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Abstract

Motivation: Although Genome Wide Association Studies (GWAS) genotype a very large number of

single nucleotide polymorphisms (SNPs), the data are often analyzed one SNP at a time. The low

predictive power of single SNPs, coupled with the high significance threshold needed to correct for

multiple testing, greatly decreases the power of GWAS.

Results: We propose a procedure in which all the SNPs are analyzed in a multiple generalized linear

model, and we show its use for extremely high-dimensional datasets. Our method yields P-values

for assessing significance of single SNPs or groups of SNPs while controlling for all other SNPs and

the family wise error rate (FWER). Thus, our method tests whether or not a SNP carries any add-

itional information about the phenotype beyond that available by all the other SNPs. This rules out

spurious correlations between phenotypes and SNPs that can arise from marginal methods because

the ‘spuriously correlated’ SNP merely happens to be correlated with the ‘truly causal’ SNP. In add-

ition, the method offers a data driven approach to identifying and refining groups of SNPs that jointly

contain informative signals about the phenotype. We demonstrate the value of our method by apply-

ing it to the seven diseases analyzed by the Wellcome Trust Case Control Consortium (WTCCC). We

show, in particular, that our method is also capable of finding significant SNPs that were not identi-

fied in the original WTCCC study, but were replicated in other independent studies.

Availability and implementation: Reproducibility of our research is supported by the open-source

Bioconductor package hierGWAS.

Contact: peter.buehlmann@stat.math.ethz.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide association studies (GWAS) have enjoyed increasing

success and popularity in recent years, due mostly to the thousands

of genetic variants found to be significantly associated with complex

traits (Welter et al., 2014). The two common designs are case–

control studies, which look for associations between SNPs and

disease, and population-based studies which focus on finding associ-

ations between SNPs and continuous traits (McCarthy et al., 2008).

The larger goal of these studies is to function as hypothesis-generat-

ing machines, resulting in sets of loci that require further analysis.

Thus GWAS are an important first step in the gene identification

process (Cantor et al., 2010). The findings from these studies
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provide preliminary genetic information, which need additional ana-

lysis and follow-up experiments to be validated. However, many

studies have found only a few common SNPs per trait, and these

SNPs have generally low predictive power, explaining only a small

percentage of the variance (Manolio et al., 2009).

Often, SNPs are tested individually for association with the

phenotype, using the Armitage Trend Test. Because genome-wide

scans analyze hundreds of thousands or even millions of markers,

the multiple testing issue is resolved by applying a stringent signifi-

cance threshold—most commonly 5 � 10�8 (Panagiotou and

Ioannidis, 2012)—to the P-values. This method is successful only if

the study is well-powered, such that the associations are strong

enough to pass the stringent threshold. However, even if that is the

case, this type of analysis has several limitations, which have been

addressed in the literature (He and Lin, 2011; Hoggart et al., 2008;

Li et al., 2011; Rakitsch et al., 2013; Schork, 2001). Here we focus

on two of them. First, single SNPs tend to have small effect sizes.

We can increase the explanatory power by looking at the joint effect

of multiple SNPs. Second, when we test a SNP individually, we ig-

nore the effects of all other SNPs. If we analyze marginally two suffi-

ciently correlated SNPs, out of which only one is causal for the

disease, both may show an association. This leads to higher false

positive rates.

Joint modeling of all SNPs is challenging. Since in most GWAS

the number of SNPs is much larger than the number of samples, the

data cannot be analyzed using standard multivariable approaches.

An established method in the field is the Genome-wide Complex

Trait Analysis (GCTA), which is based on linear mixed models

(Yang et al., 2011, 2014) and enables some joint analysis of SNPs. It

allows for statistical significance tests of single SNPs (as fixed ef-

fects) while all SNPs other than the considered single SNP are built

into the model as a simultaneous random effect. We would classify

the obtained statistical significance of the SNPs as a hybrid between

marginal (with only one or a few SNPs as fixed effects) and joint

(since all the SNPs are in the model) modeling. It also enables to as-

sess the combined effect of all SNPs which quantifies the heritable

component of phenotype variation explained jointly by all the geno-

typed SNPs (Yang et al., 2010). Another solution to the high-dimen-

sionality of the problem is the use of penalized regression, which

constrains the magnitude of the regression coefficients, and allows

them to be estimated. The two most widely used penalization meth-

ods are the Lasso (Tibshirani, 1996) and Ridge regression (Hoerl

and Kennard, 1970). The Lasso penalizes the sum of the absolute

values of the regression coefficients. It is a sparse estimator, meaning

that it sets some regression coefficients to zero, while keeping others

non-zero. Ridge regression penalizes the sum of squared regression

coefficients, but it does not reduce the number of parameters in the

model. In Abraham et al. (2013) it has been shown in the context of

GWAS that penalization decreases the false positive rate and in-

creases the probability of detecting the causal SNPs. There are sev-

eral papers which consider a joint analysis. Methods which apply a

penalized model include: the Bayesian Lasso (Li et al., 2011), a two-

stage procedure using single regression followed by a Lasso selection

(Shi et al., 2011), stability selection in the context of GWAS

(Alexander and Lange, 2011), the so-called ISIS (Iterative Sure

Independence Screening) combined with stability selection to select

significant SNPs (He and Lin, 2011), a combination of Lasso and

linear mixed models (Rakitsch et al., 2013), Lasso for screening (Wu

et al., 2010) or ridge regression (Malo et al., 2008). None of the pro-

posals (Alexander and Lange, 2011; He and Lin, 2011; Li et al.,

2011; Rakitsch et al., 2013; Shi et al., 2011) compute P-values for

SNPs. Wu et al. (2010) aims to control the type I error rate, the

approaches using stability selection aim to control the expected

number of false positive selections (Meinshausen and Bühlmann,

2010), while Shi et al. (2011) controls the False Discovery Rate

(FDR).

Our goal is to construct valid P-values for SNPs in a (joint) mul-

tiple generalized linear model together with a computationally effi-

cient and powerful way to address the issue of massive multiple

statistical hypothesis testing. The problem is challenging due to the

complex setting with hundreds of thousands of SNPs. Our method

relies on a hierarchical procedure from Mandozzi and Bühlmann

(2015) which we apply here for the first time to GWAS with very

high-dimensional datasets. It provides P-values for multiple (joint)

regression modeling of SNPs in high-dimensional settings. We com-

pute P-values not only for individual SNPs, but also for groups of

SNPs. The idea is to adapt to the strength of the signal present in the

data: if the signal is too weak or the SNPs exhibit too high correl-

ation, we might still detect a significant group of SNPs, instead of

single SNP markers. Additionally, we compute the explained vari-

ance for every such group in a high-dimensional generalized linear

model.

