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responsible frames in ultrasound
screening for breast cancer diagnosis
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SUMMARY

The research of AI-assisted breast diagnosis has primarily been based on static im-
ages. It is unclear whether it represents the best diagnosis image.To explore the
method of capturing complementary responsible frames from breast ultrasound
screening by using artificial intelligence. We used feature entropy breast network
(FEBrNet) to select responsible frames from breast ultrasound screenings
and compared the diagnostic performance of AI models based on FEBrNet-recom-
mended frames, physician-selected frames, 5-frame interval-selected frames, all
frames of video, as well as that of ultrasound and mammography specialists. The
AUROC of AI model based on FEBrNet-recommended frames outperformed other
frame set based AI models, as well as ultrasound and mammography physicians,
indicating that FEBrNet can reach level of medical specialists in frame selection.
FEBrNet model can extract video responsible frames for breast nodule diagnosis,
whose performance is equivalent to the doctors selected responsible frames.
1Department of Ultrasound,
Shenzhen People’s Hospital
(The Second Clinical School
of Medicine, Jinan University;
The First Affiliated Hospital of
Southern University of
Science and Technology),
Shenzhen, Guangdong
518020, China

2Research and Development
Department, Microport
Prophecy, Shanghai 201203,
China

3Research and Development
Department, Illuminate, LLC,
Shenzhen, Guangdong
518000, China

4The Cancer Hospital of the
University of Chinese
Academy of Sciences
(Zhejiang Cancer Hospital),
Institute of Basic Medicine
and Cancer (IBMC), Chinese
Academy of Sciences,
Hangzhou, Zhejiang 310022,
China

5These authors contributed
equally

6Lead contact

*Correspondence:
xujinfeng@yahoo.com (J.X.),
xudong@zjcc.org.cn (D.X.),
dongfajin@szhospital.com
(F.D.)

https://doi.org/10.1016/j.isci.
2022.105692
INTRODUCTION

Breast cancer is now the most common malignancy in the world.1–3 It is the leading cause of death among fe-

males.4,5 Over 2.3 million new cases of breast cancer are diagnosed every year, according to the global cancer

burden report for 2021,3 accounting for 30% of cancers in women and 11.7% of all patients with cancer world-

wide, ranking first in cancer and endangering the lives and health of females. Effective screening can detect

breast cancer early, reduce the local and long-term recurrence rates, and improve the five-year survival rate.6

Domestic and international guidelines recommend annual mammography for females aged 40 to 74 years,

but the false-positive and false-negative rates for those with dense breasts are relatively high, making miss di-

agnosesmore likely. As a supplementary diagnosticmethod, ultrasound is not limited by breast glandular tissue

types and is especially appropriate for dense breast in Asian women, increasing the overall breast cancer detec-

tion rate by 17% and reducing unnecessary biopsies by 40%.7,8 Thus, breast ultrasound, along with mammog-

raphy, clinical examination, and needle biopsy, plays an important role in the evaluation of breast disease. How-

ever, diagnosis based on breast ultrasound images heavily depends on the sonographer’s experience.

Artificial intelligence (AI) has developed rapidly in recent years. AI can provide individualized analysis and

assist doctors in clinical decision-making.9–11 As a branch of AI, deep learning is able to recognize patterns

in images without human intervention, facilitating high-throughput correlation between images and clin-

ical data.12 Various AI techniques have been used to extract useful information from images, including con-

volutional neural networks (CNNs) and variable autoencoders.13–15 In the field of medical imaging, AI has

made the most significant contributions to imaging medicine in disease severity classification and argan

segmentation (or separation). Liver ultrasound images for fatty liver detection,16,17 ultrasound images for

ovarian cancer detection and risk stratification,18,19 and chaotic ultrasound for stroke risk stratification

are examples of disease classification applications.20

AI research of breast nodules has mostly relied on static images selected by doctors during scanning.

