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Simple Summary: Pale, soft, and exudative (PSE) meat is characterized by a pallid, sodden, and
spongy appearance. Studies show that an early buildup of lactic acid due to rapid postmortem
glycolysis, coupled with high muscle temperature, is the cause of PSE meat, although the precise
molecular mechanisms remain poorly defined. We hypothesized that adenosine monophosphate
activated protein kinase (AMPK) is the key factor regulating postmortem glycolysis in meat. To this
end, we respectively activated and inhibited AMPK in yak muscle using AICAR and STO-609 and
analyzed the metabolism parameters. The objective of this study was to establish the crucial role of
AMPK in postmortem glycolysis and the possibility of targeting AMPK in order to reduce glycolysis
and minimize the risk of PSE meat. Yaks are adapted to higher altitudes and lower atmospheric
oxygen levels. Therefore, the activity of the yak AMPK is increased under hypoxic adaptation, which
accelerates glycolysis and optimizes energy production. We further investigated the role of AMPK
in the regulation of postmortem muscle glycolysis using the AMPK inhibitor STO-609 and specific
activator AICAR. The objective of this study was to confirm the crucial role of AMPK in postmortem
glycolysis and its potential as a target to reduce glycolysis and study of energy metabolism in yak.

Abstract: To explore the postmortem physiological mechanism of muscle, activity of adenosine
monophosphate activated protein kinase (AMPK) as well as its role in energy metabolism of
postmortem yaks were studied. In this experiment, we injected 5-amino-1-beta-d-furanonyl
imidazole-4-formamide (AICAR), a specific activator of AMPK, and STO-609 to observe the changes
in glycolysis, energy metabolism, AMPK activity, and AMPK gene expression (PRKA1 and PRKA2) in
postmortem yaks during maturation. The results showed that AICAR could increase the expression
of the PRKKA1 and PRKAA2 genes, activate AMPK and increase its activity. The effects of AICAR
include a lower concentration of ATP, an increase in AMP production, an acceleration of glycolysis,
an increase in the lactic acid concentration, and a decrease in the pH value. In contrast, STO-609
had the opposite effect. Under hypoxic adaptation, the activity of the meat AMPK increased,
which accelerated glycolysis and metabolism and more effectively regulated energy metabolism.
Therefore, this study lays the foundation for establishing a theoretical system of energy metabolism
in postmortem yak meat.
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1. Introduction

Yaks adapted to high altitudes because of the colder climate. This process included the maintenance
of the production of adenosine triphosphate (ATP) through an increase in glycolysis. Studies
have shown that yaks have specific metabolic mechanisms that enable them to adapt to a hypoxic
environment to attain an adequate supply of energy and a demand balance under hypoxic conditions [1–
3]. AMP-activated protein kinase (AMPK), as an important cellular energy sensor, is critical for
the regulation of the metabolism of energy and the subsequent quality of the meat. Under hypoxic
conditions, the body is under stress, metabolism is strengthened, ATP consumption is increased,
the ATP concentration is decreased, the AMP production is increased, and a high concentration of
5’-AMP and AMPK gamma subunits interact to activate AMPK. Ding et al. studied the activity of
lactate dehydrogenase (LDH) in yaks at three different altitudes, and its activity positively correlated
with altitude [4]. LDH is the key enzyme for anaerobic glycolysis, indicating that yaks at higher
altitudes are more dependent on energy metabolism [5–8].

The enzyme AMPK is a heterotrimer consisting of α, β, and γ subunits. Its primary role is
thought to be the critical regulation of energy metabolism [9–12]. AMP/ATP ratio increase in muscle
cells is thought to result in the activation of AMPK. This activation results in the phosphorylation
of AMPK at Thr172 by a kinase that remains unidentified. Following its activation, AMPK activates
glycogenolysis/glycolysis and consuming/catabolic pathways that generate ATP [2,13–16]. Thus,
the data accumulated confirms that hypoxia is a characteristic of postmortem skeletal muscle.

