [2nd session] 
vs. 16.3% ± 10.5% [1st session] and 30.2% ± 23.6% [2nd session]). 
We assume that herbicide application primarily affected arthropods 
indirectly through changes in habitat heterogeneity resulting from re-
duced weed cover (e.g. Nyffeler, Dean, & Sterling, 1994). Direct lethal 
effects by herbicides on arthropods such as spiders are usually weak 
(Baines, Hambler, Johnson, Macdonald, & Smith, 1998; Haughton, 
Bell, Boatman, & Wilcox, 2001; Michalková & Pekár, 2009), although 
behavioural changes may occur shortly after herbicide exposure. In a 
recent study, Korenko et al. (2016) exposed wolf spiders to several 
common herbicides and found that fresh residues reduced predator 
activity during 4 hr after exposure, but except for one herbicide that 
is not registered in Sweden (Basta 15) no effects on activity were de-
tected with 48-hr-old residues. Therefore, since sampling of predators 
in our experiment was conducted several days after herbicide appli-
cation, we assume that such direct sub-lethal effects were of minor 
importance. Both experimental areas within each field were fenced 
no later than 5 days after spraying, in order to constrain movement of 
ground-dwelling arthropod predators from the surrounding field. This 
approach ensured that the measured trophic interactions occurred 
within the respective treatments (Figure 1). For fencing, a dedicated 
snail fence (PET; EXCOLO® GmbH, Vreden, Germany) was buried in 
the soil with c. 15 cm of the fence above the soil level. Vegetation 
along the fence was removed on a regular basis to avoid it to become 
overgrown (see Appendix S1: Figure S1-2). Within each 30 × 60 m 
experimental area, a 24 × 24 m sampling plot was established with 
a buffer zone of 3 m to the nearest edge/fence. Twenty-five pitfall 
traps (plastic cups, Ø 11.5 cm, 11 cm depth; Figure 1) were buried at 
ground level to form a grid in each sampling plot, with 4 m spacing 
between traps. A metal roof was installed above each trap to protect 
trap content from rain and debris (see Appendix S1: Figure S1-2).

In each sampling plot, all sampling, except wet pitfall trapping 
(see below), was conducted during two major sessions: at a time of 
low aphid densities (1st session starting week 22 [30th May to 6th 
June]; aphid colonization phase) and c. 1 month later (2nd session 
starting week 25 [23th to 29th June]; peak density phase) when high 
aphid densities were expected (Figure 2). Because each sampling 
session was completed within 24 h per field, all four fields were sam-
pled within 1 week. During the fieldwork, care was taken to disturb 
the communities within the sampling plots as little as possible (e.g. 
minimum walking distances between traps).

Twenty pitfall traps in each grid lacked trapping fluid (dry pitfall 
traps; Figure 1) in order to collect live arthropod predators at 24-hr 
intervals during the two major sampling sessions (i.e. samples to 
assess trophic interactions, see below; Figure 2). These traps were 
partly filled with clay balls to provide structure and shelter for the 
collected arthropods and to reduce in-trap predation (Sunderland, 
Powell, & Symondson, 2005). On the evening preceding each sam-
pling session, all dry pitfall traps were activated in the respective field. 
Each trap was then left open for a 24-hr interval (evening to evening) 
and emptied twice after c. 12 and 24 hr. At each session, additional 

F IGURE  1 Setup of the field experiment in spring-sown barley. 
Permanent installations were barriers around 30 × 60 m experimental 
areas assigned to two different treatments, herbicide-free (creating 
structure-rich habitats) vs. standard herbicide treatment, and grids of 
pitfall traps forming 24 × 24 m sampling plots

Barley field

24×24 m        
Sampling-plot
grid of 20 dry 

pitfall traps and 5 
wet pitfall traps 
(filled circles)

Herbicide-
free area

~ 
60

 m

~ 30 m

Barrier
(snail fence)
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hand collections were conducted at ten random patches of Ø 30 cm 
(sampling time: 3 min) per sampling plot. Smaller and/or less mobile 
arthropod species (e.g. staphylinids, linyphiids), which may otherwise 
be underrepresented in pitfall traps (Sunderland et al., 2005), were 
carefully picked by hand. Each collected predator was individually 
placed in a 2 ml reaction tube, immediately cooled at 3–5°C and 
freeze-killed at −50°C on the same day to prevent DNA degradation.

