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Modelling sequences and temporal networks with
dynamic community structures
Tiago P. Peixoto1,2 & Martin Rosvall3

In evolving complex systems such as air traffic and social organisations, collective effects

emerge from their many components’ dynamic interactions. While the dynamic interactions

can be represented by temporal networks with nodes and links that change over time, they

remain highly complex. It is therefore often necessary to use methods that extract the

temporal networks’ large-scale dynamic community structure. However, such methods are

subject to overfitting or suffer from effects of arbitrary, a priori-imposed timescales, which

should instead be extracted from data. Here we simultaneously address both problems and

develop a principled data-driven method that determines relevant timescales and identifies

patterns of dynamics that take place on networks, as well as shape the networks themselves.

We base our method on an arbitrary-order Markov chain model with community structure,

and develop a nonparametric Bayesian inference framework that identifies the simplest such

model that can explain temporal interaction data.
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To reveal the mechanisms of complex systems, researchers
identify large-scale patterns in their networks of interac-
tions with community-detection methods1. Traditionally,

these methods describe only static network structures without
taking into account the dynamics that take place on the networks,
such as people travelling by air, or the dynamics of the networks
themselves, such as new routes in air traffic networks. While the
dynamics on and of networks contain crucial information about
the systems they represent, only recently have researchers showed
how to incorporate higher-order Markov chains to describe
dynamics on networks2–5 and higher-order temporal structures
to describe dynamics of networks6–18. However, both avenues of
research have encountered central limitations: first, methods that
use higher-order memory to describe dynamics on networks rely
on extrinsic methods to detect the appropriate memory order2, 19.
Second, methods that attempt to describe dynamics of networks
adapt static descriptions by aggregating time windows into
discrete layers13–15, 17, 20–22, and ignore dynamics within the time
windows. Thus, both methods for dynamics on and of networks
require or impose ad hoc timescales that can obscure essential
dynamic community structure.

Furthermore, when trying to determine the timescales solely
from data, the curse of dimensionality strikes: the large number of
degrees of freedom makes the higher-order descriptions prone to
overfitting, when random fluctuations in high-dimensional data
are mistaken for actual structure23. Without a principled method
with effective model selection to counteract this increasing
complexity, it becomes difficult to separate meaningful dynamic
community structure from artefacts.

To overcome these model selection and arbitrary timescale
problems, we present a general and principled data-driven
method by simultaneously tackling dynamics on and of net-
works (Fig. 1). In contrast to approaches that incorporate tem-
poral layers in methods for static network descriptions, we build
our approach on describing the actual dynamics. We first for-
mulate a generative model of discrete temporal processes based
on arbitrary-order Markov chains with community structure24–
27. Since our model generates event sequences, it does not
aggregate data in time windows13–15, 17, and, other than the
Markov model assumption, needs no a priori imposed timescales.
This model can be used to describe dynamics taking place on
network systems that take into account higher-order memory
effects2, 3 of arbitrary order. We then use the model to describe
temporal networks, where the event sequence represents the
occurrence of edges in the network10.

In both cases, we employ a nonparametric Bayesian inference
framework that allows us to select, according to the statistical
evidence available, the most parsimonious model among all its
variations. Hence we can, for example, identify the most appro-
priate Markov order and the number of communities without

overfitting. In particular, if the dynamics on or of a network are
random, our method will not identify any spurious patterns from
noise but conclude that the data lack structure. As we also show,
the model can be used to predict future network dynamics and
evolution from past observations. Moreover, we provide publicly
available and scalable code with log-linear complexity in the
number of nodes independent of the number of groups.