Previous research demonstrated the activation of AMPK in pork loins which develop into PSE
meat. This finding suggests that a key role of AMPK is regulation of postmortem glycolysis [17].
Therefore, the role of AMPK may be the regulation of glycolysis in postmortem skeletal muscle. If
so, the enzyme may be a logical target to manipulate to intervene in the process of PSE development
and cause its reduction, since AMPK activity depends on the postmortem skeletal muscle pH
values. Therefore, we further studied AMPK’s role in muscle glycolysis regulation in postmortem
meat, using specific AMPK activators and inhibitors to detect whether the induction of AMPK by
5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide (AICAR) and STO-609 affect postmortem
muscle glycolysis. Recent research in rat skeletal muscle used a cell-permeable compound AICAR to
activate AMPK to study its possible role in controlling glucose metabolism in this tissue [18]. These
studies involved administration of either in vivo or in vitro AICAR to skeletal muscle for varying
amounts of time. In addition, different methods were used to evaluate the changes of carbohydrate
metabolism. These methods included a muscle preparation that had been isolated and incubated,
a hindquarter preparation that had been perfused, or tissues analyses following a euglycemic clamp or
treatment. To our knowledge, the effect of reactive AICAR on the AMP-activated protein kinase of
mice longissimus lumborum has only been examined in one study. Among other studies, we found
that injecting a dose of 250 mg/kg AICAR had no effect on the glycogen binding in the diaphragm
(respiratory muscle) of mice fed or fasting [19]. At the same time, the effects on glucose transport in yak
skeletal muscle due to AICAR treatment remain unclear. In comparison, the inhibitory effect of STO-609,
an AMPK inhibitor, was used to inhibit food intake and therefore weight gain in mammals [20].

This study was performed to analyze the effects of AICAR and STO-609 on pH, lactic acid, energy
metabolism, AMPK activity, and AMPK mRNA (PRKAA1, PRKAA2) expression in postmortem yak
muscle. It lays the foundation for establishing a theoretical system of energy metabolism in postmortem
yak meat.

2. Materials and Methods

2.1. Animal Treatment

The longissimus dorsal (LD) is the 12th rib that is anterior to the last lumbar vertebrae, and they
were randomly extracted from a slaughterhouse (Yushu Tibetan Autonomous Prefecture, Qinghai
Province, China). Animals used in the experiment process is to follow the national slaughter and
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processing Standardization Technical Committee (SAC / TC516). Ten Qinghai yak bulls that were
the same age (36–38 months old) and weighed 241-280 kg were fed the same diet from the same
batch. Each yak was tested. The ribs were immediately frozen in liquid nitrogen as the sample for 0 h.
The remaining amount of each 40 g aliquot of the muscle pieces was divided into two portions. One
portion was treated as the control, while the other was treated with injections of a 1:1 ratio (w/v) of
10 mM AICAR (Sigma A9978) and STO-609 (Sigma Aldrich). All samples were subsequently stored at
4 ◦C for 12, 24, 72, 120, and 168 h. All samples collected at these times were stored at −80 ◦C until
further use.

2.2. Measurement of the pH

The pH values of all the loins at each time point were measured using a Testo®230 meter (Testo
GmbH & Co., Lenzkirch, Germany). pH values were measured using pH meter calibrated standard
buffer solutions with pH values equal to 4.0 and 7.0 (Mallinckrodt Chemicals, Phillipsburg, NJ,
USA). Prior to calibration, buffers solutions were stored at 20 ◦C according to a procedure mentioned
elsewhere [21].

2.3. Lactic Acid Concentration

A total of 500 mg of frozen muscle samples was homogenized using 500 mL of 0.9% saline and
then centrifuged at 4200 g at 4 ◦C for 10 min. Following a 50-fold dilution of the supernatant, standard
commercial kits from Blue Gene Biotech Co. (Shanghai, China) were used to measure the lactic acid
contents. The optical density (OD450) was measured immediately using an ELISA microplate reader.
The values measured at each concentration of the standard were used to prepare a calibration curve [22].

2.4. ATP, ADP, AMP, and IMP Activity

As previously described by Hou’s method, approximately 3 g of frozen muscle was centrifuged
for 10 min at 15,000 × g (Heraeus, Biofuge fresco, Hanau, Germany) at 4 ◦C. The supernatant was mixed
with 1.44 mL of 0.85 M K2CO3 and filtered through a 0.2 µm membrane. The content of ATP, ADP,
AMP, and IMP was analyzed using Agilent 1100 Chromatography at 254 nm detection wavelength.
A reversed phase C18 column was used, and the flow rate was 1 mL/min. Quantitative analysis was
conducted on the basis of retention time and peak area [23].