The remaining four corner traps and the single centre trap in each 
grid contained trapping fluid (wet pitfall traps; Figure 1). These five 
traps were half-filled with saturated saline solution as preservative and 
a drop of odour-free detergent (to reduce the surface tension) and were 
operated for 4–5 weeks. Wet pitfall traps were emptied three times 
during this period to allow the assessment of arthropod predator com-
munities over time. These sampling intervals coincided with important 
periods of aphid population dynamics in the fields: colonization, peak 
density and population collapse (Figure 2). Arthropod predators caught 
in wet pitfall traps were stored in 70% ethanol and identified to species 
level (ground beetles [Carabidae] and spiders [Araneae]); rove beetles 
(Staphylinidae) were identified to genus level. The combined approach 
with both wet and dry pitfall traps was necessary, as individuals from 
wet pitfall traps cannot be subjected to molecular diet analyses due 
to high risk of contamination (i.e. regurgitates from one predator con-
taminating others as they drown; King, Read, Traugott, & Symondson, 
2008). Dry pitfall traps, on the other hand, would not provide reliable 
information about activity densities if operated unattended over lon-
ger sampling periods (mortality, predation, escape risk).

To assess the availability of extraguild prey at the two major ses-
sions in each sampling plot, (1) aphids were counted on 50 randomly 
selected barley tillers, that is, grass stems (except for site 3 at the 2nd 
sampling session, where aphid numbers were very high and only 25 
tillers were examined), (2) earthworms were counted in 10 randomly 
distributed soil samples (20 × 20 cm, depth c. 10 cm), and (3) spring-
tails were caught with 20 sticky traps, consisting of brown paper cards 
(10 × 5 cm; Raupenleimpapier; Stähler Austria GmbH & Co. KG, Graz, 
Austria) sprayed with aerosol glue (Insekten-Fangleimspray; F. Schacht 
GmbH & Co. KG, Braunschweig, Germany). Each sticky trap was an-
chored horizontally to the ground in the vicinity of dry pitfall traps and 
was active during the 24-hr dry pitfall trapping interval (see Appendix 

S1, Figure S1-2). Sticky traps were recollected and stored at 4°C until 
morphological classification of springtails as either Arthropleona or 
Symphypleona.

Data loggers (Tinytag Ultra 2; Gemini Data Loggers Ltd., West 
Sussex, UK) were placed in the centre of each sampling plot to mea-
sure air temperature in the crop over each 24-hr dry pitfall trapping 
interval. During the field experiment, air temperature increased from 
10.3°C ± 4.8°C (M ± SD, 1st sampling session) to 14.6°C ± 4.2°C (2nd 
session) in all four fields, and no significant differences in temperature 
were found between fields or treatments.

2.2 | Molecular diet analysis

All ground-dwelling arthropod predators (i.e. carabid and staphylinid 
beetles, lycosid, linyphiid, and other spiders) collected from dry pit-
fall traps or active hand collections were morphologically identified 
to the lowest taxonomic level possible (in most cases species) and 
thereafter subjected to DNA extraction. Whole animals were pro-
cessed according to the protocol described in Staudacher, Jonsson, 
and Traugott (2016) which allows the extraction of any prey DNA 
present in the predator’s intestinal tract. All extractions were done in 
a separate pre-PCR laboratory; negative controls (lysis buffer) were 
included within each batch of 96 samples and tested with universal 
COI primers to check for DNA carry-over contamination during all 
steps.