We demonstrate our method on the WTCCC data (The

Wellcome Trust Case Control Consortium, 2007), due to the fact

that strong associations have been found for some phenotypes in

this dataset, and many of their findings have been replicated in sub-

sequent studies. However, our method’s advantages are also evident

for phenotypes with weak associations: for biologically distant

phenotypic traits, the goal is rather to find regions of the genome

that are strongly associated with the phenotype. Our proposed

method makes it statistically and computationally possible to assess

the significance of the parameters in a multiple (generalized) linear

model, for large scale GWAS problems with millions of SNP

markers. The interpretation of the parameters in a multiple (general-

ized) linear model is markedly different from marginal associ-

ation and also from GCTA (Yang et al., 2011). In fact, under

some assumptions, we can link the (joint) multiple linear model to

causal inference (see Section 2.1). Thus, it as an important step to

perform the statistical inference in a multiple generalized linear

model.

2 Methods

Consider the following setting and notation. There are n samples

(e.g. persons in a study), and each of them is indexed with

i 2 f1; . . . ; ng. A response variable Yi for the ith sample point (e.g.

the ith person in the study) encodes the status of a phenotype of

interest. For example the binary status of a disease with Yi 2 f0; 1g,
the continuous value of a survival time with Yi 2 R

þ or the continu-

ous degree of an exposure or (log-) concentration with Yi 2 R. The

regressor Xi is a (long) p� 1 vector which encodes the SNP profile

for the ith sample point: Xi;j 2 f0; 1;2g is the value of the jth SNP

for sample point i, taking three possible values corresponding to the

number of minor alleles per person. Typically, the number of SNPs

(regressors) is p � 106, while the number of samples is at least one

order of magnitude smaller. A model measuring multivariable asso-

ciation is introduced next.

2.1 Generalized linear models
A well-established model for relating the phenotype (response vari-

able) and the SNPs (regressors) is a generalized linear model

(McCullagh and Nelder, 1989).
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The easiest form thereof is a linear model for continuous (R-val-

ued) responses:

Yi ¼ b0 þ
Xp

j¼1

bjXi;j þ ei ði ¼ 1; . . . ;nÞ; (1)

where e1; . . . ; en are independent and identically distributed noise

terms with expectation E½ei� ¼ 0, finite variance and which are

uncorrelated with the regressors Xi;j.

For binary responses with Yi 2 f0; 1g, representing case (¼1) or

control (¼0), we consider a logistic regression model:

Yi � BernoulliðpiÞ;

pi ¼ PðYi ¼ 1jXi; bÞ ¼
expðgiÞ

1þ expðgiÞ
; ði ¼ 1; . . . ; nÞ;

lnð pi

1� pi
Þ ¼ gi ¼ b0 þ

Xp

j¼1

bjXi;j (2)

Here, pi represents the probability of individual i having a case sta-

tus given its SNPs Xi. There is no additional noise term and the sto-

chastic nature of the model comes from the probability pi.

In both models, b0 denotes the intercept, and the coefficients bj

are the (logistic) regression coefficients which measure the associ-

ation of the jth SNP with the response. Such models, which take into

account all SNPs, have two features. First, the (generalized) regres-

sion coefficients have the following (well-known) interpretation: bj

measures the association effect of Xi;j on Yi which is not explained

by all other variables fXi;k; k 6¼ jg. Thus, a large bj, in absolute

value, has the very powerful interpretation that SNP j has a strong

association to the phenotype given all other SNPs or controlling for

all other SNPs. This is in sharp contrast to marginal correlation be-

tween SNP j and the phenotype Y which can easily be of spurious

nature and caused by another SNP k having a strong correlation

with the phenotype and with SNP j.

Furthermore, the regression models are predictive in the sense that

for a new sample point (e.g. person) with a given SNP profile Xnew we

obtain a prediction for the corresponding phenotype (e.g. disease

status) E½YnewjXnew� ¼ b0 þ
Pp

j¼1 bjXnew;j or P½Ynew ¼ 1jXnew� ¼
gnew, where gnew ¼ b0 þ

Pp
j¼1 bjXnew;j. Note that this prediction is

likely to be more informative or precise than a prediction that is based

merely on marginal correlations because the general linear model

applied here enables us to use the whole new SNP profile, and not

just single SNPs, for predictive purposes.

Our main goal is to infer statistical significance of a single SNP

or of a possibly large group of correlated SNPs for a given pheno-

type. More precisely, we aim for P-values, adjusted for multiple test-

ing, when testing the following hypotheses:for single SNP j

H0;j : bj ¼ 0 versus HA;j : bj 6¼ 0; (3)

or for a group G � f1; . . . ;pg of SNPs

H0;G : bj ¼ 0 for all j 2 G

versus HA;G : at least for one j 2 G we have that bj 6¼ 0: (4)

The obtained P-values are with respect to a regression model and

hence, they share the interpretation with the regression parameters

described above. In particular, they are markedly different from a

marginal or linear mixed model approach: the differences are also

illustrated in simulation studies in Section 3.1.

A link to causal inference. If we assume (i) that the model is cor-

rect and that beyond the measured SNPs there are no hidden con-

founding variables—a condition that might be somewhat less

problematic when having a million or more SNP markers—and (ii)

that the causes point from the SNPs to the phenotype Y, the param-

eters bj ðj ¼ 1; . . . ;pÞ can be given a causal interpretation. This link

to causal inference shows again that a (joint) multiple regression

model is very different from a marginal model. In a structural equa-

tion model the assumption that the causes point from the SNPs to

the phenotype Y means that the arrows in a directed acyclic graph,

that encode the causal influence diagram, point to Y and never point

away from Y, i.e. Y is childless. Such an assumption says that some

SNPs might be the cause for a phenotype, but the phenotype cannot

be a cause for the SNPs, which seems a very reasonable assumption.

Under these conditions, the following holds: if bj 6¼ 0, then there

must be a directed edge in the causal influence diagram of a linear

structural equation model from SNP j to the phenotype Y with non-

zero edge weight, i.e. there exists a non-zero direct causal effect

from SNP j to the phenotype Y. This statement is not true with mar-

ginal associations (i.e. if SNP j is only marginally associated with Y)

since adjusting for all other SNPs (different from SNP j) is crucial

for causal statements. The details are given in Proposition S1.1 in

the Supplementary Material Section S1.