Due to the operator dependence of ultrasound scans, doctors at various expertise levels may have

different interpretations of the image and disease judgment. Thus, the responsible frames selected for
iScience 26, 105692, January 20, 2023 ª 2022 The Author(s).
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decision-making can have inter-observer variation and junior physicians or non-professionals who lack

necessary knowledge of breast ultrasound cannot choose a set of responsible frames for diagnosis. Since

videos contain complete lesion information, whole videos can be used as inputs for AI without manual

frame selection.21–23 It can broaden the scope of AI applications, especially in assisting less experienced

operators that conduct breast diagnosis. However, ultrasound screening is a dynamic process, which re-

cords not only the important frames containing nodules but also the frames showing irrelevant tissue

and ultrasound artifacts that can mislead AI. AI performance can be improved, if it can self-identify a set

of representative frames to describe the whole lesion, just like the frames senior physicians selected.

Currently, video classification models primarily employed the fixed interval time-based method to subsample

the frames. Although it reduced the number of frames for analysis, it fails to solve the existence of noisy frames

and the problem of repeatedly choosing frames sharing very similar features. To address the issues, we combine

greedy algorithm and the idea of information entropy to propose amodel called FEBrNet for responsible frame

selection. Information entropy (IE) is the average amount of the information contained in each ‘‘message’’

received in information field.24 Video is considered a collection of images, and each image’s information can

be projected tomultiple feature dimensions. Greedy algorithm is used to select a set of frames, which best sum-

marizes the feature distribution of the whole video. Meanwhile, IEminimizingmethod is applied to decide when

to stop picking a new responsible frame. In this study, we compared the performance of AI based on FEBrNet-

recommended frames (R Frames) with AI based on all frames of video (All Frames), AI based on physician-

selected images (Phy Images), AI based on fixed interval sampled frames (Fix Frames), ultrasound specialists,

and mammography specialists. Area under receiver operating characteristics curve (AUROC), sensitivity, spec-

ificity, and accuracy are used as primary evaluating matrices. In 3-fold cross-validation and testing, AI can reach

an equivalent performance using FEBrNet-recommended frames as using physician-selected frames and out-

performing both ultrasound and mammography specialists.
RESULTS

Comparison of clinical data

A total of 974 patients with breast nodules were included in this study. They were randomly assigned ac-

cording to the training set and testing set with the ratio of 4:6 since random forest only requires limited

training samples. Specifically, the training set contained 387 cases (174 malignant nodules), and the inde-

pendent testing set contained 587 cases (238 malignant nodules). All patients underwent biopsy or surgery

and obtained pathological diagnoses (Figure 1). There was no significant difference in age and nodule size

between the patients included (p > 0.05).
Comparison of the effectiveness of FEBrNet’s responsible frame and others in training set by

3-fold cross-validation

The AUC (0.901 [95% CI: 0.877–0.925]) of FEBrNet’s responsible frame method is higher than that of

the doctor frame selection method, fixed interval frame selection method, and all frames of video,

p < 0.05. The cutoff value is 0.402, sensitivity: 84.5%, specificity: 80.6%, and accuracy: 82.3% (Table 1,

Figure 2).
Comparison of the effectiveness of FEBrNet’s responsible frame and others AI models in the

independent testing set

(1) The AUC (0.912 [95% CI: 0.888–0.936]) of the responsible frame method was higher than that of the

fixed interval frame selection and all video frames (p < 0.05). The cutoff value was 0.416, sensitivity:

84.4%, specificity: 87.4%, and accuracy: 86.2%.