Predator DNA samples were screened with the three diagnos-
tic multiplex PCR assays: “MPI,” “MPII beetles/thrips,” and “MPII 
spiders” presented in Staudacher et al. (2016) (see Appendix S2: 
Figure S2-1). In particular, all samples were first screened for 
DNA of different extraguild and intraguild prey groups (i.e. aphids, 
earthworms, springtails, dipterans, beetles/thrips, spiders and 
lacewings) using the “MPI” assay. Primer pairs that target the con-
sumer DNA (i.e. beetle or spider DNA) amplified an internal con-
trol which allowed checking for false negatives. In cases where 
no amplicons could be detected in this first screening, predator 
samples were re-tested with universal COI primers and five sam-
ples where no DNA could be amplified at all were excluded from 
the final dataset.

F IGURE  2 Timeline of the field experiment in spring 2012 showing from top to bottom row: aphid population phases in barley fields, two 
major sampling sessions (i.e. 1st and 2nd session) to assess trophic interactions of arthropod predators, extraguild prey availability, and weed 
development at low and high aphid densities, and three sampling periods to assess arthropod predator species richness and activity density over 
the three distinct phases (first activation of wet pitfall traps [WPTs] at the 1st sampling session in the respective field)

1st sampling session 2nd sampling session

1st emptying 
of WPTs

2nd emptying 
of WPTs

3rd emptying 
of WPTs

week 22 23 24 25 26 27May June July

Aphid colonization
Peak density

Population collapse
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Predator DNA samples were further screened with the MPII as-
says: all beetles with “MPII beetles/thrips” and all spiders with “MPII 
spiders” to assess intraguild predation (i.e. beetle–beetle and spider–
spider trophic interactions). Note that in this step, the primer pair 
targeting the genus/family of the respective predator examined was 
excluded.

In addition, spiders testing positive for “beetle” prey in the group-
specific “MPI” were further tested with “MPII beetles/thrips” to iden-
tify these prey types to a lower taxonomic level. Likewise, beetles 
testing positive for “spider” prey were tested with “MPII spiders.” Note 
that of 29 beetles testing positive for “spider” prey, 25 could not be as-
signed to a specific spider taxon in the “MPII spiders,” suggesting that 
feeding interactions occurred with spider taxa other than the targeted 
genera (for details on coverage, see Staudacher et al., 2016). To resolve 
this issue, these samples were additionally subjected to DNA barcod-
ing and 15 samples could then be assigned, mostly to Linyphiidae and 
Lycosidae (see Appendix S2: Protocol S2-2).

Positive (artificial mixes of target DNA at low concentrations) and 
negative controls (PCR-grade water instead of DNA) were run within 
each 96-well PCR plate to check for correct amplification and DNA 
carry-over contamination. All PCR products were separated and vi-
sualized using the QIAxcel electrophoresis system (Qiagen, Hilden, 
Germany) following the protocol described in Staudacher et al. (2016).

2.3 | Data handling and statistical analysis

2.3.1 | Arthropod predator community (wet pitfall 
traps; three sampling periods)

Species richness and activity density of ground-dwelling arthropod 
predators were calculated separately for each sampling plot and sam-
pling period.

2.3.2 | Extraguild prey availability (two major 
sampling sessions)

As aphid counts at the 1st sampling session (aphid colonization) were 
naturally low and included a high number of zeros, these were an-
alysed as presence or absence of aphids on tillers. At peak density 
phase, aphids could be analysed based on counts; one field (site 1) 
was excluded from this analysis, as aphid populations had already 
collapsed in that field prior to the 2nd sampling session. Earthworm 
numbers were generally low and, therefore, analysed as presence or 
absence of earthworms in soil samples. Springtail abundances as esti-
mated with sticky traps were analysed based on counts.