Results
Inference of markov chains. Here we consider general time-
series composed of a sequence of discrete observations {xt}, where
xt is a single token from an alphabet of size N observed at discrete
time t, and xt−1= (xt−1, …, xt−n) is the memory of the previous n
tokens at time t (Fig. 1). An nth-order Markov chain with tran-
sition probabilities p(xt|xt−1) generates such a sequence with
probability

P xtf g pjð Þ ¼
Y
i

p xt jxt�1ð Þ ¼
Y
x;x

p x xjð Þax;x ; ð1Þ

where ax,x is the number of transitions x → x in {xt}. Given a
specific sequence {xt}, we want to infer the transitions prob-
abilities p(x|x). The simplest approach is to compute the
maximum-likelihood estimate, that is

bp xjxð Þ ¼ argmax
p xjxð Þ

P xtf gjpð Þ ¼ ax;x
ax

; ð2Þ

where ax=∑x ax,x, which amounts simply to the frequency of
observed transitions. Putting this back into the likelihood of eq.
(1), we have

ln P xtf g bpjð Þ ¼
X
x;x

ax;xln
ax;x
ax

: ð3Þ

This can be expressed through the total number of observed
transitions E ¼ P

x;x ax;x and the conditional entropy H XjXð Þ ¼
�P

x p̂ðxÞ
P

x p̂ x xjð Þln p̂ x xjð Þ as ln P xtf g p̂jð Þ ¼ �EH X Xjð Þ.
Hence, the maximisation of the likelihood in eq. (1) yields the
transition probabilities that most compress the sequence. There
is, however, an important caveat with this approach. It cannot be
used when we are interested in determining the most appropriate
Markov order n of the model, because the maximum likelihood in
eq. (3) increases with n. In general, increasing number of mem-
ories at fixed number of transitions leads to decreased conditional
entropy. Hence, for some large enough value of n there will be
only one observed transition conditioned on every memory,
yielding a zero conditional entropy and a maximum likelihood of
1. This would be an extreme case of overfitting, where by
increasing the number of degrees of freedom of the model it is
impossible to distinguish actual structure from stochastic

I

t

w

a s

h

e

b

o
f

i

m

a

Time0 1 2 3 4 5 6 7

Edge

N
od

e

1
2
3
4
5
6
7
8
9

10
b

Fig. 1 Unified modelling of dynamics on and of networks. Our modelling framework simultaneously describes: a Arbitrary dynamics taking place
on networks, represented as a sequence of arbitrary tokens that are associated with nodes, in this example {xt}= ‘It-was the best of times’.
b Dynamics of networks themselves, where the tokens are node-pair edges that appear in sequence, in this example {xt}= {(1, 2), (4, 3), (5, 2), (10, 8),
(7, 2), (9, 3), (3, 4)}
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fluctuations. Also, this approach does not yield true compression
of the data, since it does not describe the increasing model
complexity for larger values of n, and thus is crucially incomplete.
To address this problem, we use a Bayesian formulation, and
compute instead the complete evidence

P xtf gð Þ ¼
Z

P xtf g pjð ÞP pð Þ dp; ð4Þ

which is the sum of all possible models weighted according to
prior probabilities P(p) that encode our a priori assumptions.
This approach gives the correct model order for data sampled
from Markov chains as long as there are enough statistics that
balances the structure present in the data with its statistical
weight, as well as meaningful values when this is not the case28.

Although this Bayesian approach satisfactorily addresses the
overfitting problem, it misses opportunities of detecting large-
scale structures in data. As we show below, it is possible to extend
this model in such a way as to make a direct connection to the
problem of finding communities in networks, yielding a stronger
explanatory power when modelling sequences, and serving as a
basis for a model where the sequence itself represents a temporal
network.

Markov chains with communities. Instead of directly inferring
the transition probabilities of eq. (1), we propose an alternative
formulation: We assume that both memories and tokens are
distributed in disjoint groups (Fig. 2). That is, bx ∈ [1, 2, …, BN]
and bx ∈ [BN + 1, BN + 2, …, BN + BM] are the group member-
ships of the tokens and memories uniquely assigned in BN and BM
groups, respectively, such that the transition probabilities can be
parametrised as

p x xjð Þ ¼ θxλbxbx : ð5Þ

Here θx is the relative probability at which token x is selected
among those that belong to the same group, and λrs is the overall
transition probability from memory group s= bx to token group
r= bx. The parameter θx plays an analogous role to degree-
correction in the SBM29, and is together with the Bayesian
description the main difference from the sparse Markov chains
developed in refs. 26, 27. In the case n= 1, for example, each token
appears twice in the model, both as token and memory. An

alternative and often useful approach for n= 1 is to consider a
single unified partition for both tokens and memories, as shown
in Fig. 2b and described in detail in the Methods section ‘The
unified first-order model’. In any case, the maximum likelihood
parameter estimates are