(2) The AUC of the responsible frame method is slightly higher than that of the model based on the

frame selected by doctors (0.909 [95% CI: 0.884–0.935]) (p = 0.715 > 0.05), indicating that the frame

selection level of AI model can reach the senior experts (Figures 3A–3D).
Comparison of the effectiveness of FEBrNet’s responsible frame and ultrasound and

mammography specialists in the independent testing set

In this section, we reviewed the 383 cases where both ultrasound and mammography could be found.
2 iScience 26, 105692, January 20, 2023



Figure 1. Flow chart and statistical results

Note: R Frames: responsible frame; Phy Images: doctor frame selection; Fix Frames: fixed interval frame selection; All

Frames: all frames of video; Ultrasound: Diagnosis by senior ultrasound doctors; Mammography: Diagnosis by senior

mammography doctors; p: R Frames vs. others; AUC: area under the curve; NA: Not Applicable.

Tab

Mo

R_F

Phy

Fix_

All_

No

fram

No

ll
OPEN ACCESS

iScience
Article
(1) The AUC of responsible framemethod was better than that diagnosed by senior ultrasound doctors.

The AUC was (0.912 [95% CI: 0.888–0.936] vs. 0.820 [95% CI: 0.788–0.853]) (p < 0.05).

(2) The AUC diagnosed by FEBrNet model is better than that diagnosed by senior mammography doc-

tors, and the AUC is (0.912 [95% CI: 0.888–0.936] vs. 0.796 [95% CI: 0.759–0.833]) (p < 0.05)

(Figures 3E, 3F, and Table 2).
DISCUSSION

Based on our analysis of breast nodule static ultrasound images, a new model was constructed for this

study: FEBrNet, which is an AI method for automatically capturing responsible frames in breast ultrasound

videos.
le 1. Statistics of diagnostic efficiency of 3-fold cross-validation in training set

dality AUC (95%CI) Cut-off Sensitivity (%) Specificity (%) Accuracy (%) p value

rames 0.901 (0.877–0.925) 0.402 84.5 80.6 82.3 NA

_Images 0.857 (0.825–0.889) 0.411 71.8 87.2 80.3 0.009

Frames 0.815 (0.793–0.837) 0.401 78.7 73.0 75.6 0.000

Frames 0.889 (0.864–0.914) 0.521 75.3 89.1 82.9 0.002

te: AUC: area under the curve; 95% CI: 95% confidence interval; R_Frames: responsible frame; Phy_Images: doctor

e selection; Fix_Frames: fixed interval frame selection; All_Frames: all frames of video; p: R_Frames vs. others; NA:

t Applicable.
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Figure 2. 3-fold cross-validation results of training set

Note: (A) R_Frames: responsible frame; (B) Phy_Images: doctor frame selection; (C) Fix_Frames: fixed interval frame

selection; (D) All_Frames: all frames of video.
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In this study, FEBrNet was developed to analyze and extract responsible frames from ultrasound video data

via defining the feature score (FS) and calculating entropy without adding additional training parameters,

self-extracting multiple responsible frames with complementary information for the differential diagnosis

of benign and malignant breast nodules. The results show that the AUC (0.912) of the AI model based on

FEBrNet’s frames is higher than that of the fixed interval frames (0.852) and all video frames (0.881), indi-

cating that the method proposed in this paper is feasible and highly reliable to assist breast diagnosis.

As one major contribution of this work, the FEBrNet addressed the issue of choosing responsible frames

while avoiding selecting visually identical frames repetitively. As shown in Figure 4, we use a video taken

from a 45-year-old female patient with BIRADS 4c and pathologically confirmed invasive breast cancer

as a simple example to demonstrate the capacity of FEBrNet. When frames are sorted by FScore, the

top three frames are frame 26, 39, and 27, with FScore of 21.94, 21.29, and 21.03. These frames seem to

be relatively similar in Figure 4A and very close in time sequence. After using principal component analysis

to compress and display the feature matrices into two dimensions in Figure 4B, it is obvious that the dis-

tance in feature dimensions between the three frames is rather close. In Figures 4C and 4D, the same

approach is used to assess the top three responsible frames (frame 26, 111, and 96) chosen by FEBrNet.

While the FScore of frame 111 is low, it is considerably distant from the first responsible frame (frame 26)

in the feature dimensions. The top three frames selected by the FEBrNet are scattered, echoing their

various visual attributes in Figure 4D.