2.5. AMPK Activity

AMPK activity measurements were based on AMPK-specific
phosphorylation of a SAMS peptide [22]. Briefly, SAMS peptide substrate
(His-Met-Arg-Ser-Ala-Met-Ser-Gly-Leu-His-Leu-Val-Lys-Arg-Arg, obtained from Invitrogen,
Carlsbad, CA, USA) was used for the assay. As-obtained muscle homogenate was centrifuged at
1,3000g at 4 ◦C for 5 min. Ten microlitres of supernatant was incubated for 10 min at 37 ◦C at pH 7.0.
Its final volume was 50 µL, and it contained 0.2 mM of ATP + 2 µCi [32P] ATP, 0.2 of mM AMP, 5 mM
of MgCl2, 0.2 of mM SAMS peptide, 80 of mM NaCl, 0.8 mM of dithiothreitol, 0.8 mM of EDTA, 8%
(w/v) of glycerol, and 40 mM of 4-2-hydroxyethyl-1-piperazineethanesulfonic acid. Twenty microliters
of this mixtures was removed and placed on Whatman P81 filter paper (Whatman, Maidstone, UK)
that had been cut into 2 cm × 2 cm pieces. Six washes of 1% phosphoric acid were conducted to
remove the ATP. Finally, the filter paper was immersed in 3 mL of Scinti Verse (obtained from Fisher
Scientific, Waltham, MA, USA). AMPK nanomolar peptide activity phosphorylation was expressed per
minute per gram of muscle.

2.6. Immunoblotting

AMPK was analyzed using the frozen yak LDmuscle derived from these methods as previously
described [24]. Briefly, 0.05 g of muscle was homogenized at top speed for 10 s on ice using a Polytron
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homogenizer (IKA Works, Inc., Wilmington, NC, USA). Five hundred milliliters of precooled buffer was
used to homogenize the tissue. The buffer contained 20 mM of Tris–HCl with pH value equal to 7.4 and
at initial temperature equal to 4 ◦C as well as 2% SDS, 5 mM EGTA, 5 mM EDTA, 1 mM DTT, 100 mM
NaF, 2 mM sodium vanadate, 10 mg/ml pepstatin, 0.5 mM phenylmethylsulfonyl fluoride (PMSF), and
10 mg/ml leupeptin [25,26]. Each of the muscle homogenates was mixed with an equal volume of 2X
SDS-PAGE loading buffer containing 0.5 M TrisHCl (pH 6.8), 2% (v/v) 2-mercaptoethanol, 20 vol%
glycerol, 4.4% (w/v) SDS, and 0.01% bromophenol blue (boiled for 5 min prior to electrophoresis).

The gels were cast using a BioRad mini-gel system (Richmond, CA, USA) that was also used to
perform the SDS-PAGE electrophoresis. Gradient gels of 5–20% were used to separate the proteins.
When the electrophoresis was complete, proteins separated on the gels were moved to nitrocellulose
membranes using buffer that contained 20 mM Tris-base, 0.1% SDS, 20% methanol, and 192 mM
glycine. Next, the membranes were subjected to incubation in a blocking solution composed of 5%
zero fat dry milk in TBS/T (150 mM NaCl, 50 mM Tris–HCl (pH 7.6), and 0.1% Tween-20 for 1 h.
Then, these membranes were subsequently incubated overnight for the Western blotting using one
of two types of antibodies: monoclonal anti-β-actin antibody (Sigma–Aldrich, St Louis, MA, USA)
or a primary antibody, anti-phospho-AMPKα (Thr 172, obtained from Cell Signaling Technology,
Danvers, MA, USA). The membranes were washed 3 times (5 min each) using 20 mL of TBS/T following
incubation with the primary antibody. The next step involved the incubation of the membranes
with horseradish peroxidase-conjugated secondary antibodies that had been diluted 5-fold. These
membranes were agitated gently for 1 h in TBS/T, followed by washing 3 times (10 min each time).
Enhanced chemiluminescence (ECL) Western blotting reagent (from Amersham Bioscience) was used
to visualize the membranes by exposing them to Biomax MR film (Kodak, Rochester, NY, USA). An
Imager Scanner II and Image Quant TL software were used to quantify density of the bands [27].
Samples obtained after all these treatments were analyzed on a single gel to decrease variation between
the blots. Reference band density was used to normalize band densities from different blots. In
addition, the density of the ß-actin band was also used to normalize the band densities.

2.7. Real-time PCR Analysis

Real-time reverse transcription (RT)-PCR was used to quantify expression levels of the genes
selected for the analysis (see Table 1 for primer sequence) [28]. Briefly, TRIzol reagent (Invitrogen
Corp., USA) was used to extract total RNA from the LD based on the method recommended by
a manufacturer. RT was performed using Oligo(dT) random 6-mer primers from a Prime Script RT
Master Mix kit (TaKaRa, Dalian, China) according to the manufacturer’s instructions. A SYBR Premix
Ex Taq kit (TaKaRa, Dalian, China) was used to perform quantitative PCR on a CFX96 Real-Time PCR
detection system (BioRad). All of the experiments analyzed each RNA sample in triplicate. In addition,
each experiment involved a negative control that lacked a cDNA template. ∆∆Ct method (based on
the report of Livak and Schmittgen, 2001) was implemented to obtain relative expression levels of
the target mRNAs.