2.3.3 | Predator trophic interactions (dry pitfall traps, 
hand collections; two major sampling sessions)

Trophic interactions were assessed using diagnostic PCR assays de-
signed for arthropod predator–prey systems in cereals and covering 
all major prey groups (see Staudacher et al., 2016). The proportion of 
predators testing positive for a specific prey (i.e. prey DNA detection 

rate) in such a screening for multiple different prey types provides a 
reliable proxy for predation rates (Symondson, 2012). Note that for ar-
thropods, post-feeding prey DNA detection intervals span c. 3–4 days 
(e.g. Sint, Raso, Kaufmann, & Traugott, 2011) and that a predator can 
test positive for more than one prey type. From all predator individu-
als that tested positive for DNA of at least one of the targeted prey 
taxa, detection rates were analysed for aphid prey as well as pooled 
non-aphid extraguild (EGP: earthworms, springtails, dipterans, thrips) 
and intraguild (IGP: beetles, spiders, lacewings) prey groups. For the 
latter two, detection rates were calculated as the presence or absence 
of any prey detection within the respective group to facilitate the in-
terpretation of results. Likewise, this grouping of prey items was used 
for calculation of d’ (specialization index, see below). In all other calcu-
lations, resolution was as per the molecular assays (for targeted prey 
taxa, see Appendix S2: Figure S2-1).

For all analyses that took predator taxa into account, rare taxa 
were pooled on a higher level (such that congenerics were grouped 
by their respective genus) or excluded as they occurred in very low 
numbers, were only caught in a single sampling plot, or tested negative 
in the molecular screening (for details, see Appendix S3: Table S3-1b).

The software “Food Web Designer” (Sint & Traugott, 2016) was 
used to graphically represent trophic interaction networks for each 
treatment and sampling session. Network specialization metrics were 
calculated separately for all combinations of fields, treatments and 
sampling sessions to avoid potential problems associated with aggre-
gated networks. For comparison of treatment effects at the network 
level and at the species level, the H2’ index of network specializa-
tion and the d’ index of specialization were calculated, respectively 
(Blüthgen, Menzel, & Blüthgen, 2006). Note that both H2’ and d’ are 
bound between 0–1, with 1 representing complete specialization, sug-
gesting at the network level that each predator would only feed on a 
single prey taxon, or at the species level that a described prey species 
was only consumed by a single predator taxon.

The diet composition of predators was analysed using 
PERMANOVA models, with treatment and sampling session as fixed 
factors, based on 9,999 permutations (Anderson, 2001) and Bray-
Curtis similarities (Legendre & Legendre, 1998). Targeted prey taxa 
with fewer than three detections across all predator taxa were ex-
cluded from this analysis (i.e. prey taxa “dipterans,” “lacewings” and 
“Pterostichus”; and in addition, “Harpalus” and “Pachygnatha” at the 1st 
sampling session). Permutational analysis of multivariate dispersion 
(PERMDISP2) was used to test the effects of treatment and sampling 
session on the dietary variability of each predator taxon (9,999 permu-
tations; Anderson, Ellingsen, & McArdle, 2006). A graphical represen-
tation of differences in diet composition was provided by non-metric 
multi-dimensional scaling (NMDS) ordination, upon which the effect 
of treatment has been superimposed as a standard ellipsoid area (95% 
CI).

In cases where regression-based tests were performed, the best 
fitting model was selected based on Akaike’s information criterion 
(AIC or AICc to correct for small sample sizes). All models were tested 
with treatment and date (sampling period or sampling session) or an 
interaction term between the two included as fixed factors, and field 
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was always included as a blocking factor to minimize residual variation. 
For each model, diagnostic plots were examined to check whether 
model assumptions were met (Zuur, Ieno, & Elphick, 2010). For all uni-
variate count data, generalized linear models (GLMs) were fitted with 
Poisson distributions or negative binomial distributions when data 
were overdispersed. Presence/absence data were tested using GLMs 
with binomial error distribution. As both H2’ and d’ are indexes bound 
between 0 and 1, these were tested using Beta regressions (BR) which 
share properties with conventional linear models but constrain pre-
dicted values to fall between 0 and 1 (Cribari-Neto & Zeileis, 2010).

All analyses were performed in r version 3.1.2 (R Core Team, 2017) 
using packages “Vegan” (Oksanen et al., 2016), “mass” (Venables & 
Ripley, 2002) and “Betareg” (Cribari-Neto & Zeileis, 2010) for statistical 
analyses and model validation; package “bipartite” (Dormann, Fründ, 
Blüthgen, & Gruber, 2009) was used to derive network metrics.