Internationally recognized standard BIRADS classification for breast cancer risk is based on the character-

istics of malignancy displayed in images.25,26 In this paper, the diagnostic efficiency of FEBrNet exceeds

that of senior ultrasound and mammography doctors, which proves the reliable value of this technology

in diagnosing breast cancer. The performance of AI algorithms depends on the training of large, labeled

datasets.27–29 At present, a common problem is that it is difficult to find sufficient training data in the face of

specific problems in a certain field. The emergence of transfer learning can alleviate the problem of insuf-

ficient data sources.29,30 Several CNN network models launched in recent years, such as Alexnet,31 VGG,32
4 iScience 26, 105692, January 20, 2023



Figure 3. Comparison of the effectiveness of FEBrNet’s responsible frame and others in the independent

testing set

Note: AUC:area under the curve, 95% CI: 95% confidence Interval; (A) R_Frames: responsible frame; (B) Phy_Images:

doctor frame selection; (C) Fix_Frames: fixed interval frame selection; (D) All_Frames: all frames of video; (E)Ultrasound:

Diagnosis by senior ultrasound specialists; (F) Mammography: Diagnosis by senior mammography specialists.
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GoogLeNet,27 ResNet,33 and Inception,34,35 can solve the visual classification task in natural images. This

study used the static image pre-training and screening model and then inherits the weight of its backbone

and full connection layer through the method of transfer learning (Figure 5). FEBrNet model was con-

structed to process video data and automatically extract responsible frames from video data and make

the diagnosis (Figures 6 and 7); the results show that the model directly predicts the video responsible

frame, which is very close to the AUC of the doctor’s frame selection method (0.909 [95% CI: 0.884–

0.935]) (p = 0.715 > 0.05), which shows that AI model can reach the level of senior experts in frame selection.

Mammography screening can detect early breast cancer and reduce breast cancer mortality by more than

30% in women over 40 years of age.36 Although mammography is the gold standard for breast cancer

screening37 and has been proven to reduce mortality, the accuracy of results suffers among women with

dense breasts.38 In the independent testing set, the AUC of the FEBrNet model responsible frame method

was better than that of senior ultrasound and mammography doctors (p < 0.05).
Table 2. Statistics of diagnosis efficiency of FEBrNet-recommended frames and other frame sets

Modality AUC (95%CI) Cut-off Sensitivity (%) Specificity (%) Accuracy (%) p value

R_Frames 0.912 (0.888–0.936) 0.416 84.4 87.4 86.2 NA

Phy_Images 0.909 (0.884–0.935) 0.401 87.8 84.0 85.3 0.715

Fix_Frames 0.852 (0.821–0.883) 0.490 75.6 79.9 78.2 0.000

All_Frames 0.881 (0.852–0.910) 0.436 76.4 89.7 84.3 0.002

Ultrasound 0.820 (0.788–0.853) NA 98.7 65.3 79.6 0.000

Mammography 0.796 (0.759–0.833) NA 92.1 67.1 77.8 0.000

Note: AUC: area under the curve; 95% CI: 95% confidence interval; R_Frames: responsible frame; Phy_Images: doctor frame

selection; Fix_Frames: fixed interval frame selection; All_Frames: all frames of video; Ultrasound: Diagnosis by senior ultra-

sound doctors; Mammography: Diagnosis by senior mammography doctors; p: R Frames vs. others; NA: Not Applicable.

iScience 26, 105692, January 20, 2023 5



Figure 4. A case study of responsible frames selected by FEBrNet

Note: (A) and (B) The top 3 frames sorted by FScore are relatively similar in time sequence, visually identical, and

contribute comparable characteristics; (C) and (D) The top 3 frames chosen by Entropy Reduce method show more

diverse image characteristics and scattered on 2D feature plot.
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Limitations of the study

(1) The amount of breast ultrasound data in this study is limited. In the future, multi-center clinical

research and video data of various instruments should be carried out to improve the effectiveness

and robustness of training.

