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Abstract

In the Americas, as in much of the rest of the world, the dengue virus vector Aedes aegypti

is found in close association with human habitations, often leading to high population densi-

ties of mosquitoes in urban settings. In the Peruvian Amazon, this vector has been expand-

ing to rural communities over the last 10–15 years, but to date, the population genetic

structure of Ae. aegypti in this region has not been characterized. To investigate the relation-

ship between Ae. aegypti gene flow and human transportation networks, we characterized

mosquito population structure using a panel of 8 microsatellite markers and linked results to

various potential mechanisms for long-distance dispersal. Adult and immature Ae. aegypti

(>20 individuals per site) were collected from Iquitos city and from six neighboring riverine

communities, i.e., Nauta, Indiana, Mazan, Barrio Florida, Tamshiaco, and Aucayo. FST sta-

tistics indicate significant, but low to moderate differentiation for the majority of study site

pairs. Population structure of Ae. aegypti is not correlated with the geographic distance

between towns, suggesting that human transportation networks provide a reasonable expla-

nation for the high levels of population mixing. Our results indicate that Ae. aegypti gene

flow among sub-populations is greatest between locations with heavy boat traffic, such as

Iquitos-Tamshiaco and Iquitos-Indiana-Mazan, and lowest between locations with little or no

boat/road traffic between them such as Barrio Florida-Iquitos. Bayesian clustering analysis

showed ancestral admixture among three genetic clusters; no single cluster was exclusive

to any site. Our results are consistent with the hypothesis that human transportation net-

works, particularly riverways, are responsible for the geographic spread of Ae. aegypti in the

Peruvian Amazon. Our findings are applicable to other regions of the world characterized by

networks of urban islands connected by fluvial transport routes.
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Author summary

Aedes aegypti, the primary mosquito vector of dengue, is a highly invasive species that is

expanding from urban to peri-urban and rural areas throughout the Americas. Previous

studies documented the role of human transportation networks in Ae. aegypti long-

distance dispersal. We examined whether patterns of Ae. aegypti gene flow are consistent

with this observation. Mosquitoes were collected from seven locations, including the large

Amazonian city of Iquitos, Peru, and six neighboring rural communities, and their genetic

relatedness was compared using 8 microsatellite markers. Our results showed ample gene

flow among mosquito populations in this region, with greater gene flow observed among

sites that are connected by fluvial routes. These findings are consistent with the hypothesis

that human transportation networks, especially via boats, are a primary contributing fac-

tor to the spread of Ae. aegypti in the Peruvian Amazon.

Introduction

Anthropogenic activities such as trade and transportation contribute to the unintentional

spread of invasive organisms across the globe [1, 2], resulting in serious consequences for pub-

lic health, agriculture, the economy, and native ecosystems [3–5]. Pathogens and their insect

vectors are important examples of invasive organisms that directly impact human health.

The invasive mosquito, Aedes aegypti, is the primary vector of dengue, urban yellow fever,

and Zika viruses, is an important vector of chikungunya virus [6–8], and is a competent or sus-

pected vector of Mayaro virus [9]. Thought to be African in origin, Ae. aegypti most likely was

transported to the Americas via ships used for the transport of slaves and goods in the 15th-

19th centuries [10–12]. Ae. aegypti was first reported in Peru in 1852, but was declared eradi-

cated in 1958 following the success of a large-scale Pan American Health Organization yellow

fever control program [13]. The Amazonian city of Iquitos was the first documented site of Ae.
aegypti (in 1984) and dengue (in 1990) reestablishment in Peru [14, 15]. In recent years, Ae.
aegypti mosquitoes have been expanding geographically from urban to peri-urban and rural

areas throughout Peru and the rest of Latin America [16–18].

Ae. aegypti dispersal can occur in one of two ways: the slower, active dispersal of flying

adult females in search of bloodmeals or oviposition sites, or the faster, passive human-medi-

ated dispersal, by which humans unintentionally transport mosquitoes via vehicle traffic

(boats, cars, planes, etc). The latter can involve transport of eggs, larvae, pupae, or adults, all of

which have been documented in vehicles, particularly in boats [10, 19–22]. Our previous

research in the Peruvian Amazon demonstrated Ae. aegypti infestation on different vehicles

commonly used for trade and transportation, including large barges, medium-sized barges,

and buses [23, 24]. Characterizing the relative role and importance of both active and passive

dispersal mechanisms is paramount for understanding vector population structure and the

dynamics of pathogen transmission.