3  | RESULTS

A total of 3,849 ground-dwelling arthropod predators were col-
lected from the wet pitfall traps during the three sampling periods, 

representing 33 carabid species, nine staphylinid genera, and 49 spi-
der species (Appendix S3, Table S3-1a). Predator species richness and 
activity density (Appendix S3, Table S3-2) were significantly higher at 
aphid peak density than at aphid colonization or the population col-
lapse phase (GLMrichness: z = 4.16, p < .001; GLMactivity density: z = 3.21, 
p = .001). Variables were not, however, significantly affected by habi-
tat heterogeneity.

During the colonization phase, aphid densities were significantly 
lower in the structure-rich habitats (GLM: z = −3.61, p < .001; pro-
portion of tillers with aphids 0.21 vs. 0.35). Aphid numbers did not 
differ significantly during aphid peak density phase when the number 
per tiller had increased to 34.5 ± 26.8 (M ± SD) and 35.4 ± 31.3 in the 
structure-rich and structure-poor habitats, respectively. Earthworm 
densities were low and they were not significantly affected by habitat 
heterogeneity or sampling session. In the structure-rich habitats, 2.2 
times higher abundances of Symphypleona (springtails) were recorded 
(GLM: z = 1.65, p = .010).

Among the 1,641 molecularly screened predators (for complete 
list, see Appendix S3: Table S3-1b), 759 tested positive for DNA of 
at least one of the targeted prey taxa. The DNA detection rate for 
aphid prey was generally high and increased significantly towards the 

F IGURE  3 Trophic interaction networks between arthropod predators and prey taxa in barley fields at aphid colonization (upper panel) 
and peak density (lower panel) phase (networks result from pooling data of all four fields per treatment, i.e., structure-rich and structure-poor 
habitats). Trophic links to extraguild (circles below bars, EGP) and intraguild (circles above bars, IGP) prey are represented as triangles; the width 
of the base of each triangle represents the proportion of individuals within a predator taxon testing positive for specific prey taxa. The right 
offset bar represents 10 predator individuals each. Note that the predator taxa Agonum sp. comprises both Agonum muelleri and Anchomenus 
dorsale (formerly Agonum dorsale). See also Appendix S3: Table S3-1b for details on taxonomic assignment and grouping of predator taxa
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aphid peak density phase in both structure-rich and structure-poor 
habitats (GLM: z = 3.98, p = .008; Figure 3). Detection rates of non-
aphid EGP were significantly higher at aphid colonization phase (GLM: 
z = −2.667, p = .008) and in the structure-rich habitats (GLM: z = 3.83, 
p < .001). Intraguild predation was generally low with no significant 
differences between treatments or sampling sessions.

Network-level specialization (H2’) was significantly lower in the 
structure-rich habitats (BR: z = −4.65, p < .001). A significant in-
teraction term between treatment and time (BR: z = 2.3, p = .022) 
showed that differences due to habitat heterogeneity were less pro-
nounced towards the phase of aphid peak density, with networks in 
the structure-poor habitats becoming less specialized and networks 
in the structure-rich habitats becoming more specialized with time 
(Figure 4a).

In accordance with this, species-level specialization (d’) between 
aphid prey and predators showed that a wider range of predators 

consumed aphids in the structure-rich than in the structure-poor 
habitats (BR: z = −4.8, p < .001). Treatment did, however, interact 
with time (BR: z = 3.49, p < .001), with the two habitats becoming 
more similar towards the aphid peak density phase. Specialization 
on non-aphid EGP was lower at the phase of aphid peak density 
(BR: z = −3.93, p < .001) and in the structure-rich habitats (BR: 
z = −3.33, p < .001). Similarly, specialization on IGP was lower in 
the structure-rich habitats (BR: z = −3.86, p < .001), but treat-
ment again interacted with time indicating less pronounced dif-
ferences towards aphid peak density phase (BR: z = 4.11, p < .001) 
(Figure 4b).