Table 1. Primer sequences and parameter used for real-time quantitative PCR [29].

Gene
Symbol No. Gene Bank Primers 5′-3′ GC% Tm Amplification

Length/bp

PRKAA1 BA040395 NM0011098022
F-CACACATGAATGCAAAGATAGCTGA 40.0 63.5

109
R-ATTACTTCTGGTGCAGCATAGTTGG 44.0 62.8

PRKAA2 BA073991 NM0012056051
F-GAAGATCGGCCACTACGTGCT 57.1 63.8

93
R-ACTTTATGGCCTGTCAATTGATGCT 40.0 64.1

(Graphpad Prism; La Jolla, CA, USA). Significance was set at p < 0.05.
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Fold Change = 2−∆∆CT

∆∆CT = (CT.Target gene −CT.β − actin)x − (CT.Target gene −CT. β − arctin)control

2.8. Data Processing and Statistical Analyses

A one-way analysis of variance (ANOVA) was implemented to obtain statistical significance for
the differences using IBM SPSS 19.0 Software (SPSS, Inc., Chicago, IL, USA). Duncan’s multiple range
test was used for significance determination among the groups. At p < 0.05, results were considered
statistically significant. The dynamics and graph plotting were conducted using Origin 8.0 software.
Each experiment was repeated at least three times.

3. Results

3.1. pH Value Determination

AICAR injection in the postmortem LD muscle increased the decline in pH, while STO-609
decreased the same (Figure 1). The muscle pH was similar across all groups at 0 h postmortem and
increased sharply in the control samples after 12 h (p < 0.05) compared to that of AICAR-treated muscle,
but was lower than the STO-609-treated muscle. At 24 h postmortem, the pH of the AICAR-injected
yak muscle remained less than 6, indicating a high glycolytic rate (Figure 1).

Figure 1. pH values of postmortem yak longissimus dorsal muscle. One-way ANOVA was used for
statistical analyses between the control group and two treatment groups at 0 h to 168 h (three repetitions
for each yak and 10 yaks from each group) (x, y, z p < 0.05). Duncan’s New Multiple-range test was
used for the differences between the control group and two treatment groups at 0 h to 168 h. At 0 h,
the lowercase letters represent the difference of the treatment group, and the capital letters represent
stands the difference of the control group over time (p < 0.05). Error bars indicate the standard errors of
the mean.
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3.2. Lactic Acid Concentration

Increased glycolysis in the AICAR-injected skeletal muscle was confirmed by the higher lactic acid
accumulation rate (Figure 2). In addition to lowering the pH, STO-609 also reduced postmortem lactate
accumulation in the LD muscle (Figure 2). The baseline muscle lactic acid concentration was similar
between the differentially treated groups. From 0 to 72 h postmortem, the lactic acid concentration
increased to 126.56 ± 5.89 mg/g muscle in the control group compared to only 96.32 ± 3.19 mg/g
muscle in the STO-609-treated group, indicating that STO-609 inhibited lactic acid production in
postmortem muscle at the initial stage. During the same time window, lactic acid concentration in
the AICAR-treated muscle increased by 132.51 ± 6.32 mg/g, indicating that AICAR activates lactic acid
production in the initial stage of postmortem muscle. These findings suggested involvement of a novel
glucose transporter.

Figure 2. Lactic acid in postmortem yak longissimus dorsal muscle.

3.3. ATP, ADP, AMP, and IMP Activities

The nucleotide concentration in the yak LD muscle was measured in this study. After the 0 h
control, there were no significant differences in nucleotide concentration observed between the control
and treatment groups (Table 2). However, AICAR injection increased the ATP levels of the skeletal
muscle while decreasing the concentrations of AMP and IMP (p < 0.05). This result could be due to
the inhibition of glycolysis in the LD muscle by the AICAR injection (Table 2). The AICAR injection
inhibited glycolysis in the postmortem muscle (Figures 2 and 3). As a result of this inhibition, less
ATP was produced, and the ATP concentration increased within 12 hours following death (Table 2).
The IMP in the muscles of the yaks was also significantly higher than the AMP following the slaughter
of the animals, and these results are consistent with those of previous studies (Shen et al., 2007; Shen et
al., 2006). This result reiterated an observation that postmortem skeletal muscle delamination results in
the rapid conversion of AMP to IMP. In the 0 h control, the nucleotide concentrations between the three
groups did not differ significantly (Table 2). However, STO-609 injection resulted in a decrease in
the concentration of ATP in the skeletal muscle and an increase in AMP and IMP at 12 h postmortem
(p < 0.05). This result can be explained by the inhibition of glycolysis due to the injection of STO-609
into the yak LD muscle. STO-609 injection inhibited glycolysis of the postmortem muscles (Figures 1
and 2), resulting in lower amounts of ATP production and therefore, a decrease in ATP concentration
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at 12 h (Table 2). In addition, the data showed that the levels of IMP greatly exceeded those of AMP in
the postmortem yak muscles, buttressing the results of previous reports (e.g., Shen et al., 2007; Shen,
Thompson et al., 2006). This finding reiterates the importance of AMP. The skeletal postmortem muscle
undergoes rapid conversion to IMP by the process of deamination. A decrease in the glycolysis of yak
LD muscle injected with STO-609 indicates that the glycolysis of the skeletal postmortem muscle is
partially regulated by AMPK.