2.2 The challenge of high-dimensionality
The difficulty with a regression type analysis is the sheer high-

dimensionality of the problem. The number of SNPs p � 106 is mas-

sively larger than sample size n, which is at least one order of magni-

tude smaller. In such scenarios, standard statistical inference

methods fail. Recent progress based on new methods such as mul-

tiple sample splitting, has allowed us to obtain statistical signifi-

cance measures for regression parameters bj (Bühlmann, 2013;

Meinshausen et al., 2009; Zhang and Zhang, 2014, cf.) or groups

thereof (Mandozzi and Bühlmann, 2015). We rely here on this

method (Mandozzi and Bühlmann, 2015), which shows reliable per-

formance over a wide range of simulation settings (Dezeure et al.,

2015), and enjoys the property of being computationally vastly

more efficient than procedures which operate on the entire dataset.

We extend the procedure from Mandozzi and Bühlmann (2015)

from linear to logistic regression, and we show here for the first time

how it performs for extremely high-dimensional GWAS data. The

entire statistical procedure is schematically summarized in Figure 1.

In view of the high-dimensional nature of GWAS, it is rather un-

likely to detect single SNPs which are significant when controlling

Fig. 1. Schematic overview of the method. ‘Clustering’ refers to the step of

hierarchically clustering the SNPs. SNPs on different chromosomes are clus-

tered separately, after which the 22 clusters are joined into one final cluster

containing all SNPs. ‘Multi-Sample Splitting and SNP Screening’ stands for

the SNP selection in steps 1 and 2 of the method described in Section 2.4.2.

These selected SNPs are used to compute the P-values. Finally, the last step

of the method—‘Hierarchical Testing’—uses the selected SNPs to test groups

of SNPs and eventually single SNPs. This testing is done hierarchically, on

the cluster previously constructed. The output of the method consists of sig-

nificant groups, or single SNPs, along with their P-values, that are adjusted

for multiple testing
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for all other SNPs. Thus, it is a-priori more likely to detect (large)

significant groups of SNPs with respect to the group hypotheses

H0;G in a regression model. The construction of such groups is

achieved by clustering the SNPs, as explained next.

2.3 Clustering
Our goal is to perform significance testing on single SNPs (the

hypotheses H0;j) as well as arbitrarily large groups of SNPs (the

hypotheses H0;G). We do this hierarchically since this allows for

powerful multiple testing adjustment as well as for efficient compu-

tation (see Section 2.4).

We first discuss the hierarchical clustering of SNPs. The hier-

archy can be constructed in different ways. One option is to use spe-

cific domain knowledge to group the SNPs, for instance by

clustering them first into genes, and then into functional pathways.

Another option is to use standard hierarchical clustering methods

which rely on a distance measure between the SNPs.

Here we adopt the second approach, which is similar to the con-

struction of haplotype maps (Barrett et al., 2005). We use hierarch-

ical clustering with average linkage (Jain and Dubes, 1988) which

can be represented as a cluster tree, denoted by T . The method re-

quires a distance or dissimilarity measure between SNPs. We con-

sider the distance between two SNPs as one minus their linkage

disequilibrium (LD) value, where LD refers to the statistical depend-

ency of the DNA content at nearby locations of the chromosome.

One of the most common measures of LD is the square of the

Pearson correlation coefficient (Hill and Robertson, 1968), which

quantifies the linear dependence between two loci. Thus, two SNPs

will have an LD equal to one if they are perfectly correlated, or an

LD equal to zero if they are uncorrelated. Since LD has a tendency

to decay with the distance of the studied loci, close-by SNPs are typ-

ically in high LD. This means that SNPs belonging to the same gene,

or more generally, neighboring SNPs will end up in the same cluster.

Often, LD is studied within each chromosome separately. Therefore,

we construct separate cluster trees for each chromosome (in add-

ition to providing a biological interpretation, clustering each

chromosome separately results in substantial computational gains

for problems with p � 106 SNPs), and we then join these into

one tree T which contains all the SNPs in the study, as shown in

Figure 2.

2.4 Statistical significance testing
A cluster, as described in Section 2.3, is denoted by the generic letter

G which encodes a subset of f1; . . . ;pg of single SNPs. We explain

here how to test a null-hypothesis for a group H0;G in (4) or for a

single SNP H0;j in (3).

2.4.1 Hierarchical inference

In Section 2.4.2 we will show how one can construct valid P-values

for the hypotheses H0;j and H0;G. On the basis of valid P-values, our

hierarchical approach proceeds as follows:

1. Test the global hypothesis H0;Gglobal
where Gglobal ¼ f1; . . . ; pg:

that is, we test whether all SNPs have corresponding (general-

ized) regression coefficients equal to zero or alternatively,

whether there is at least one SNP which has a non-zero regres-

sion coefficient. If we can reject this global hypothesis, we go to

the next step.

2. Test the hypotheses H0;G1
; . . . ;H0;G22

where Gk contains all the

SNPs on chromosome k. For those chromosomes k where H0;Gk

can be rejected, we go to the next step.

3. Test hierarchically the groups G which correspond to chromo-

somes k where H0;Gk
was previously rejected. Consider first the

largest groups and then proceed hierarchically (down the cluster

tree) to smaller groups until a hypothesis H0;G cannot be rejected

anymore or the level of single SNPs is reached.

4. The output is a collection of groups Gfinal;1; . . . ;Gfinal;m where

H0;Gfinal;k
is rejected (k ¼ 1; . . . ;m) and all subgroups of Gfinal;k

(k ¼ 1; . . . ;m) downwards in the cluster tree are not significant

anymore.

In such a hierarchical testing procedure, which belongs to the

scheme of sequential multiple hypothesis testing, the multiple testing

adjustment is resolution dependent. To guarantee that the family-

wise error, i.e. the probability for at least one false rejection of the

hypotheses among the multiple tests, is smaller than or equal to a

for some pre-specified 0 < a < 1, e.g. a ¼ 0:05, the hypothesis

tests must be performed at different significance levels, depending

on where one is in the hierarchy. The more we descend in the hier-

archy, the more the multiple testing adjustment increases because

we do more tests. It is important to keep in mind that even though

the procedure controls the type I error simultaneously over all levels

of the hierarchy, the adjustment for larger clusters does not depend

on whether one will test their subclusters or not. While there is an

ordering of the clusters, due to the nature of the hierarchical cluster-

ing procedure, and testing of subclusters stops once the null hypoth-

esis of the parent cluster is accepted, the adjustment applied to the

P-value of any cluster does not depend on the number of tests that

have already been performed, but only (essentially) on the size of

that particular cluster, see Section 2.4.2. The details have been de-

veloped by Meinshausen (2008). In other words: the final output of

the method are P-values for significant groups Gfinal;1; . . . ;Gfinal;m

with the interpretation, that these P-values control the familywise

error rate for multiple testing (if we collect all groups with a P-value

smaller or equal to a, then the probability for making one or more

false rejections among all considered tests is less or equal to a).