Neither diet composition nor individual-level dietary variability be-
tween predators was significantly affected by habitat heterogeneity 
at aphid colonization phase (Figure 5a). Towards peak density phase, 
individual-level variability in predator diet was, however, significantly 
higher in the structure-rich habitats (PERMDISP2: F1,101 = 5.08, 
p = .028) (Figure 5b).

F IGURE  4  (a) Network-level (H2’) and (b) species-level (d’) 
specialization of trophic interaction networks in barley fields at aphid 
colonization and peak density phase (four fields pooled for structure-
poor and structure-rich habitats). Note that the species-level 
specialization is shown for aphids and pooled non-aphid extraguild 
(earthworms, springtails, dipterans, thrips) and intraguild (beetles, 
spiders, lacewings) prey groups. The midline of the boxplot represents 
the median, with the upper and lower limits of the box being the 
third and first quartile, respectively. Whiskers will extend up to 1.5 
times the interquartile range from the top/bottom of the box to 
the furthest datum within that distance; data beyond that distance 
(outliers) are represented individually as points
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F IGURE  5 Non-metric multi-dimensional scaling (NMDS) 
ordination of the arthropod predator diet composition in spring 
barley fields at (a) aphid colonization (2-d stress 0.099) and (b) peak 
density phase (2-d stress 0.11). Resemblance in diet composition 
between predator taxa from structure-poor (red) and structure-rich 
(blue) habitats are shown as symbols, and standard ellipsoid areas 
represent the 95% confidence interval of treatments’ centroids. Note 
that “beetles/thrips” denotes for “other beetles/thrips”
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4  | DISCUSSION

Our results show that increasing habitat heterogeneity alters the func-
tional role of arthropod predator communities and that these short-
term behavioural changes are not accounted for by altered diversity 
(Figure 6). Increasing habitat structure leads to both a more general 
trophic network structure (supporting Hypothesis 1) and a greater 
variability in individual-level predator diet (supporting Hypothesis 2). 
Whereas the effect on the latter did get more pronounced over time, 
the effect on arthropod food web specialization decreased with ad-
vancing habitat heterogeneity (partly supporting Hypothesis 3).

Contrary to our expectations, we found no immediate effects of 
habitat heterogeneity on either species richness or activity density 
of ground-dwelling arthropod predators. This result highlights the 
importance of considering diversity components beyond the num-
ber of predator species and their abundances (as only recently em-
phasized by Birkhofer, Diekötter, Meub, Stötzel, and Wolters (2015) 
and Gagic et al. (2015)). Especially in habitats characterized by peri-
odic disturbance (e.g. annual crops), effects on diversity may not be 
easily detected (e.g. Bengtsson et al., 2003; Tscharntke, Klein, Kruess, 
Steffan-Dewenter, & Thies, 2005). We show, however, that the spe-
cies present in an ecosystem can within a short time respond to 
changing environments by adjusting their trophic interactions (see also 
Tylianakis et al., 2007). At the aphid colonization phase (i.e. shortly 
after inducing different levels of within-field plant diversity in cereal 
systems), specialization at both network (H2’) and species level (d’) 
was significantly lower in structure-rich than structure-poor habitats. 
These patterns result from an increased overlap in the use of available 

food resources among arthropod predators in structurally complex 
environments. An explanation for this is that in these more stratified 
habitats, which have a greater range of microhabitats, predators are 
less likely to encounter one another. As suggested by Finke and Denno 
(2002), this makes predators compete less strongly and thus be less 
selective, facilitating a greater range of trophic interactions. For the 
same reasons, it is likely that prey refuges also become more available, 
which may, as prey becomes more difficult to find, have a similar effect 
in that they induce predators to be less selective. This has implications 
in, for example, agricultural systems where soil tillage or harvesting 
periodically will change the habitat of predators. When this occurs, 
predator communities are likely to be negatively affected as competi-
tion will increase with lost structure. In such cases, increasing habitat 
structure afterwards may benefit predator communities, which will 
affect the provision of ecosystem services (e.g. biocontrol: Birkhofer 
et al., 2008b; Finke & Snyder, 2008; Langellotto & Denno, 2004).