Table 2. Nucleotide concentrations in postmortem yak longissimus dorsal muscle.

Time 0 h 12 h 24 h 72 h 120 h 168 h

ATP contents (lmol/g muscle)

STO-609 3.00 ± 0.083 ax 1.69 ± 0.032 bx 1.58 ± 0.032 cx 0.11 ± 0.033 ex 0.32 ± 0.087 dx 0.45 ± 0.034 dx

Control 3.01 ± 0.093 Ax 1.95 ± 0.062 By 1.84 ± 0.053 Cy 0.22 ± 0.056 Ey 0.51 ± 0.067 Dy 0.61 ± 0.055 dy

AICAR 3.01 ± 0.041 ax 2.26 ± 0.055 bz 2.18 ± 0.051 cz 0.57 ± 0.036 ez 0.73 ± 0.025 dz 0.81 ± 0.020 dz

ADP contents (lmol/g muscle)

STO-609 3.91 ± 0.031 ax 1.72 ± 0.046 bx 0.035 ± 0.043 ex 0.041 ± 0.072 dx 0.57 ± 0.042 cx 0.58 ± 0.021 cx

Control 3.99 ± 0.026 Ax 1.91 ± 0.073 By 0.54 ± 0.070 Dy 0.77 ± 0.112 Cy 0.72 ± 0.087 Cy 0.80 ± 0.025 Cy

AICAR 4.03 ± 0.042 az 2.11 ± 0.045 bz 0.89 ± 0.036 dz 1.02 ± 0.078 cz 1.05 ± 0.031 cz 1.06 ± 0.055 cz

AMP contents (lmol/g muscle)

STO-609 0.24 ± 0.011 ax 0.09 ± 0.032 cx 0.12 ± 0.028 bx 0.065 ± 0.002 dx 0.058 ± 0.005 ex 0.031 ± 0.015 fx

Control 0.25 ± 0.015 Ax 0.14 ± 0.011 Cy 0.18 ± 0.009 By 0.11 ± 0.006 Dy 0.087 ± 0.005 Ey 0.077 ± 0.007 Fy

AICAR 0.25 ± 0.004 ax 0.20 ± 0.010 cz 0.25 ± 0.008 bz 0.17 ± 0.003 dz 0.104 ± 0.007 ez 0.100 ± 0.003 fz

IMP contents (lmol/g muscle)

STO-609 1.32 ± 0.021 fx 1.96 ± 0.098 ex 2.43 ± 0.121 dx 5.42 ± 0.024 ax 3.72 ± 0.021 cx 4.15 ± 0.045 bx

Control 1.34 ± 0.018 Fy 2.28 ± 0.110 Ey 2.67 ± 0.180 Dy 5.74 ± 0.010 Ay 4.05 ± 0.015 Cy 4.38 ± 0.036 By

AICAR 1.34 ± 0.122 fz 2.57 ± 0.105 ez 2.84 ± 0.115 dz 5.96 ± 0.012 az 4.31 ± 0.002 cz 4.56 ± 0.101 bz

One-way ANOVA was used for statistical analyses between the control group and two treatment groups at 0 h to
168 h (x, y, z p < 0.05). Duncan’s New Multiple-range test was used for the differences between the control group
and two treatment groups at 0 h to 168 h. At 0 h, the lowercase letters represent the difference of the treatment
group (a, b, c, d, e, f, p < 0.05), and the capital letters represent stands the difference of the control group over time
(A, B, C, D, E, F, p < 0.05). Error bars indicate the standard errors of the mean.