(2) This study only focuses on the classification of benign and malignant breast nodules. In the future, it

should be expanded to include image tasks such as infiltration range prediction, subtype classifica-

tion, molecular phenotype prediction, and distant metastasis prediction.

(3) The FEBrNet architecture can be used for ultrasound screening of various diseases, and more dis-

eases should be evaluated in the future.
STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
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Figure 5. Ultrasound video preprocessing
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ure 6. FEBrNet model structure

te: The backbone model is a feature extractor and weights of fully connected layer from pre-trained ultrasound image dataset filtered MobileNet_224.

rNet uses a feature extractor and weights from a pre-trained fully connected layer to generate a feature matrix that identifies responsible frames and

kes diagnostic predictions.
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Figure 7. An example of selecting responsible frames

Step 1: MaxPool the three frame feature matrices and yield the video feature matrix. Step 2: choose frame1 as the first responsible frame for it minimizing the

difference between FScorevideo and FScoreframei. Step 3: add another frame to the responsible frame collection, whereas step 2 already chose one. Since the

FScore difference between the responsible frame collections of frame1 and frame3 is the smallest, frame3 is picked as the second responsible frame.

Example Figure 1 Schematic diagram of automatic stop of responsible frame selection. Note: RF_1: The first responsibility frame, and so on;When themodel

selects the video responsibility frame, it gradually rises from the initial malignant prediction value to RF_9 (0.93), from RF_10 starts to decline gradually, so the

model is selected to RF_9 stop.
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B Prior work

d METHOD DETAILS

B FEBrNet algorithm overview

B Identifying responsible frames using FScore

B Automatically stop frame selection using entropy

B Experiment design
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REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Python van Rossum,39 https://www.python.org/

Tensorflow Abadi et al.40 https://www.tensorflow.org/

OpenCV OpenCV team https://opencv.org/

Matplotlib Hunter,41 https://matplotlib.org/

NumPy Harris et al.42 https://numpy.org/

Code for this paper Jiang,43 Code for FEBrNet - Mendeley Data
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and should be directed to and will be fulfilled by the lead

contact, FaJin Dong(dongfajin@szhospital.com).
Materials availability

This study did not generate new unique reagents.

Data and code availability

Data is not publicly shared but available upon reasonable request from the lead contact.

Code of FEBrNet is available on Code for FEBrNet - Mendeley Data. Any additional information required to

reanalyze the data reported in this work paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethic statement

This study retrospectively analyzed the female patients between the ages of 24 and 75 who underwent

breast ultrasound screening at Shenzhen People’s Hospital from July 2015 to December 2021. The study

was approved by the Ethics Committee of Shenzhen People’s Hospital, and the requirement for informed

consent was waived because of its retrospective design.
Inclusion criteria

(1)Breast nodules were detected by ultrasound, which were classified as 0, 3, 4a, 4b, 4c or 5 according to

BIRADS; (2) At least 3.0 mm breast tissue can be displayed around the nodule; (3) No intervention or oper-

ation was performed on the nodule to be evaluated before ultrasonic examination; (4) Patients underwent

surgery or biopsy within one week of ultrasonic data collection and obtained pathological results.
Exclusion criteria

(1) BIRADS 1 and 2; (2) Have a history of breast surgery or intervention; (3) Poor image quality; (4) The clinical

data of cases are incomplete, and the pathological results are not tracked.
Patient anonymize and video preprocessing

Firstly, we cut the original video, remove the equipment information and patient sensitive information

around the ultrasound image, and only keep the image window. Zoom video to 224 3 224 pixels, and

then expand them frame by frame. These scaled frames will be used as the input data for the responsibility

frame selection and comparison test of the new model (Figure 5).
iScience 26, 105692, January 20, 2023 11

mailto:dongfajin@szhospital.com
https://www.python.org/
https://www.tensorflow.org/
https://opencv.org/
https://matplotlib.org/
https://numpy.org/


ll
OPEN ACCESS

iScience
Article
Prior work

In our previous work,44 we had completed training and testing four AI models (Xception,45 MobileNet,46