Furthermore, due to the hierarchical structure of the procedure, we

can massively reduce the number of computations: if the final clus-

ters or groups Gfinal;k are relatively high up in the hierarchy of the

cluster tree, we only need to compute relatively few hypothesis tests.

2.4.2 Construction of the P-values

The hierarchical inference procedure above assumes that one has a

method that constructs P-values which are valid (a P-value P is

valid for a null-hypothesis H0 if PH0
½P 	 a� 	 a for any

Genome

Chrom 1 Chrom 2 Chrom 21 Chrom 22

Fig. 2. The final cluster tree. The SNPs are first partitioned into chromosomes,

and then a cluster tree is built for each chromosome separately using hier-

archical clustering with average linkage. The hierarchical clusters of SNPs

within chromosomes are not shown due to their size
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0 < a < 1, where PH0
denotes the probability assuming that H0 is

true).

Due to the high-dimensionality with p
 n, obtaining a P-value

for the hypotheses H0;j or H0;G in (3) or (4) is a non-trivial problem.

We rely here on a multiple sample splitting approach from

Meinshausen et al. (2009), and we follow exactly the method from

Mandozzi and Bühlmann (2015). The idea is as follows. For b ¼ 1;

. . . ;B repetitions:

1. Randomly partition the n samples into two parts, say N
ðbÞ
in and

N
ðbÞ
out.

2. Using a variable selection procedure such as the (logistic) Lasso

(Friedman et al., 2010; Tibshirani, 1996), select regressors

(SNPs) based on data from the first half-sample N
ðbÞ
in . Denote the

selected regressors by Ŝ
ðbÞ � f1; . . . ; pg. Because a Lasso esti-

mated model has cardinality smaller or equal to minðn; pÞ, the

number of selected variables jŜðbÞj < n=2 will be smaller than

half of the sample size. We choose to select the first n=6 SNPs

that enter the Lasso path. This ensures that we have enough

regressors for computing P-values.

3. Based on data from the second half-sample N
ðbÞ
out, use classical

P-value constructions in a linear or generalized linear model

with the selected regressors (SNPs) from Ŝ
ðbÞ

in the previous

step. The construction of a P-value of a cluster G is done in the

following manner: we intersect the hierarchy T constructed in

Section 2.3 (using hierarchical clustering) with Ŝ
ðbÞ

, obtaining an

induced hierarchy with root node Ŝ
ðbÞ

. The testing is then

applied on this induced hierarchy. Finally we assign the P-value

to the entire cluster G, although we have only used the variables

in G \ Ŝ
ðbÞ

.

pG;ðbÞ ¼
pG\Ŝ

ðbÞ

out based on Y
N
ðbÞ
out
;X

N
ðbÞ
out
; if G \ Ŝ

ðbÞ 6¼1

1; if G \ Ŝ
ðbÞ ¼1;

8><
>:

(5)

where pG0

out is the P-value for H0;G0 based on data from N
ðbÞ
out

(G0 � f1; . . . ; pg). For a cluster G 2 T , the multiplicity adjusted

P-value is defined as:

p
G;ðbÞ
adj ¼ minðpG;ðbÞ jŜðbÞj

jG \ Ŝ
ðbÞj

;1Þ (6)

if G \ Ŝ
ðbÞ 6¼1 and p

G;ðbÞ
adj ¼ 1 otherwise.

4. Repeat steps 1-3 B times (with e.g. B¼100) and aggregate the B

P-values (separately for every hypothesis). The aggregated P-

value of any cluster G is computed by considering its empirical

quantile:

PG ¼ minf1; ð1� logcminÞ inf
c2ðcmin ;1Þ

QGðcÞg (7)

where QGðcÞ ¼ minf1; qcðfpG;ðbÞ
adj =c; b ¼ 1; . . . ;BgÞg; c 2 ð0;1Þ;

cmin ¼ 0:05 and qcð�Þ is the empirical c-quantile function.

Finally, the hierarchically adjusted P-value of a cluster G is:

PG
h ¼ max

D2T :G�D
PG (8)

The sample splitting in step 1 is made to avoid being over-optimistic

when performing variable selection and P-value construction on the

same dataset. The repeated sample splitting in step 4 helps to

achieve much more reliable results which do not depend in a sensi-

tive way on how we split the sample (Meinshausen et al., 2009, cf.).

More details about the assumptions which guarantee control of the

familywise error rate are provided in Supplementary Material

Section S2.

This multi-sample splitting method is computationally fast since

Lasso in step 2 is rather cheap to perform and step 3 requires clas-

sical P-value computations in low-dimensional models with fewer

than n regressors only. In terms of accuracy for type I error control,

i.e. avoiding false rejections of hypotheses, the multi-sample splitting

approach has been found very reliable in extensive simulations rela-

tive to other methods. This reliability comes at the price of being

slightly inferior in terms of power to detect true underlying positive

findings (Dezeure et al., 2015), see also Mandozzi and Bühlmann

(2015). However, this slightly more conservative scheme has the ad-

vantage of limiting false positives.

3 Results

3.1 Simulation studies
We used the WTCCC Crohn’s disease genotype data to create semi-

synthetic datasets. To generate the new genotype matrix, we kept all

the samples (n¼4682), but selected a block of 500 consecutive

SNPs from each of the 22 autosomal chromosomes, having in total

11 000 SNPs. The phenotype data was generated from a logistic re-

gression model with the probability of having the disease as the de-

pendent variable and 10 causal SNPs as the independent variables.

We considered three designs for choosing the causal SNPs:

1. Randomly select a set of 10 consecutive SNPs from chromosome

1. The regression coefficients are sampled with replacement

from the set {-2, -1.75, -1.5, -1.25, –1, 1, 1.25, 1.5, 1.75, 2}.

2. Randomly select a set of 5 consecutive SNPs from chromosome

1 and 5 consecutive SNPs from chromosome 2. The regression

coefficients are sampled with replacement from the set {-1, -

0.75, -0.5, 0.5, 0.75, 1}.

3. Randomly select a set of 10 non-consecutive SNPs from chromo-

some 1. The regression coefficients are sampled with replacement

from the set {-2, -1.75, -1.5, -1.25, -1, 1, 1.25, 1.5, 1.75, 2}.

To ensure that the number of cases and controls are not too dif-

ferent, we required the ratio between cases and controls to be within

the interval ½0:67;1:5�. We kept the genotype matrix constant, and

generated 100 simulation runs for each design, using new coeffi-

cients for every simulation run.