λ̂rs ¼ ers
es
; θ̂x ¼ kx

ebx
; ð6Þ

where ers is the number of observed transitions from group s to r,
es ¼

P
t ets is the total outgoing transitions from group s if s is a

memory group, or the total incoming transition if it is a token
group. The labels r and s are used indistinguishably to denote
memory and token groups, since it is only their numerical value
that determines their kind. Finally, kx is the total number of
occurrences of token x. Putting this back in the likelihood, we
have

ln P̂ fxtgjb; λ̂; θ̂
� � ¼ X

r<s

ers ln
ers
eres

þ
X
X

kx ln kx: ð7Þ

This is almost the same as the maximum likelihood of the degree-
corrected stochastic block model (DCSBM)29, where ax,x plays the
role of the adjacency matrix of a bipartite multigraph connecting
tokens and memories. The only differences are constant terms
that do not alter the position of the maximum with respect to the
node partition. This implies that for undirected networks without
higher-order memory, there is no difference between inferring the
structure directly from its topology or from dynamical processes
taking place on it, as we show in detail in the Methods section
Equivalence between structure and dynamics.

As before, this maximum likelihood approach cannot be used if
we do not know the order of the Markov chain, otherwise it will
overfit. In fact, this problem is now aggravated by the larger
number of model parameters. Therefore, we employ a Bayesian
formulation and construct a generative process for the model
parameters themselves. We do this by introducing prior
probability densities for the parameters Dr θxf g αjð Þ and
Ds λrsf g βjð Þ for tokens and memories, respectively, with
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Fig. 2 Schematic representation of the Markov model with communities. The token sequence {xt}= ‘It was the best of times’ represented with nodes for
memories (top row) and tokens (bottom row), and with directed edges for transitions in different variations of the model. a A partition of the tokens and
memories for an n= 1 model. b A unified formulation of an n= 1 model, where the tokens and memories have the same partition, and hence can be
represented as a single set of nodes. c A partition of the tokens and memories for an n= 2 model
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hyperparameter sets α and β, and computing the integrated
likelihood

P xtf g α; β; bjð Þ ¼
Z

dθdλ P xtf g b; λ; θjð Þ

´
Y
r

Dr θxf g αjð Þ
Y
s

Ds λrsf g βjð Þ:
ð8Þ

where we used b as a shorthand for {bx} and {bx}. Now, instead of
inferring the hyperparameters, we can make a noninformative
choice for α and β that reflects our a priori lack of preference
towards any particular model30. Doing so in this case yields a
likelihood (for details, see Methods section Bayesian Markov
chains with communities),

P xtf g bj ; esf gð Þ ¼ P xtf g bj ; ersf g; kxf gð Þ
´ P kxf g ersf gj ; bð ÞP ersf g esf gjð Þ; ð9Þ

where P({xt}|b, {ers}, {kx}) corresponds to the likelihood of the
sequence {xt} conditioned on the transitions counts {ers} and
token frequencies {kx}, and the remaining terms are the prior
probabilities on the discrete parameters {ers} and {kx}. Since the
likelihood above still is conditioned on the partitions {bx} and
{bx}, as well as the memory group counts {es}, we need to include
prior probabilities on these as well to make the approach fully
nonparametric. Doing so yields a joint likelihood for both the
sequence and the model parameters,

P xtf g; b; esf gð Þ ¼ P xtf g bj ; esf gð ÞPðbÞP esf gð Þ: ð10Þ

It is now possible to understand why maximising this joint
likelihood will prevent overfitting the data. If we take its negative
logarithm, it can be written as