Previous studies have characterized Ae. aegypti population genetic structure at global scales

[25–29], in regions within countries [30–32], and within cities [33, 34]. Ae. aegypti genetic dif-

ferentiation across various spatial scales is likely due to its limited flight range (rarely exceeding

100m under natural conditions [35–37]), heterogeneities in insecticide application, human

population densities, and water storage habits [33, 38, 39]. At coarser scales (i.e., between

nations, or regions within nations), human transportation networks have been implicated as a

driver of Ae. aegypti gene flow; that is, relatedness between populations has been shown to cor-

relate with major highways and waterways [25, 32]. The Amazonian city of Iquitos, Peru
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presents is a unique setting in which to address questions of Ae. aegypti gene flow and human

transit, as people in this region rely heavily on rivers as a means of transport between locations.

Iquitos is the site of many longitudinal studies related to dengue epidemiology and Ae. aegypti
ecology [40], yet little is known about its population structure in this region. In this study, we

used Ae. aegypti samples collected from several sites within and around Iquitos to characterize

the population structure, and preliminarily explored whether genetic relatedness among mos-

quito populations is driven by human transportation networks.

Methods

Ethics statement

Permission for this study was granted by the Loreto Regional Health Department, and the

study protocol was approved by the NAMRU-6 Institutional Review Board in compliance with

all applicable federal regulations governing the protection of human subjects (protocol num-

ber NAMRU6.2012.0039). In addition, the Emory University Institutional Review Board

determined that this study does not represent human subjects based research.

Study area

Accessible only by plane or boat, Iquitos is surrounded by other, smaller settlements that are

primarily connected to one another via river networks. The only significant source of terres-

trial transit is the 95km Iquitos-Nauta Highway, connecting Iquitos (population, pop hence-

forth: 406,340) to the smaller city of Nauta (pop: 13,983) [41]. Once the epicenter of the rubber

industry in the early 1900s, the Iquitos economy now relies predominantly on oil and timber

exportations in addition to tourism. This setting is ideal for studying the invasion dynamics of

Ae. aegypti, because the region’s inhabitants are dependent on both fluvial and terrestrial

routes for trade and transportation.

Mosquito collections

Mosquitoes were collected from the city of Iquitos, and the neighboring towns of Nauta (pop:

13,983), Indiana-Mazan (pop: 6,594), Barrio Florida (pop: 728), Tamshiaco (pop: 4,583), and

Aucayo (pop: 806). Fig 1 and Table 1 summarize characteristics associated with each town.

(The map in Fig 1 was created in the program Quantum GIS [42] using shapefiles generated

from prior research activities [43].) After asking permission to survey the household for Ae.
aegypti mosquitoes, team members collected adult and immature mosquitoes either through

aspiration of adults or larval surveys. Mosquito collection methods are described in detail else-

where [44]. Within communities, we diversified mosquito sampling to the extent possible: we

collected a maximum of 3 mosquitoes from any given household, and sampled 1 out of every

10 houses. More than 20 individuals were collected for each sampling location, although mos-

quitoes collected from Indiana (n = 18) and Mazan (n = 14) were grouped into one population

to ensure adequate sample sizes for the calculation of inbreeding coefficient FIS, FST, and

Bayesian clustering analysis (described in detail below). Indiana and Mazan are only 1.2 km

apart and our data indicated that mosquito populations in those two locations were genetically

indistinguishable (FST = 0.032). The Euclidean distances between pairs of towns ranged from

approximately 15km (Aucayo and Tamshiaco) to 125km (Nauta-Indiana/Mazan). (S1 Table

demonstrates Euclidean pairwise distances between towns.)