We chose to compare our method to three other algorithms. One

is the classic bivariate testing, implemented in PLINK (Purcell et al.,

2007). The other two are mixed model approaches: the FaST-LMM

(Lippert et al., 2011) and the GCTA (Yang et al., 2011) algorithms.

Both calculate a genetic relationship matrix (GRM) to control for

the effect of the other SNPs. There are many ways of computing the

GRM. One can use all the SNPs, or just a particular subset. An ap-

proach that is computationally efficient is leave-one-chromosome-

out (LOCO) (Yang et al., 2014). With this option when one tests the

SNPs in a particular chromosome, the SNPs from all the other

chromosomes besides the one being tested are used to compute the

GRM. The main difference between mixed models and our method

is the way in which the effects of other SNPs are modeled. While the

mixed model uses a random component to account for all the other

SNPs, our method considers each SNP as a fixed effect, and includes

all of them in the model.

Our goal was to assess how good these methods are at detecting

the causal variants (which are known for simulated data), while lim-

iting the number of false positives: SNPs that are not truly causal

(but perhaps correlated with the causal variants). Assessing the
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performance of the methods was done by considering several crite-

ria. The first is the FWER, which we expect to be controlled at level

a. This is equivalent to expecting 100 �a false discoveries, when per-

forming 100 simulations. As a less conservative criterion, we also

consider the k-FWER, a generalized version of the FWER. The k-

FWER is defined as PfV � kg, where V is the total number of false

rejections. For our simulations, we are interested in the value of k,

under which the k-FWER is controlled at level a ¼ 0:05. In the case

of our method, a rejection is considered false only if the cluster does

not contain any of the true causal SNPs. The third assessment crite-

ria is the power of the method. Also here we consider two variants.

The first is a ‘naive’ version, which considers all findings where the

true causal SNP is present in a cluster, irrespective of the cluster size.

The second metric penalizes the size of the group with respect to the

causal variants. This is computed in the following way:

POWadaptive ¼
1

jS0j
X

G2Gsign

jS0 \Gj
jGj ; (9)

where Gsign is the set of groups declared significant by our method,

and S0 is the set of true causal SNPs. For the three comparison meth-

ods, we declare significant SNPs that have a P-value below 5 � 10�8,

and compute the power, FWER and k-FWER using this set.

The results shown in Table 1 are in line with our expectations. In

the first 2 designs, our method has a lower power compared to the

other three methods that behave almost identically. The cost of a

larger power is however a significant increase in the number of false

positives. While our method fails to control the FWER due to the

very complex correlation structure in the data, it does however con-

trol the 2-FWER at level a. This means that the probability of mak-

ing more than 2 false rejections is below a. In comparison, the other

three methods do on average at least one order of magnitude more

false rejections. This has to do with the fact that they infer marginal

associations, or associations which are partially adjusted by random

effects: many significant findings are spurious because of high cor-

relation between some of the SNPs. The lower power of our

hierGWAS procedure can be explained by the fact that it aims to

infer associations which are adjusted for other SNPs: our method

would detect some of them individually, some of them as groups,

and if the correlation among some SNPs is too strong (or the signal

too weak), it would miss some. This becomes apparent also when

we consider the two power measures: POWadaptive is always smaller

than POW, because some of the causal SNPs will be grouped into

clusters, due to their correlation structure. In the case of the third de-

sign, our method has the same power as the other three to detect the

causal SNPs. If we assume that this is close in spirit to the real life

case of having one causal SNP surrounded by many others that are

in LD with the causal one, our method has the power to detect it

just as well as the marginal methods, while providing a greatly

reduced set of false positives, and a much stronger interpretation of

the findings. While the FWER is the highest in the third design, due

to the fact that there are many more confounders around each SNP

compared to the other two designs, our method still performs much

better, by controlling the 3-FWER at level a. We note that GCTA

and FaST-LMM have a slight disadvantage regarding the control of

false positives, because we used the LOCO approach to compute the

GRM. However, since this is an established approach, and the strat-

egy of eliminating only the SNP being tested, and using all other

SNPs to construct the GRM is computationally infeasible (Yang

et al., 2014), we believe that this situation reflects reality.

3.2 WTCCC data
We validate our method on data from The Wellcome Trust Case

Control Consortium (2007). The Wellcome Trust Case Control

Consortium study used 3000 subjects and 2000 shared controls from

the British population to examine 7 major diseases: bipolar disorder

(BD), coronary artery disease (CAD), Crohn’s disease (CD), hyperten-

sion (HT), rheumatoid arthritis (RA), type 1 diabetes (T1D) and type

2 diabetes (T2D). The subjects were genotyped using the Affymetrix

GeneChip 500K Mapping Array Set. Though The Wellcome Trust

Case Control Consortium (2007) reported all SNPs with a P-value

< 5 � 10�4, the threshold for strong association was set to 5 � 10�7.

Using the standard marginal analysis, the WTCCC study identified 21

new SNPs strongly associated to the phenotype. For BD rs420259 on

chromosome 16, for CAD rs1333049 on chromosome 9, for CD, the

WTCCC study identified 9 SNPs strongly associated to the phenotype:

rs11805303 on chromosome 1, rs10210302 on chromosome 2,

rs9858542 on chromosome 3, rs17234657 and rs1000113 on

chromosome 5, rs10761659 and rs10883365 on chromosome 10,

rs17221417 on chromosome 16 and finally rs2542151 on chromo-

some 18. 2 SNPs were found for RA: rs6679677 on chromosome 1

and rs6457617 on chromosome 6. T1D was strongly associated to 5

SNPs: rs6679677 on chromosome 1, rs9272346 on chromosome 6,

rs11171739 and rs17696736 on chromosome 12 and rs12708716 on

chromosome 16. Finally, for T2D 3 associations were found:

rs9465871 on chromosome 6, rs4506565 on chromosome 10 and

rs9939609 on chromosome 16. For HT, the WTCCC did not find any

SNP strongly associated to the phenotype.

Before applying our analysis, we have preprocessed the data, by

excluding some SNPs and samples, as well as imputing the missing

SNPs. Details about this procedure are given in the Supplementary

Material Section S4.1.

The output of our method is a list of SNP groups of different

sizes. These represent the smallest jointly significant groups in the

hierarchical tree of SNPs. We create a distinction between small

(<10 SNPs) and large groups, and present the corresponding results

separately. The number 10 is somewhat arbitrary and determined by

notational simplicity to list at most 10 SNPs per group. We identi-

fied small groups for 5 of the 7 diseases, and present them below.