About a month later, during aphid peak density phase, variability 
in individual-level predator diet was significantly higher in structure-
rich compared with structure-poor habitats. This indicates that trophic 
interaction networks were becoming more flexible, that is, on average 
arthropod predators had a less fixed food web position, which contrib-
uted to the effect of the increased overlap in resource use between 
species due to the enhanced heterogeneity in structure-rich habitats. 
Araújo, Bolnick, and Layman (2011) predicted a similar response to 
a release from intraspecific competition which occurred in the cereal 
systems studied when aphids were present in large numbers. One 
community-level implication that might arise from this is that the food 
web position of species in structurally complex environments becomes 

F IGURE  6 Graphical summary of the main findings showing that even if habitat heterogeneity does not affect the diversity of arthropod 
species in a periodically disturbed system, it can trigger immediate behavioural responses in generalist predators. Early on in the season, 
predators in structure-rich compared with structure-poor habitats were interacting with a greater diversity of prey species as well as were more 
likely to share these with other predators (i.e. more general trophic network structure). This changed later in the growing season when food was 
easier to find. Then, instead subsets of individuals within each species started to focus on slightly different prey, depending on which sub-part of 
the habitat those individuals happened to be living in (i.e. greater variability in individual-level predator diet). The four boxes represent sampling 
plots in structure-poor vs. structure-rich habitats in spring barley fields at aphid colonization (upper panel) and peak density phase (lower panel). 
The strength of trophic interactions between predator and prey is indicated by the width of the connecting arrows
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less fixed with an increased individual-level variation. Because of this, 
species would be more plastic and able to adapt more easily when 
facing ecological changes. Additionally, as this added variability would 
allow species to overlap more in their ecological roles, this should in-
crease redundancy and contribute to stabilizing ecosystem functions 
(e.g. Boeye, Kubisch, & Bonte, 2014; Bolnick et al., 2011; Haddad 
et al., 2011; Ives et al., 1999).

The 3rd hypothesis stated that as differences in habitat hetero-
geneity between structure-rich and structure-poor habitats increase 
over time, any effects we detected on the feeding behaviour of gener-
alist predators should also get more pronounced. Our results do partly 
support this hypothesis: while at aphid peak density phase the diet 
became more variable between predators at the individual level (i.e. 
developing over time), differences in the trophic specialization (H2’ and 
d’) did attenuate from the first to the second sampling date. Early in 
the season, when the most common herbivore prey in the system (i.e. 
aphids) was still limited, higher heterogeneity in structure-rich habitats 
enabled predators to feed more on shared prey groups, such as spring-
tails. About a month later, when habitats were more heterogenous and 
aphids were a highly abundant and easy to find prey, intraspecific com-
petition for prey between predators relaxed. This allowed individual 
predators to be less restricted to their optimal prey choice, and explore 
new opportunities within the subsets of the habitat each species was 
inhabiting (Araújo et al., 2011; Finke & Snyder, 2008). Our study pro-
vides empirical support for both mechanisms, that is, increased over-
lap in resource use and relaxed intraspecific competition, inducing the 
finally observed changes in the functional roles of natural arthropod 
communities that are facing increased habitat heterogeneity.

5  | CONCLUSION

The current findings show that even if habitat heterogeneity does not 
affect the number of arthropod species and their abundances in a pe-
riodically disturbed system, it can trigger an immediate behavioural 
response in generalist predators: trophic specialization decreased at 
both network (H2’) and species level (d’). Later in the growing season, 
when levels of intraspecific competition were presumable low due to 
high herbivore prey availability, diet variation at the individual level 
was more pronounced in structure-rich compared with structure-poor 
habitats. Our results provide conclusive evidence that habitat hetero-
geneity can induce rapid behavioural responses before changes in di-
versity may even manifest itself, potentially promoting the stability of 
ecosystem functions.
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