We collected mosquitoes from multiple locations in Iquitos to determine whether mosqui-

toes in port areas were more closely related to those in the surrounding towns (Fig 1). The

location Iquitos A (Puerto Masusa) serves as a major hub of fluvial transit and predominantly
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Fig 1. Map of Ae. aegypti collection sites in the Peruvian Amazon. We collected Ae. aegypti mosquitoes from seven population centers in the Peruvian

Amazon: Iquitos, Nauta, Aucayo, Tamshiaco, Barrio Florida, Indiana, and Mazan. Collections from Indiana and Mazan were pooled into a single group to

ensure> 20 individuals per site. In addition, we collected mosquitoes from four locations within Iquitos, two port sites and two interior non-port sites.

https://doi.org/10.1371/journal.pntd.0007552.g001

Table 1. Characteristics of study sites.

City Sub-Sample N Collection Date Human population

Aucayo - 20 Sept 2008 806

Barrio Florida - 31 April 2008 728

Indiana-Mazan - 32 Mar 2008 6,594

Nauta 55 May 2007, Mar 2008 13,983

Tamshiaco - 76 Mar 2008 4,583

Iquitos - - - 406,340

Iquitos A—Port 21 May 2007, Mar 2008 -

Iquitos B—Port 40 Mar 2008 -

Iquitos C—Interior 35 May 2007, Feb, Mar 2008 -

Iquitos D—Recently urbanized 29 Feb 2008 -

We profiled > 20 individuals per location, with multiple sampling sites within Iquitos. Mosquito collections took place in 2007 and 2008. Human population data was

derived from the Peruvian National Census in 2007.

https://doi.org/10.1371/journal.pntd.0007552.t001
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harbors large barges, which carry cargo and passengers throughout the Peruvian Amazon dis-

tances up to ~500km. Iquitos B (Huequito) is a secondary fluvial port, primarily harboring

medium-sized barges that also carry cargo and passengers, but that travel more locally (up to

distances of ~250km) [24]. We also sampled mosquitoes from the interior of Iquitos (Iquitos

C, district of Iquitos) and from a recently urbanized southern neighborhood near the start of

the Iquitos-Nauta highway (Iquitos D, district of San Juan).

DNA extraction and amplification

Methods used for genotyping mosquitoes with microsatellite markers are described by Wong

et al [45]. Genomic DNA from the mosquito body was purified by potassium acetate/ethanol

precipitation [46]. In a multiplex polymerase chain reaction (PCR), we amplified 8 previously

described microsatellite markers [47, 48]. PCR products were diluted 1:60 or 1:40 in ddH2O,

and submitted to the University of California Davis College of Agriculture and Environmental

Sciences Genomics Facility for fragment analysis on an ABI 3730 XL capillary electrophoresis

sequencer (Life Technology Corp.). GS600 LIZ size standard (Life Technology Corp.) was

included with each sample to determine the size of individual peaks. ABI Peak Scanner soft-

ware (Applera Corp., Norwalk, CT) was used to visualize resulting chromatograms. After iden-

tifying fragments, alleles were assigned using the MsatAllele package in R [49, 50].

Microsatellite data analysis

We used the microsatellite data to calculate observed and expected heterozygosity values, in

addition to inbreeding coefficients, FIS, for each site and genetic locus in Arlequin v3.5.2.2

[51]. We also tested for departure from Hardy-Weinberg equilibrium (exact test with

1,000,000 Markov chain steps and 100,000 dememorization steps) in Arlequin v3.5.2.2. A

Sidak correction for multiple comparisons (for a total of 72 tests) was applied to determine sig-

nificant deviation from Hardy-Weinberg equilibrium (p< 0.00071).

FST was calculated in Arlequin v3.5.2.2 (10, 000 permutations, significance level p< 0.05)

[51]. We first conducted a pairwise FST analysis on all nine sampling locations to understand

the degree of genetic differentiation among all sample locations including Iquitos. We then

conducted a second pairwise FST analysis combining Iquitos samples to understand degree of

connectivity between the city center and the five villages outside the city. Mantel tests con-

ducted in the package ade4 in R [50, 52] were used to test genetic isolation (10,000 permuta-

tions) by three different distance models for the data that combined Iquitos samples: 1)

Euclidean distance, the shortest straight-line distance between two locations, 2) fluvial path

distance, the river route between towns, and 3) shortest path distance, the shortest accessible

fluvial or terrestrial route between two locations. Input FST values used to generate isolation by

distance plots are shown in S2 Table.