Large groups have been identified for all of the diseases, however we

chose to present in detail the results for BD only. We chose BD be-

cause it is the disease for which the WTCCC found a single strongly

associated SNP, which we did not identify using our method. The

large groups for the other six diseases are detailed in the

Table 1. Simulation results

Design Method FWER K POW POWadaptive

1 hierGWAS 0.14 2 0.70 0.63

1 PLINK 1 44 0.89

1 GCTA 1 44 0.89

1 FaST-LMM 1 44 0.89

2 hierGWAS 0.29 2 0.72 0.66

2 PLINK 1 81 0.87

2 GCTA 1 93 0.89

2 FaST-LMM 1 93 0.89

3 hierGWAS 0.56 3 0.94 0.85

3 PLINK 1 130 0.94

3 GCTA 1 131 0.94

3 FaST-LMM 1 130 0.94

Comparison of four methods for three different scenarios.

FWER, Familywise error rate; k, value of k such that k-FWER 	 0:05;

POW, power; POWadaptive, adaptive power.
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Supplementary Material Section S4. It is important to note that these

groups are not overlapping. For example, if in a specific chromo-

some we find a small group of four SNPs, as well as two large

groups both containing thousands of SNPs, these three groups do

not share common SNPs and they belong to different regions of the

chromosome. This happens because our method finds the smallest

group of SNPs for which the null hypothesis can be rejected. Such a

result means that one region of the chromosome exhibits a strong

signal, while there are other regions exhibiting weaker signal. Thus,

the size of the group reflects the strength of associations: the weaker

these associations, the larger the significant groups.

Tables 2 reports on individual SNPs or small clusters of SNPs se-

lected by our method for the seven diseases we analyzed. We found

a total of 20 such clusters, out of which 16 are individual SNPs.

Twelve out of the 20 clusters contain at least one SNP that was

found to be strongly associated to the phenotype in the original

WTCCC study. The remaining eight clusters contain SNPs that are

either in LD with the ones identified by the WTCCC, belong to the

same gene or genomic region, or have been identified as having a

significant effect in other studies. While it is informative to see if

our findings have been previously reported in other studies, it is

important to remember the distinction in terms of interpretation.

Our method makes the significance of previous findings much

stronger, because it does not simply compute the marginal correl-

ation, but it instead tests whether the effect of a SNP or a group is

still significant after we have taken into account the effect of all

other SNPs. In the case of the small clusters, it restricts the con-

founders to a reduced number of SNPs that are either introns in the

same gene, or in close proximity to each other. Besides these small

significant groups, our method also identified larger groups.

Again, it is important to keep in mind that these larger groups are

not overlapping with the smaller ones, and they are in other re-

gions of the chromosome. These clusters contain many of the SNPs

that were identified to have moderate associations in the original

study. Because of their size, they are given lower weight in terms of

power, however, they reflect the assumption that these diseases are

highly polygenic, and associations appear in many places through-

out the genome. In the following we will describe in more detail

our findings for each disease.

3.2.1 Coronary artery disease

We replicated rs1333049, an intergenic SNP on chromosome 9, the

only finding from the WTCCC study. Our result however has a

much stronger interpretation compared to the original finding, be-

cause we control for all possible confounders. Thus, rs1333049

shows an association with the phenotype, even after taking into ac-

count the effects of all other SNPs.

3.2.2 Crohn’s disease

On chromosome 1 we identified a small significant cluster of five

SNPs: rs11805303, rs2201841, rs11209033, rs12141431 and

rs12119179. Two of them: rs11805303 and rs2201841 are introns

in the IL23R gene, while the last three SNPs are up to 22-kb down-

stream from IL23R. Though rs11805303 showed strong association

in the WTCCC study (The Wellcome Trust Case Control

Consortium, 2007), our result has a different and much stronger in-

terpretation. Our finding is a group of five SNPs that are jointly sig-

nificant, though none of them is significant individually. Because

Table 2. List of small significant groups of SNPs selected by our method for coronary artery disease, Crohn s disease, rheumatoid arthritis,

type 1 diabetes and type 2 diabetes

Disa Significant group of SNPsb Chrc Gened P-valuee R2 f

CAD rs1333049 9 intergenic 1:7 � 10�3 0.013

CD rs11805303, rs2201841, rs11209033, rs12141431, rs12119179 1 IL23R 4:5 � 10�2 0.014

CD rs10210302 2 ATG16L1 4:6 � 10�5 0.014

CD rs6871834, rs4957295, rs11957215, rs10213846, rs4957297, rs4957300,

rs9292777, rs10512734, rs16869934

5 intergenic 2:7 � 10�3 0.016

CD rs10883371 10 LINC01475,

NKX2-3

2:4 � 10�2 0.004

CD rs10761659 10 ZNF365 1:5 � 10�2 0.007

CD rs2076756 16 NOD2 1:3 � 10�3 0.017

CD rs2542151 18 intergenic 1:5 � 10�2 0.005

RA rs6679677 1 PHTF1 5:9 � 10�11 0.031

RA rs9272346 6 HLA-DQA1 1:4 � 10�6 0.017

T1D rs6679677 1 PHTF1 3:6 � 10�11 0.03

T1D rs17388568 4 ADAD1 2:7 � 10�2 0.006

T1D rs9272346 6 HLA-DQA1 2:4 � 10�3 0.17

T1D rs9272723 6 HLA-DQA1 2:2 � 10�4 0.17

T1D rs2523691 6 intergenic 6:04 � 10�5 0.004

T1D rs11171739 12 intergenic 1:3 � 10�2 0.01

T1D rs17696736 12 NAA25 6:5 � 10�4 0.018

T1D rs12924729 16 CLEC16A 3:4 � 10�2 0.007

T2D rs4074720, rs10787472, rs7077039, rs11196208, rs11196205,

rs10885409, rs12243326, rs4132670, rs7901695, rs4506565

10 TCF7L2 1:7 � 10�5 0.015

T2D rs9926289, rs7193144, rs8050136, rs9939609 16 FTO 4:7 � 10�2 0.007

aThe disease identifier for which the SNP group was selected.
bThe smallest groups of SNPs whose null hypothesis was rejected. The SNPs in this group are jointly significant. rsIDs of SNPs from dbSNP.
cThe chromosome to which the SNPs in the group belong.
dThe gene to which the SNPs in the group belong, if any. Gene symbol from Entrez Gene.
eThe P-value of the group of SNPs, adjusted for multiple testing (controlling the FWER).
fThe variance explained by the group of SNPs.
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this significance results from a joint model of all SNPs, it means that