3.4. AMPK Activity

Figure 3 shows the activity of AMPK in the postmortem yak LD. At the 0 h postmortem control,
the activities of AMPK were 1.56 ± 0.06, 1.19 ± 0.13, and 1.00 ± 0.07 nmol of ATP per min per gram of
the muscle mass for the AICAR and STO-609 treatments and the control, respectively. Representative
AMPK activity is shown in Figure 3. The activation of AMPK was more rapid in the AICAR group
and reached its maximal level at 12 h postmortem (Figure 3). At this same time, AMPK activity in
the AICAR treatment exceeded those of the control and the STO-609 groups at 2.39 ± 0.19 nmol of ATP
per min per gram of the muscle mass. These results indicated that a more rapid activation of AMPK,
and therefore higher activity, explained the faster decline in pH values and the higher rate of glycolysis
during the early stage postmortem muscle of the yak.
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Figure 3. AMPK Activity of postmortem yak longissimus dorsal muscle. At a specific postmortem time,
it indicates significant difference at p < 0.05.

3.5. Immunoprecipitation of AMPK

Figure 4A shows effects of intraperitoneal injection of AICAR and STO-609 on AMPK
phosphorylation (Thr 172) in postmortem yak longissimus dorsi muscle. Representative immunoblots of
AMPK phosphorylation and b-actin, and the relative band density of phospho-AMPK after normalizing
to b-actin, are shown. Figure 4B shows densitometric analysis of AMPK expression of bovine muscle
during postmortem aging.

Figure 4. Cont.
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Figure 4. (A) Effects of intraperitoneal injection of AICAR and STO-609 on AMPK phosphorylation
(Thr 172) in postmortem yak longissimus dorsi muscle. Representative immunoblots of AMPK
phosphorylation and b-actin, and the relative band density of phospho-AMPK after normalizing
to b-actin, are shown. (B) Densitometric analysis of AMPK expression of bovine muscle during
postmortem aging.

The main goal of this work was to study the influence of STO-609 and AICAR on postmortem
glycolysis and AMPK activity. STO-609 functions as a specific competitive inhibitor of AMPK and
has been well studied [28,30]. A representative immunoblot shown in Figure 5 demonstrates AMPK
phosphorylation. As expected, the postmortem muscle yak LD AMPK phosphorylation was reduced
following the injection of STO-609 (Figure 5). The activities of AMPK were higher in the skeletal
muscle after death following STO-609 without sputum injection, and the greatest amount of activity
was detected at 12 h postmortem. However, in the samples treated with STO-609, no significant change
in the levels of AMPK activity as a result of the aging time was observed (Figure 4). After 0-12 h
postmortem, the level of phosphorylation of AMPK in the control group increased by 0.39 ± 0.02
arbitrary units, and this was greater than the 0.20± 0.01 arbitrary units in the LD muscle after the STO-609
injection (p < 0.05). In the muscles of the yak injected with STO-609, AMPK phosphorylation was
decreased because the subunit Thr 172 delayed the decrease in AMPK activity. However, from the 0 to
12 h samples postmortem, the phosphorylation of AMPK increased by 0.39 ± 0.02 arbitrary AICAR
units. This increase was higher than the 0.20 ± 0.01 arbitrary units in the postmortem LD yak muscle
without injection (p < 0.05). Increased AMPK phosphorylation of the subunit at Thr 172 indicates
higher AMPK activity in yak postmortem muscle subjected to AICAR injection.
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Figure 5. Effect of AICAR and STO-609 on AMPKα1(A), AMPKα2 (B) mRNA. The samples were
treated with or without AICAR (10 mM) and STO-609 (10 mM) for the time as indicated above, and
total RNA was subjected to real-time RT-PCR as described in Materials and Methods. The results are
expressed as a relative value compared to the untreated sample as 100%. All data were represented as
means ± SEM of three independent experiments. p < 0.05, compared with the untreated control.
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3.6. Gene Expression of AMPK

Previous studies demonstrated that line injections of AICAR and STO-609 in yak could involve
the hypothalamic AMPK system. To determine whether the AMPK system mediated the effect of
AICAR, the gene expression of different AMPK subunit levels of gene expression was tested. The results
indicated mRNA level increased in the yak hypothalamic α1 subunit of AMPK after AICAR injection.
The phosphorylation of AMPK is mediated by the cooperation of these different subunits, which was
shown to correlate with AMPK activity. This study indicates that the AICAR injection caused different
effects on the catalytic and regulatory AMPK subunits. The mRNA expression of the regulatory
subunits α1 and α2 was stimulated by AMPK. These results suggest the increase in AMPK activity may
be due to an independent mechanism that could be inhibited by STO-609. The fact that the regulatory
subunits β and γ can only result in catalytic activity when they are in a complex with the α subunits
has strong implications for the role of the catalytic subunits in the activity of AMPK. It suggests
that their availability is a key determinant of this activity. Although there is not enough data on
AMPK’s role in glucose metabolism regulation to make firm conclusions, our research provides the first
analysis of the effect that an AMPK agonist has on glucose metabolism in yaks. These results confirm
the promotion of glucose uptake in yak muscle by AICAR. In addition, the results suggest that this
process may be due to the mediation of a novel glucose transporter. In total, these results provide
confirmation that STO-609 acts as a potent AMPK inhibitor and causes a reduction of AMPK activity
in postmortem yak muscles.