We also developed a “Propagule Pressure Index,” combining the probability of Ae. aegypti
infestation in different vehicle types with the frequency of travel between Iquitos and sur-

rounding towns. We calculated infestation probabilities from data collected in 2013 across six

different vehicle types common in Iquitos including: large and medium size barges, water

taxis, speed boats, buses, and taxis [24]. Our results indicated that some vehicle types were con-

sistently infested with Ae. aegypti across multiple months (71% of large barges, 35% of

medium-sized barges, and 12.5% of buses). Simultaneous with entomological surveys, we

interviewed vehicle drivers to determine the frequency of travel between Iquitos and sur-

rounding towns for each vehicle type to estimate the approximate number of vehicles traveling

to each town. The Propagule Pressure Index (PrPI) is calculated as follows:

PrPI = Sj = 1,n (Si = 1,n (γiθi))

[EXSCINDED]The genetic structure of Aedes aegypti is driven by boat traffic
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Where:

γi = probability of vehicle infestation

θi = number of trips from Iquitos to surrounding towns

i represents individual vehicles of a certain type

j represents different vehicle types (large barges, medium barges, and buses)

PrPI therefore represents the number of trips made between pairs of locations, weighted by

the probability of Ae. aegypti infestation for each vehicle type. Values of PrPI were plotted

against FST to visually explore the relationship between these two variables. However, no statis-

tical tests were conducted due to low sample sizes—pairwise calculations of PrPI were only

available between Iquitos and other towns, leaving a total of five observations.

We also estimated the genetic divergence of the populations by an analysis of molecular var-

iance (AMOVA) in Alrequin v3.5.2.2 [51]. The geographic structure considered in this analy-

sis is shown in Table 1; Aucayo, Barrio Florida, Indiana-Mazan, and Tamshiaco were counted

as separated populations, but Iquitos sites were given hierarchical consideration. The total var-

iation observed was attributed to differences between individuals within populations, and

among populations. Accordingly, we calculated pairwise F statistic analogues characterizing

the variation among individuals and populations (10,000 permutations, significance level p<

0.05).

We investigated the regional population structure of Ae. aegypti with the program Struc-

ture v. 2.3.4 [53]. Structure uses estimated allele frequencies to compute the likelihood that a

given genotype originated from a genetic cluster. The result is that probabilistic estimates

of population membership coefficients are assigned to each individual. Ancestral genetic

admixture within an individual is observed when an individual has more than one population

group is assigned. (For example, individual A is genetically admixed if the probability of

belonging to group 1 is 0.6 and to group 2 is 0.4—the sum of these components is 0.6 +

0.4 = 1.)

In Structure, we used an admixture model with uncorrelated allele frequencies to avoid the

risk of overestimating the number of populations (100,000 burn-ins and 200,000 Markov

Chain Monte Carlo runs after the burn-in period). We started simulations with K = 10, to

allow for the possibility of more genetic clusters than sampling locations (9 sampling locations

including 4 Iquitos locations, and 5 towns), and then ran simulations for K values of 10

through 1. For each K, we ran 10 simulations to ensure consistency between runs, and used

the log likelihood [53] and DeltaK method [54] to determine the most likely number of genetic

clusters.

Results

After applying a Sidak correction for multiple comparisons (p< 0.00071) for all populations,

significant heterozygous deficits were detected in eight comparisons (both statistically signifi-

cant and FIS > 0.50) among four loci (B07, AC1, AG2, H08) (Table 2). These comparison

were distributed across five sites including Barrio Florida (B07), Tamshiaco (B07), Iquitos A

(AC1 and AG2), Iquitos C (B07 and H08), and Iquitos D (AC1 and B07). At a site-level, signif-

icant and low to moderate levels of heterozygous deficits were observed in Nauta, Tamshiaco,

and all sites within Iquitos (FIS range among these sites: 0.19629 to 0.37096).Of 72 tests, 45

(62.5%) loci from all populations were found to be in Hardy-Weinberg equilibrium. The

majority of deviations were from Nauta and Tamshiaco; when those populations were

excluded, 73.2% of loci (41 of 56) were in Hardy-Weinberg equilibrium.

Pairwise FST values demonstrated low to moderate differentiation for the majority of site

pairs (Table 3). Mosquitoes from Barrio Florida and Nauta were significantly differentiated

[EXSCINDED]The genetic structure of Aedes aegypti is driven by boat traffic
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Table 2. Summary of variation at 8 microsatellite loci by sampling location.