our group is jointly significant while controlling for all other SNPs

in the study. The interpretation of this finding is that we limit the set

of confounding SNPs to four other SNPs. When a SNP is declared

significant by computing the marginal correlation, like in The

Wellcome Trust Case Control Consortium (2007), the set of possible

confounders that produce this correlation is the set of all other

SNPs. Thus, if the correlation turns out to be a spurious one, there

could be hundreds of other SNPs that produce it. In contrast, our

method not only drastically reduces the number of confounders, but

gives a small set of much more plausible ones, that are in a narrow

region of the chromosome, often clustered around a gene. On

chromosome 2 we identified an individual SNP, rs10210302, which

showed strong association in the WTCCC paper (The Wellcome

Trust Case Control Consortium, 2007). This SNP has by far the

lowest P-value (4:6 � 10�5) in CD, and it also explains a relatively

large proportion of the variance attributed to chromosome 2: 0.014

compared to 0.05 explained by all the selected SNPs in the chromo-

some. On chromosome 5 we identified a group of 9 SNPs:

rs6871834, rs4957295, rs11957215, rs10213846, rs4957297,

rs4957300, rs9292777, rs10512734 and rs16869934. They are all

intergenic, 85 kb apart and located in the 40.4M region of the

chromosome. rs16869934 is 4 kb downstream from the SNP

rs17234657 showing strong association to CD in The Wellcome

Trust Case Control Consortium (2007). On chromosome 10 we

found 2 significant SNPs. The first is rs10883371, a 2-kb upstream

variant both for LINC01475 and NKX2-3. rs10883365, found to

be strongly associated to CD in the WTCCC study is a 2-kb up-

stream variant in LINC01475. Our second finding on chromosome

10 is rs10761659, a non-coding intergenic SNP mapping 14-kb telo-

meric to gene ZNF365 and was identified first by the WTCCC (The

Wellcome Trust Case Control Consortium, 2007), followed by a

meta-analysis (Franke et al., 2010) and later a study of a southern

european population by Julia et al. (2013). On chromosome 16, we

found an individual SNP, rs2076756, which is an intron in NOD2.

Interestingly, this SNP was not found to be significant in the original

WTCCC study, while our approach shows that it is even significant

when we control for all other SNPs. This SNP has been confirmed

by several studies (Franke et al., 2010; Julia et al., 2013; Kenny

et al., 2012; Rioux et al., 2007). Finally, on chromosome 18, we

identified a single intergenic SNP: rs2542151. This finding was re-

ported by The Wellcome Trust Case Control Consortium (2007), as

well as by Parkes et al. (2007).

3.2.3 Rheumatoid arthritis

We identified two SNPs, both individually significant. The first,

rs6679677 is located on chromosome 1 and is a 2-kb upstream vari-

ant in the PHTF1 gene. This finding was reported by The Wellcome

Trust Case Control Consortium (2007). The second SNP,

rs9272346, is located on chromosome 6 and is also a 2-kb upstream

variant in the HLA-DQA1 gene. This SNP belongs to the MHC re-

gion, just like the WTCCC finding.

3.2.4 Type 1 diabetes

Eight individual SNPs were declared significant by our method. Five

of these are the five associations found in The Wellcome Trust Case

Control Consortium (2007). These are: rs6679677, a 2-kb upstream

variant in the PHTF1 gene on chromosome 1, rs9272346, a 2-kb up-

stream variant in the HLA-DQA1 gene on chromosome 6,

rs11171739, an intergenic SNP on chromosome 12, rs17696736, an

intron in the NAA25 gene on chromosome 12 and rs12924729, an

intron in the CLEC16A gene on chromosome 16. Additionally, our

method identified 3 new associations. Two of them are located on

chromosome 6: rs9272723 is an intron in the HLA-DQA1 gene and

rs2523691 is intergenic. The third new finding, rs17388568, is

located on chromosome 4 and is an intron in the ADAD1 gene. It

did not reach the genome wide significance threshold in the

WTCCC study, however it showed moderate association with a

P-value of 3 � 10�6. It also showed moderate association in an inde-

pendent study by Plagnol et al. (2011).

3.2.5 Type 2 diabetes

We identified two small SNP clusters, one on chromosome 10 and

the other on chromosome 16. The first cluster contains 10 SNPs:

rs4074720, rs10787472, rs7077039, rs11196208, rs11196205,

rs10885409, rs12243326, rs4132670, rs7901695, rs4506565, all

introns in the TCF7L2 gene, spanning a 62 kb region. One of them,

rs4506565, was originally identified by The Wellcome Trust Case

Control Consortium (2007), while rs7901695 showed a significant

association in a replication study by Zeggini et al. (2007). The se-

cond cluster is comprised of four SNPs: rs9926289, rs7193144,

rs8050136, rs9939609, all introns in the FTO gene spanning 10 kb.

rs9939609 was significantly associated to the phenotype in The

Wellcome Trust Case Control Consortium (2007). Additionally,

rs8050136 was found to have strong significance in Zeggini et al.

(2007) and Scott et al. (2007).

3.2.6 Bipolar disorder

For BD, the WTCCC identified only one SNP strongly associated

to the phenotype: rs420259. While we did not identify it in a small

group, it is present in the large group found to be significant on

chromosome 16. Furthermore, as can be seen in Table 3, we found

clusters in many of the chromosomes. Table 3 shows the group

size, both in terms of number of SNPs, as well as in terms of per-

centage of the total SNPs in that particular chromosome.

Additionally, we investigate whether the SNPs identified using the

standard analysis with PLINK (Purcell et al., 2007) map into our

groups. The size of the group is in a way inversely proportional to

the strength of associations. If a certain chromosome contains

SNPs with large effects, we will be able to find them in very small

clusters, or maybe even individually. If however the signal is weak,

we can only identify larger regions. For example, on chromosomes

4, 6, 7, 8, 10 and 15 the signal is so weak that we can only report

that the joint effect of all SNPs in these chromosomes is significant,

but we cannot further localize the signal. On the other hand, on

chromosome 3 we were able to identify a much smaller group con-

taining only 6% of the SNPs.

Our method returns the smallest number of SNPs for which we

can find a significant effect, while controlling for all other SNPs.

The fact that we cannot disaggregate the signal to small clusters, or

single SNPs does not mean that genetics plays no role in BD, but

rather that the signal is very dispersed and the effect sizes are very

small. This explains why our groups are so large, and why we can-

not attribute the signal to narrower regions. Figure 3 shows the

variance in bipolar disorder explained by the SNPs on individual

chromosomes. We only consider the SNPs selected by the Lasso, in

step 2 of Section 2.4.2, as these SNPs are a proxy for the truly rele-

vant SNPs. The total variance explained by all the SNPs is 0.5, and

Figure 3 describes how this variation is distributed across the

chromosomes. The fitted line corresponds to a linear model, where

the predictor is the chromosome length, and the response is the ex-

plained variance. The plot gives weight to our previous statement,
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Deleted Text: 4 
Deleted Text: p-
Deleted Text: ,
Deleted Text: ; Kenny <italic>et<?A3B2 show $146#?>al.</italic>, 2012
Deleted Text: (RA)
Deleted Text: (T1D)
Deleted Text: 8 
Deleted Text: 5 
Deleted Text: 5 
Deleted Text: p-
Deleted Text: (T2D)
Deleted Text: 4 
Deleted Text: (BD)


as the variance is homogeneously distributed across the chromo-

somes. The plot shows an excellent fit (R2 � 0:91), meaning that

the length of a chromosome is a very good predictor for the

amount of variance that a particular chromosome explains.