4. Dicussion

The activation of AMPK during such stresses, accompanied by increases in cellular AMP, triggers
changes in the rates of glucose transport, lipogenesis, sterol synthesis, and gluconeogenesis, which
serve to both preserve the needed ATP and increase the rate of ATP generation. AMPK is a heterotrimer
consisting of a catalytic subunit and two noncatalytic subunits, β and γ. Each subunit is a member of
a larger isoform family consisting of two alpha subunits α1 and α2, two beta subunits β1 and β2, and
three gamma subunits γ1, γ2, and γ3, all of which show varying tissues and subcellular expressions [31].
This study focused on how AICAR and STO-609 affected the AMPK pathway, which is related to
energy metabolism in the yak LD muscle. Our results suggest that AICAR and STO-609 induce changes
in parameters involved in energy metabolism. AMPK functions to regulate the metabolism of energy
and substrates, primarily the metabolism of carbohydrates and the homeostasis of whole-body energy.
AMPK acts as an energy sensor for the whole body to meet both body energy and cellular requirements
by integrating different signaling pathways, while also activating energy-producing processes and
inhibiting those processes that consume energy [32]. AMPK primarily promotes fatty acid and glucose
catabolism, while preventing the synthesis of glycogen.

The involvement of AMPK in both lipid and glucose metabolism has been reported. Stress induced
by nutrients or exercise increases the level of AMP at the cellular levels. This increase accelerates
beta oxidation of fatty acids as well as glucose transport into skeletal muscles. In contrast, AMPK
activation inhibits several gene transcriptions, apoptosis, and cholesterol and fatty acid syntheses.
The injection of STO-609 reduces the decline in pH and the accumulation of lactic acid in postmortem
murine LD muscle (Figures 1 and 2). In concert, the intraperitoneal injection of STO-609 into murine
early-stage postmortem muscle tissue demonstrated the initial inhibition of the level of postmortem
glycolysis due to the development of lower lactic acid concentrations and higher pH values in the tissue.
The injection of AICAR increased the accumulation of lactic acid and the decline in pH values in
the muscle of postmortem murine LD (Figures 1 and 2). In concert, the development of higher
concentrations of lactic acid and lower pH values in the early stage yak postmortem muscle following
AICAR injection indicated that the level of initial postmortem glycolysis increased due to the effects of
AICAR. Implementation of a combination of STO-609 as a specific AMPK inhibitor and commonly
used AICAR as an activator of AMPK in an array of cellular systems suggest that AMPK mediates
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postmortem glycolysis reduction. Thus, this study confirms previous ones that indicate postmortem
skeletal muscle glycolysis is AMPK regulated [16,33].

AMPK performs an important part in substrate and energy metabolism due to its regulation of
signaling pathways. AMPK monitors the availability of nutrients as well as AMP/ATP and ADP/ATP
ratios, which enables it to sense the status of cellular energy levels. AMPK also regulates events
in the cell by both inhibiting reactions and activates consuming ATP (e.g., protein and fatty acid
syntheses) as well as cellular processes generating ATP (e.g., fatty acid oxidation, glucose uptake, and
glycolysis) [2].

Previous reports demonstrated that preslaughter stress quickened depletion of muscle ATP levels.
This reduction in the status of energy therefore results in the early and rapid activation of AMPK in
early postmortem stages, which makes it more likely that pork loin will develop into PSE meat [21,34].
The primary AMPK function is the regulation of the internal cellular energy balance (Hardie et al.,
2003; Hardie et al., 1999; Winder and Hardie, 1999). ATP depletion results in the activation of AMPK,
or to be more precise, an AMP/ATP ration increase [15,35]. AMPK is affected by the binding of
AMP occurring at low intracellular energy levels and high concentrations of AMP. AMPK changes
its conformation and becomes a more effective substrate for LKB1, which is also known as upstream
AMPK kinase [7]. Additionally, LKB1 activates AMPK by phosphorylating it [36]. Activation of AMPK
results in the switching on of fatty acid oxidation and glycolysis, which results in the production of
greater amounts of ATP inside the cells [37]. Earlier research demonstrated that the halothane gene and
the stress of the preslaughter process accelerated the depletion of muscle ATP levels. The reduction
in the cellular energy status during the early postmortem state subsequently leads to the earlier and
quicker activation of AMPK, which increases the risk of the development of PSE in pork loin [16,34].