A10 AC1 AC5 AG2 AG5 AT1 B07 H08 All loci

Barrio Florida

N 26 25 25 26 29 27 26 26

Ho 0.46154 0.44000 0.48000 0.26923 0.51724 0.62963 0.07692� 0.11538�

He 0.52715 0.52980 0.68082 0.38612 0.59952 0.62753 0.33710 0.11237

FIS 0.12664 0.17241 0.29927 0.30693 0.13934 0.00341 0.77528 0.0274 0.08561

Aucayo

N 20 17 17 17 20 20 15 20

Ho 0.20000 0.52941 0.76471 0.11765 0.65000 0.50000 0.26667 0.30000

He 0.26154 0.66845 0.73262 0.29947 0.69103 0.66410 0.40460 0.43077

FIS 0.24000 0.21311 0.04523 0.61446 0.06084 0.25197 0.34884 0.30909 0.14087

Indiana-Mazan

N 32 30 30 30 32 32 30 31

Ho 0.31250 0.53333 0.63333 0.36667 0.65625 0.50000 0.26667 0.48387

He 0.33284 0.60791 0.69774 0.31921 0.68006 0.70685 0.39266 0.52089

FIS 0.06203 0.12453 0.09375 0.15162 0.03556 0.29595 0.32460 0.07216 0.09449

Nauta

N 55 32 55 55 55 55 51 55

Ho 0.32727� 0.40625� 0.80000� 0.54545� 0.65455 0.50909 0.23529� 0.32727

He 0.49274 0.70933 0.89091 0.64754 0.70859 0.72160 0.45913 0.34429

FIS 0.33787 0.43119 0.10289 0.15888 0.07692 0.29642 0.49001 0.04985 0.19629†

Tamshiaco

N 73 59 58 61 73 75 57 76

Ho 0.32877� 0.52542� 0.37931� 0.27869 0.54795� 0.54667� 0.05263� 0.28947�

He 0.55333 0.77329 0.72489 0.35564 0.80869 0.81002 0.46763 0.51098

FIS 0.40751 0.3224 0.47891 0.21779 0.32394 0.3266 0.88833 0.43512 0.36043†

Iquitos A

N 21 21 21 21 21 21 21 21

Ho 0.47619 0.19048� 0.42857� 0.33333� 0.80952 0.57143 0.28571 0.61905

He 0.47038 0.69570 0.84553 0.72125 0.82811 0.74448 0.47967 0.52846

FIS 0.01266 0.73109 0.4993 0.54397 0.02299 0.23688 0.41032 0.17647 0.24141†

Iquitos B

N 40 40 40 40 40 40 40 40

Ho 0.57500 0.62500 0.47500 0.50000 0.62500 0.72500 0.22500� 0.27500�

He 0.62120 0.70601 0.73228 0.48829 0.79715 0.80000 0.53165 0.56867

FIS 0.01266 0.73109 0.49930 0.54397 0.02299 0.23688 0.41032 0.17647 0.25338†

Iquitos C

N 35 35 35 35 35 35 35 35

Ho 0.51429 0.28571� 0.28571� 0.14286 0.62857 0.65714 0.28571� 0.31429�

He 0.59462 0.66832 0.67702 0.23561 0.80207 0.78012 0.77474 0.60828

FIS 0.07526 0.11605 0.35425 0.02429 0.21812 0.09484 0.57989 0.5196 0.37096†

Iquitos D

N 29 29 29 29 29 29 29 29

Ho 0.31034 0.34483� 0.55172� 0.31034� 0.65517 0.55172 0.24138� 0.37931

He 0.46038 0.71083 0.81307 0.53539 0.78826 0.78100 0.60436 0.49304

(Continued)
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from all other sampling locations, with FST values ranging from 0.022 to 0.11. Barrio Florida

mosquitoes had the highest FST values observed for all study sites (FST > 0.05 in 4 out of 8 pair-

wise comparisons). We also found significant genetic differentiation for 7 out of 8 pairwise

comparisons for all other sites (Aucayo, Indiana/Mazan, Tamshiaco, Iquitos A, B, and C)

except for Iquitos D. Iquitos samples generally showed a lower degree genetic differentiation

both when comparing sites within Iquitos and sites outside of Iquitos. Notably, mosquitoes

collected from Iquitos A and B (the major and secondary port for fluvial transit) had lower FST

values than mosquitoes collected from the interior of Iquitos.