3.2.7 Hypertension

Hypertension was the only disease where The Wellcome Trust Case

Control Consortium (2007) did not find any strongly associated

SNPs. We also haven’t found small clusters or individual SNPs, but

we did find larger clusters on 13 of the chromosomes. The results

are shown in the Supplementary Material Section S4.7.

4 Discussion

We have presented a new method for assigning statistical signifi-

cance in GWAS. Our approach goes beyond the bivariate testing of

individual SNPs that looks only at marginal associations. Instead,

we use a multivariable approach which includes all the SNPs and

controls the familywise error rate. We propose to assign P-values in

a hierarchical manner: first for chromosomes, and then in a top-

down fashion from larger to smaller groups of SNPs. Such an ap-

proach addresses several issues. First, since regression parameters of

individual SNPs are typically very small, due to their interpretation

and meaning in the model, it is much more likely to detect signifi-

cant groups of SNPs. Second, because we proceed hierarchically, the

problem of multiple testing is much less severe than for the classical

one-SNP-at-a-time approach: roughly speaking, one has to adjust

only for the number of tests which are considered, and this number

is typically much smaller than the entire number of SNPs in the

study. Our method is data-driven in the sense that its resolution for

the groups of SNPs depends on the strength of the signal present in

the data: how much we proceed in the hierarchy and refine the clus-

ters of SNPs depends on how strong the associations are. If the sig-

nal is strong and well-localized, we find small clusters or individual

SNPs, whereas if the signal is weak, we identify larger regions.

We demonstrate our method on the WTCCC data (The

Wellcome Trust Case Control Consortium, 2007), where we analyze

the seven diseases. Though it is interesting to conceptually validate

our findings by comparing them with a measure of marginal associ-

ation, our method is different and allows for a more powerful inter-

pretation of the findings than testing only marginal association

between a SNP and the phenotype. This is because we test whether

or not SNPs in a cluster carry any additional information about the

phenotype, beyond that available through all the other SNPs. That

is, we adjust for the effect of all other SNPs that are not part of this

cluster, which translates to a very strong interpretation of the signifi-

cant clusters. This can be related to causal statements when making

additional assumptions (see last paragraph in Section 2.1). Due to

the fact that we control for all other SNPs, often we can reduce the

number of possible confounders from hundreds or thousands of

SNPs to less than 10. Moreover, our possible confounders are desir-

able candidates, as they are usually part of the same functional unit.

This is a favorable outcome because in most cases it is unclear which

is the causal SNP, and in many contexts the gene might be the more

meaningful biological unit. Even for phenotypes with weaker and

more dispersed signal, such as BD and HT, we could still identify

larger regions. While these clusters might be too large to identify

specific genes, we can still gain insights into the joint influence of all

selected SNPs, or the distribution of the variance across the chromo-

somes. This case is the one which motivated our approach. For dis-

tant, non-disease related phenotypes it is perhaps more useful to

identify the chromosomes, or the regions that drive the signal, and

their contribution to the total explained variance. In such cases iden-

tifying single SNPs is most likely impossible, and due to their low

predictive power, not very useful.

Table 3. List of large significant groups of SNPs selected by our

method for bipolar disorder

Size of significant SNP groupa Chrb P-valuec R2 d Hitse

6695 (22%) 1 0.027 0.014 3 out of 10

12134 (40%) 1 0.047 0.019 5 out of 10

14451 (45%) 2 0.016 0.022 8 out of 18

7338 (23%) 2 0.036 0.014 9 out of 18

1649 (6%) 3 0.021 0.009 6 out of 15

24832 (100%) 4 0.008 0.029 5 out of 5

14040 (55%) 5 0.030 0.018 1 out of 5

24193 (100%) 6 0.041 0.026 7 out of 7

20643 (100%) 7 0.013 0.028 5 out of 5

21594 (100%) 8 0.027 0.023 6 out of 6

11929 (65%) 9 0.009 0.020 10 out of 12

22517 (100%) 10 0.021 0.024 6 out of 6

15269 (77%) 12 0.038 0.016 1 out of 2

4389 (36%) 14 0.048 0.012 3 out of 11

11055 (100%) 15 0.032 0.017 4 out of 4

10382 (88%) 16 0.047 0.018 16 out of 16

aThe size of the SNP group is the number of SNPs that belong to the group.

In parenthesis: size as percentage of total genotyped SNPs on the

chromosome.
bThe chromosome to which the SNPs in the group belong.
cThe P-value of the group of SNPs, adjusted for multiple testing (control-

ling the FWER).
dThe variance explained by the group of SNPs.
eWe counted the number of SNPs with P-values < 5 � 10�4 identified

using PLINK (Purcell et al., 2007). We looked at how many of those SNPs are

present in the groups selected by our method. The numbers refer to the SNPs

on individual chromosomes.
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Fig. 3. Variance in bipolar disorder that is explained by individual chromo-

somes. The variance on the vertical axis is given by the R2 value of all the se-

lected SNPs in a chromosome, as described in the Supplementary Material

Section S3. The total variance explained by all the selected SNPs on all the

chromosomes is 0.5

1998 L.Buzdugan et al.

Deleted Text: (HT)
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw128/-/DC1
Deleted Text: p-
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw128/-/DC1


It is difficult to directly compare our results to other marginal

methods because we assign significance with respect to a generalized

multiple regression parameter, and not only for individual but also

for groups of SNPs. Nevertheless, we performed a small simulation

study in which we compared the results for our method to the stand-

ard marginal approach, as well as two mixed model algorithms. The

findings were in line with our expectations: while our method had

slightly reduced power in two of the settings, it compensated by pro-

ducing a significantly reduced number of false positive selections. In

the third design our method had the same power as the mixed model

and marginal testing approaches, while still having a superior con-

trol of the false positives.

One direction for improving the method would be to change the

clustering, which could be performed through the use of more in-

depth biological knowledge. For instance, if we would cluster the

SNPs into genes, and then into pathways, even for a weak signal we

would potentially identify larger pathways, which would be useful

in terms of biological meaning.
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