ResNet50,47 and DenseNet12148) with three input image resolutions (224 3 224, 320 3 320, and

448 3 448 pixels). According to the inclusion and exclusion criteria, 3447 females breast nodules were

finally included. Finally, we selected MobileNet in 224 3 224 pixels is the optimal model and image reso-

lution, AUC: 0.893 (95% CI: 0.864-0.922), sensitivity: 81.6%, specificity: 82.1%, accuracy: 81.8%.
METHOD DETAILS

FEBrNet algorithm overview

In this study, we established the feature entropy breast network (FEBrNet), inheriting the backbone of the

pretrained optimal models as feature extractor and adding a feature calculation layer at the last layer of

models. The feature extractor processes each frame image and generates the corresponding feature ma-

trix. We performed maxpooling on the feature matrix of all frames to get the reference feature matrix of

entire video. A variable called FScore is defined by summing the values of malignant feature dimensions,

indicating the total information of malignancy in feature matrix. The frame sharing most similar FScore to

the reference feature matrix is selected as the first responsible frame and added to the responsible frame

set. When adding a new frame into the responsible frame set, we use greedy algorithm to search all

possible frames, which can minimize the differences in FScore of responsible frame set and the reference

feature matrix. Meanwhile, for each added responsible frame, we calculate the malignant probability and

the entropy of probability; once the entropy increases at a certain frame, themodel’s certainty of prediction

decreases, which is the stop signal for frame selection.
Identifying responsible frames using FScore

In our method, we focus on minimizing the difference between the FScore of the video and the FScore of

the responsible frame collection, with a smaller difference suggesting that the information of the respon-

sible frame collection is closer to the whole video. By gradually increasing the number of frames in the

responsible frame collection from 1 to n, and in each step selecting the frame with the smallest difference

and adding it to the responsible frame collection, we eventually obtain the local optimal responsible frame

collection, with each frame contributing various features (Figure 6).

The figure below shows a basic example of picking the top two responsible frames from a video with three

frames (Figure 7). The video feature matrix is constructed in step 1 by MaxPooling the three frame feature

matrices, and the FScorevideo is 25. In step 2, we specify the number of frames in responsible frame collec-

tion as one, and there are three options with FScores of 16, 15, and 11. Since the difference between

FScorevideo and FScoreframe1 is the lowest when selecting frame1, we choose frame1 as the first responsible

frame. Step 3 increases the number of frames in the responsible frame collection to two and the first

responsible frame (frame1) has already been chosen. FScore[frame1,frame2] is 17 and FScore[frame1,frame3] is

24, thus frame3 should be selected as the second responsible frame. Despite the fact that FScoreframe2

is larger, we will not choose frame2 as the second responsible frame for the benefit of adding frame2 to

the responsible frame collection are few. Frame2 provides almost the same features as the already selected

frame1, implying that they may also look similar.

In math, we defined FScore to quantify the contribution of a frame in certain feature dimension. We revised

the equation of final prediction in neural network. The output of the CNN in the basic CNN architecture

could be written as Ypred = Softmaxð½W0;W1�T � X +BÞ = ½Y0;Y1�, where Y0 denotes the benign probability

and Y1 is the malignant probability. The number of ðwi
1 �wi

0Þ3xi in the preceding equation represents the

malignancy contribution of a single feature dimension, it could be separated into two parts: ðwi
1 �wi

0Þ rep-
resenting the amount of information that feature dimention i could contribute to final possibility of malig-

nant and xi representing the intensity of the frame in feature dimention i. Meanwhile we hope to concen-

trate on the features indicating malignancy, therefore we use the equation FEj
i = maxð0; ðwj