Our analysis of isolation by distance showed no clear relationship between genetic distance

(FST) and geographic distance for the three standard distance models (Fig 2). We were unable

to statistically evaluate the relationship between PrPI and genetic distances because of insuffi-

cient transportation network data.

Table 2. (Continued)

A10 AC1 AC5 AG2 AG5 AT1 B07 H08 All loci

FIS 0.32979 0.51931 0.3253 0.42466 0.17134 0.29725 0.60484 0.23383 0.33361†

N, sample size.

Ho, observed heterozygosity.

He, expected heterozygosity.

FIS, Inbreeding coefficient representing the reduction of heterozygosity in a subpopulation due to non-random mating.

Bolded FIS values represent notable heterozygous deficits (FIS > 0.50).
† Statistically significant site-level FIS after Sidak correction for multiple comparisons (p < 0.00071).

�Statistically significant deviation from Hardy-Weinberg equilibrium after Sidak correction for multiple comparisons (p < 0.00071).

Approximately 60% of loci were found to be in Hardy-Weinberg equilibrium (45 of 72 tests). Most of the significant deviations from Hardy-Weinberg equilibrium were

from Nauta and Tamshiaco. Statistically significant (p < 0.00071) and notable heterozygous deficits (FIS > 0.50) were observed in 8 in tests distributed across 5 sites.

https://doi.org/10.1371/journal.pntd.0007552.t002

Table 3. Pairwise FST values between 9 sampling locations.

Barrio Florida Aucayo Indiana/Mazan Nauta Tamshiaco Iquitos A Iquitos B Iquitos C Iquitos D

Barrio Florida 0

Aucayo 0.0793� 0

Indiana/Mazan 0.03882� 0.03062� 0

Nauta 0.03857� 0.04908� 0.05776� 0

Tamshiaco 0.05879� 0.04171� 0.05084� 0.02182� 0

Iquitos A 0.09909� 0.04595� 0.05694� 0.06006� 0.03617� 0

Iquitos B 0.03452� 0.0221� 0.01617� 0.04593� 0.01277� 0.03446� 0

Iquitos C 0.11186� 0.05321� 0.08134� 0.07741� 0.02794� 0.05779� 0.0453� 0

Iquitos D 0.03007� 0.01994 0.01682 0.02788� 0.00845 0.03074 0.00362 0.04614 0

� FST values statistically different from zero, indicating genetic differentiation (p < 0.05).

The fixation index, FST, ranges from 0 to 1 and measures the degree of genetic relatedness between two pairs of populations by comparing the variation observed in the

subpopulation with the variation observed in the total population. Values approaching 0 represent panmixia, whereas values approaching 1 represent complete genetic

isolation (non-interbreeding populations). Our findings show low to moderate genetic differentiation, with the greatest degree of differentiation observed for Barrio

Florida (highest FST values overall) and a lower degree of differentiation for Iquitos sites (lower FST values).

Genetic variation was compared within and between populations by AMOVA. Among all sites, approximately 71.5% of the variation was attributable to difference

among individuals, whereas 24.9% of the variation was explained by individuals within populations, and just 4.1% among collections within Iquitos (Table 4).

https://doi.org/10.1371/journal.pntd.0007552.t003
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AMOVA results showed that 71.5% of the total variation observed was attributable to dif-

ferences within individuals; only 4.1% of the total variation was attributable to differences

among samples collected within Iquitos, indicating a lack of genetic structure within the city.

Results from the DeltaK analysis of Structure output indicated that there were most likely

three genetic clusters (S1 Fig). That is, the DeltaK statistic was highest for k = 3 groups (Del-

taK = 9.5) in comparison with all other possible numbers of groups (DeltaK range: 0.18 to 1.6

for k = 1, k = 2, and k = 4 through 10). Structure results showed a clear pattern of genetic

admixture from all the sample populations, suggesting steady gene flow within this region (Fig

3). Of 339 individual mosquitoes, 181 (53.4%) showed dominant haplotype membership asso-

ciated with a single genetic group (represented in blue in Fig 3). Dominant haplotype mem-

bership (> 0.8) to the same group (depicted in blue in Fig 3) was observed among 84.4% of

mosquitoes collected from Indiana/Mazan, 87.5% of mosquitos from Iquitos B, 75% of mos-

quitoes from Aucayo, and 64.5% of individuals from Barrio Florida. Mosquitoes collected

from Tamshiaco and Nauta showed the greatest degree of ancestral admixture, with each of

the three genetic groups represented approximately equally.