Since STO-609 injections in murine LD muscle tissue result in decreased glycolysis, they have
implications for the regulation of AMPK in this type of tissue. The results of these experiments in
postmortem skeletal muscle suggest the partial regulation of glycolysis by AMPK. Previous studies
suggest that glycolysis in ischemic cardiac muscle is increased by AMPK at two primary points: one is
phosphor-fructose kinase 1 (PFK1), while the other is glycogen phosphorylase. The activation of AMPK
can upregulate glycolysis due to its ability to activate and phosphorylate phosphorylase kinase. In
turn, phosphorylated kinase can then phosphorylate and activate glycogen phosphorylase, which is an
enzyme controlling glycogenolysis and catalyzing glycolysis substrate production [17–19]. In addition,
activated AMPK is responsible for the phosphorylation and activation of phosphofructokinase-2
(PFK-2) [16]. In turn, activated PFK-2 catalyzes fructose-2,6-phosphate production. PRK-1 is the most
important enzyme controlling the rate of glycolysis, and the enzyme is activated allosterically by
fructose-2,6-phosphate.

In humans and mice, AICAR is commonly used as an AMPK activator; its role in AMPK activation
in LD muscle was established by McFadden and Corl [38]. This role was confirmed in yak LD muscle
during differentiation in this study. As expected, STO-609 injection decreased the phosphorylation of
AMPK in LD muscle from postmortem yak, but AICAR had the opposite effect. AMPK could still be
activated in postmortem yak skeletal muscle that had not been injected with STO-609, and the greatest
amounts of activity were detected in the 12 h postmortem samples. However, the postmortem samples
that had been injected with STO-609 did not exhibit any changes in the activity of AMPK activity over
time. In addition, the postmortem yak samples that had been treated with STO-609 had lower levels of
ACC phosphorylation at Thr 172. This result was consistent with the lower amounts of AMPK activity
and also with the findings of previous research [33]. In concert, these findings confirm that STO-609
is a potent inhibitor of AMPK, which leads to lower levels of activity of AMPK in the postmortem
skeletal yak muscle.

We implemented real-time RT-PCR to examine AMPK mRNA expression affected by AICAR.
The purpose of this experiment was to identify the mechanisms by which AICAR induces the activation
of the AMPK protein. Figure 5 shows that the expression of the mRNA of AMPK increased significantly
at 12 h after treatment with AICAR. This figure also shows the dose-dependent manner in which
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12 h treatments with STO-609 induced effects opposite to those of AICAR. Thus, suppression of
AMPK mRNA expression was one of the mechanisms by which STO-609 induced the reduction of
the AMPK protein. However, the mechanisms by which AICAR induces a high-level regulation of
the AMPK gene via AMPK activation remain unclear. One possible mechanism by which AMPK could
be transcriptionally regulated could involve the modification of transcription factors by their direct
phosphorylation. In addition, it has been reported that AMPK decreases the amount of glucose by
modifying its stability. These results raise the possibility that AMPK could directly target glucose and
that its phosphorylation of glucose could increase the rate of degradation of this compound. Another
way in which AMPK-induced transcriptional reduction could affect the metabolism of the tissue is
through the phosphorylation of the cofactors that control the activity of transcription. For example,
AMPK causes a reduction in the affinity of p300 for multiple nuclear receptors by phosphorylating
it on Ser89. This reaction results in a decrease in the affinity of p300 for multiple nuclear receptors
(e.g., thyroid hormone and peroxisome proliferator-activated receptors (PPAR) c and a. However,
this study did not enable us to identify the transcription factors that were responsible for regulation
increase in the gene expression of AMPK induced by AICAR. Therefore, additional research to identify
the transcription factors and cis-elements that are involved in the response to AICAR is merited.

5. Conclusions

The changes in beef glycolysis, energy metabolism, AMPK activit, y and the expression of
the AMPK gene (PRKKA1, PRKKA2) in Yushu yak during the postmortem period were measured.
The results of this study demonstrate that the expression of the PRKAA1 and PRKAA2 genes and
the AMPK activity were subject to AICAR activation and STO-609 inhibition. This suggests that
the increased expression of the PRKAA1 and PRKAA2 genes will increase the activity of AMPK. After
AMPK is activated, the direct phosphorylation glycolysis pathway increases the glycolysis activity,
which promotes the glycolysis process and produces a large amount of lactic acid. This production
results in the decrease of energy metabolism in postmortem animal muscles. Therefore, the activity
of the yak AMPK increased under hypoxic adaptation, which accelerated glycolysis and metabolism
and more effectively regulated energy production. It laid a foundation for the establishment of
the theoretical system of energy metabolism in postmortem yak meat.
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