1 �wj
0ÞÞ3 xj to

describe the contribution of framei in jth feature dimension, and the whole fearure matrix of framei can be

represented as ½FE�i = ½FE1
i ;FE

2
i ;FE

3
i /FEk

i �. To concentrate on the most representative characteristics of

video, we used MaxPooling to alter the feature matrices of all frames and constructed the video feature

matrix, where
12 iScience 26, 105692, January 20, 2023
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½FE�video = MaxPool
�½FE�1; ½FE�2/½FE�n
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=

h
max

�
FE1

1; FE
1
2/FE1

n

�
;

max
�
FE2

1; FE
2
2/FE2

n

�
/max

�
FEk

1;FE
k
2/FEk

n

�i

Mathematically, we define the FScore of framei as FScorei = sumð½FE�iÞ =
Pk

j = 1FE
j
i . When it comes

to a collection of frames A (A = [framea, frameb, . framec]), we use FScoreA = sum½FE�A max =Pk
j = 1maxðFEj

a;FE
j
b/FEj

cÞ to express its FScore.

The process of finding the ith responsible frame can be described as the following equation:

ithframe = argmin
�
FScorevideo � FScore½top1;top2;top3/topi� 1;i�

�
= argmin

�
Xk

j = 0

�
max

�
FEj

1; FE
j
2;/FEj

n

�
� max

�
FEj

top1; FE
j
top2;/FEj

topi� 1;FE
j
i

��

Automatically stop frame selection using entropy

To set the auto-stop strategy for frame selection, we borrow the idea of entropy in information theory which

is proposed by Shannon in 1948.24 In information theory, entropy is a measure of the uncertainty of random

variables, and mathematically described as HðXÞ =
P
x˛X

ð� log2 rðxÞÞrðxÞ, where rðxÞ is the probability den-

sity of random variable X, and � log2 rðxÞ measure the amount of information which is also called self-in-

formation amount. We update the feature matrix every time the responsibility frame is added and calculate

the entropy using malignant prediction value. With the increase of the number of responsibility frames, the

prediction changes. When the certainty of malignant prediction value decreases, the entropy will increase,

which is the stop signal (example Figure 1).
Experiment design

To evaluate whether FEBrNet-selected frames can be used as diagnostic frames, we trained AI models

based on FEBrNet-recommended frames, all frames, fixed interval frames and physician-selected frames.

Detailly, AI models based on different inputs have the same architecture, where pre-trained feature

extractor process the inputted set of frames to generate feature matrix. Then, each model uses a random

forest with same parameters (1024 estimators, max depth equals 10) to analyze the feature matrix of the

frames set and generate predictions. Since the feature extractor is inherited, it requires no retraining pro-

cess and only the random forests need training. Videos of all enrolled patients are divided into training and

testing sets, where pathological results of breast nodules are used as ground truth. To ensure no crossover,

the same patient can only appear in the same set. The results of models are compared, and an inference is

that the model based on better-inputted frame set can achieve higher performance of AUROC.

First, we conducted three-fold cross-validation to evaluate models’ performances on the training. Then we

compare the diagnostic performances of all models on testing set and the performance of real-world ultra-

sound and mammography doctors. The real-world ultrasound and mammography doctors’ performances

are obtained by tracing back the recordings of patient’s final examination before biopsy and re-evaluated

by senior physicians.
QUANTIFICATION AND STATISTICAL ANALYSIS

Continuous variable data are expressed as mean G standard deviation. Categorical variable data is ex-

pressed as a percentage. The paired sample t-test was used to compare the differences within the group.

R 3.6.3 was used for the statistical analysis. Firstly, draw the receiver operating characteristic curve (ROC),

calculate and output the area under the curve (AUC), and 95% confidence interval (95% CI), p < 0.05 is sta-

tistically significant. Output the optimal cut-off value, specificity, sensitivity, and accuracy.
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