Fig 2. Isolation by distance models for three measures of geographic distance and for one measure of network distance for Iquitos and surrounding sites. A total

of 15 pairwise comparisons are shown for Euclidean, Path, and Fluvial Path models. Only 5 pairwise comparisons were shown for the PrPI model, as transportation data

were only available for traffic between Iquitos and surrounding towns (and not between other towns). P-values shown are Mantel probabilities.

https://doi.org/10.1371/journal.pntd.0007552.g002

Table 4. Analysis of Molecular Variance (AMOVA) of Ae. aegypti mosquitoes using 8 microsatellite loci.

Source of Variation df Sum of Squares Variance components Variation (%) F-Statistic P-value

Among groups 5 40.895 -0.00770 -0.38% FCT = 0.28534 0.61693

Among populations within groups 3 22.246 0.08117 4.05% FSC = 0.04035 <0.0001�

Among individuals within populations 330 801.514 0.49834 24.87% FIS = 0.25814 <0.0001�

Within individuals 339 485.500 1.43215 71.47% FIT = 0.28534 <0.0001�

Total 667 1350.155 2.00397

FCT, differentiation among groups.

FSC, differentiation among populations within groups (Iquitos samples).

FIS, differentiation among individuals within populations.

FIT, differentiation within individuals.

�Statistically significant values (p < 0.05).

https://doi.org/10.1371/journal.pntd.0007552.t004
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Discussion

Our results support the hypothesis that Ae. aegypti long-distance dispersal is driven by human

activity, with particular emphasis on boat traffic. Low FST values between Iquitos and sur-

rounding towns in addition to our Structure results (i.e, the observation that no single popula-

tion was exclusive to a single site) suggest mosquito mobility between human settlements. The

pattern of mosquito gene flow also mirrors human transportation patterns: FST values for a

regional port (Iquitos B) were overall lower than FST values collected from the interior of Iqui-

tos (Iquitos C and D), implying more population mixing between Iquitos port mosquito popu-

lations and surrounding towns than between Iquitos interior populations and surrounding

towns. Barrio Florida populations, in contrast, were the most genetically isolated compared to

other towns. Iquitos is the major regional transportation hub, with frequent visits of barges

and other types of boats from surrounding areas, whereas Barrio Florida is a small town (pop:

~800), receiving most of its traffic from vehicles unlikely to be infested with Ae. aegypti (e.g.,

speed boats and small water taxis) [24].

Some limitations should be noted when interpreting our data. It is possible that patterns of

human traffic, and by extension, Ae. aegypti gene flow, have changed since mosquito samples

were collected in 2008. More recent samples and better transportation data would be required

to assess this possibility. Our limited data on human transport patterns also meant that we

were only able to evaluate the Propagule Pressure Index by comparisons between Iquitos and

surrounding towns. To that end, in some locations our sample sizes were low, particularly in

Aucayo. Further, some scholars have argued that the allozyme methods to estimate population

subdivision (e.g., FST) are coarse measures of gene flow, and in some instances lead to errone-

ous conclusions [55]. Still, the results we present lay the groundwork for future population

genetics approaches that may shed additional light on Ae. aegypti dispersal throughout the riv-

erine landscape characteristic of this region. Fine-scale landscape genetics methods may be of

particular interest to identify barriers to and pathways that facilitate dispersal [56].

Our previous studies in the Peruvian Amazon have shown that Ae. aegypti spreads farther

along rivers than terrestrial routes [18], that Ae. aegypti spread is facilitated by certain vehicle

types, large barges in particular (especially in comparison with terrestrial vehicles) [24], and

that oviposition regularly occurs on boats while in transit [57]. When considered together with

Fig 3. Structure diagram indicating the distribution of K = 3 genetic clusters across sampling locations. Individual

mosquitoes are indicated by vertical bars and color denotes genetic group membership. The most likely number of

populations were identified as being k = 3 different genetic groups. While the dominance of one genetic group

(depicted in blue) in Iquitos B (IQTB), Indiana/Mazan (INDM), Aucayo (AUC), and Barrio Florida (BFL) indicates

some genetic isolation at these sites, other sampling locations contain individuals from various genetic backgrounds.

https://doi.org/10.1371/journal.pntd.0007552.g003
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past findings, this exploration of Ae. aegypti population genetics provides additional evidence

to support the hypothesis that boats are major drivers of the passive transport of Ae. aegypti
mosquitoes over long distances (between cities > 5 km apart). In other regions, fluvial traffic

has also been implicated as a driver of Ae. aegypti spread [58], but the present study is the first

to illustrate the importance of boat traffic in the Peruvian Amazon specifically.

Consistent with other findings from Peru [59], our comparisons of Ae. aegypti genetic vari-

ation and geographic distance did not reveal a pattern of isolation by distance. At this spatial

scale (sampling locations < 100km apart), network distance might be the best predictor of

genetic mixing. Although both field ecology [16, 17] and population genetics studies [32, 60,

61] in the Americas have pointed to human transportation networks as a major driver of Ae.
aegypti spread, to our knowledge, none of these studies linked ecological evidence with trans-

portation and population genetics data (e.g., mosquito abundance collections, and data charac-

terizing the number of vehicle trips between locations). The novel Propagule Pressure Index,

PrPI, integrates these data by taking into account heterogeneity of Ae. aegypti infestation by

vehicle type, in addition to the frequency of traffic between two locations. We were unable to

statistically test for isolation by distance using PrPI because of limited sample sizes, however,

the isolation by distance plot (Fig 2) is suggestive of a negative correlation between genetic and

network distance. In other words, populations closer to one another in network space (as mea-

sured by PrPI) are likely to be more genetically related. Future studies with larger sample sizes

are required to evaluate its utility.

Within Iquitos, Ae. aegypti genetic admixture of port mosquitoes and recently urbanized

mosquitoes were similar, while interior mosquitoes had a different pattern of population

membership. Within cities, mosquito population structure may be a function of availability of

immature habitat, mosquito movement, or vector control programs that have differentially

impacted various neighborhoods within the city. Perhaps, for example, insecticide application

focused in the interior parts of the city act as barriers to population mixing, ultimately result-

ing in differing patterns of population group membership. This vector control explanation has

been proposed in other settings [62].

Indeed, Ae. aegypti population structure in the Amazon has many other implications for

dengue control programs. Our data suggest that Ae. aegypti are continually introduced to

smaller surrounding communities from locations such as Iquitos that have stable and spatially

diverse population structure. For example, the spread of insecticide resistance or vector com-

petence genes would occur but could potentially lead to significant spatial heterogeneity.

Significant spatial variation in vector competence has been reported previously [63], so under-

standing gene flow is critical for potential heterogeneity in transmission patterns. For new

technologies that rely on population replacement (e.g., Wolbachia), it is possible that releases

in large cities would be sufficient for spread to outlying areas.

An extension of our results is to ask, how does Ae. aegypti gene flow impact arboviral trans-

mission dynamics? Dengue in the Peruvian Amazon has been characterized by transmission

in large population centers with most cases observed from outlying communities assumed to

be associated with frequent travel to these commercial hubs. The distribution of Ae. aegypti is

driven by urbanization along highways, but infestation in communities along rivers is far less

consistent spatially [18]. We hypothesize that establishment of Ae. aegypti in these communi-

ties is driven in part by repeated introductions as well as by local ecological characteristics

such as water storage, management of containers, and microclimate. Over the last 20 years Ae.
aegypti has spread to smaller communities, with significant implications for vector control

programs which are already stretched to cover Iquitos and other larger cities. Dengue out-

breaks are known to occur in several of the small riverine towns near Iquitos. Although these

outbreaks are typically small and fleeting, the resources necessary for sustained control of Ae.
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aegypti (source reduction and larval control) are limited. Clearly, transmission in these smaller

communities could lead to infections in travelers (and mosquitoes) that could then carry virus

to other locations, thus serving as a mechanism of viral spread at broader scales.
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