Σ ¼ �log2 P xtf g; b; esf gð Þ ð11Þ

¼ �log2 P xtf g bj ; esf gð Þ � log2P b; esf gð Þ: ð12Þ

The quantity Σ is called the description length of the data31, 32. It
corresponds to the amount of information necessary to describe
both the data and the model simultaneously, corresponding to the
first and second terms in eq. (12), respectively. As the model
becomes more complex—either by increasing the number of
groups or the order of the Markov chain—this will decrease the
first term as the data likelihood increases, but it will simulta-
neously increase the second term, as the model likelihood
decreases. The second term then acts as a penalty to the model
likelihood, forcing a balance between model complexity and
quality of fit. Unlike approximative penalty approaches based
solely on the number of free parameters such as BIC33 and AIC34,
which are not to valid for network models35, the description
length of the model is exact and fully captures its flexibility.
Because of the complete character of the description length,

minimising it indeed amounts to achieving true compression of
data, differently from the parametric maximum likelihood
approach mentioned earlier. Because the whole process is
functionally equivalent to inferring the SBM for networks, we
can use the same algorithms36 (for a details about the inference
method, see Methods section ‘Bayesian Markov chains with
communities’).

Before we continue, we point out that the selection of priors in
eq. (9) needs to be done carefully to avoid underfitting the data.
This happens when strong prior assumptions obscure structures
in the data37. We tackle this by using hierarchical priors, where
the parameter themselves are modelled by parametric distribu-
tions, which in turn contain more parameters, and so on38, 39.
Besides alleviating the underfitting problem, this allows us to
represent the data in multiple scales by a hierarchical partition of
the token and memories. We describe this in more detail in the
Methods section Bayesian Markov chains with communities.

This Markov chain model with communities succeeds in
providing a better description for a variety of empirical sequences
when compared with the common Markov chain parametrisation
(see Table 1). Not only do we systematically observe a smaller
description length, but we also find evidence for higher-order
memory in all examples. We emphasise that we are protected
against overfitting: If we randomly shuffle the order of the tokens
in each data set, with dominating probability we infer a fully
random model with n= 1 and BN= BM= 1, which is equivalent
to an n= 0 memoryless model. We have verified that we infer this
model for all analysed data sets. Accordingly, we are not
susceptible to the spurious results of nonstatistical methods23.

To illustrate the effects of community structure on the Markov
dynamics, we use the US flight itineraries as an example. In this
data set, the itineraries of 1,272,696 passengers were recorded,
and we treat each airport stop as a token in a sequence (for more
details, see Methods section Data sets). When we infer our model,
the itinerary memories are grouped together if their destination
probabilities are similar. As a result, it becomes possible, for
example, to distinguish transit hubs from destination hubs2. We
use Atlanta and Las Vegas to illustrate: Many roundtrip routes
transit through Atlanta from the origin to the final destination
and return to it two legs later on the way back to the origin. On
the other hand, Las Vegas often is the final destination of a
roundtrip such that the stop two legs later represents a more
diverse set of origins (Fig. 3). Resembling the results of the map
equation for network flows with memory2, this pattern is
captured in our model by the larger number of memory groups
that involve Las Vegas than those that involve Atlanta. Moreover,
the division between transit and destinations propagates all the
way to the upper hierarchical levels of the memory partition.

In addition to this itinerary memory clustering, the co-
clustering with airport tokens also divides the airports into
hierarchical categories. For example, Atlanta is grouped with
nearby Charlotte at the first hierarchy level, and with Detroit,

Table 1 Summary of inference results for empirical sequences

US flight itineraries War and Peace Taxi movements RockYou password list

n BN BM Σ Σ′ BN BM Σ Σ′ BN BM Σ Σ′ BN BM Σ Σ′
1 384 365 364,385,780 365,211,460 65 71 11,422,564 11,438,753 387 385 2,635,789 2,975,299 140 147 1,060,272,230 1,060,385,582
2 386 7605 319,851,871 326,511,545 62 435 9,175,833 9,370,379 397 1127 2,554,662 3,258,586 109 1597 984,697,401 987,185,890
3 183 2455 318,380,106 339,898,057 70 1366 7,609,366 8,493,211 393 1036 2,590,811 3,258,586 114 4703 910,330,062 930,926,370
4 292 1558 318,842,968 337,988,629 72 1150 7,574,332 9,282,611 397 1071 2,628,813 3,258,586 114 5856 889,006,060 940,991,463
5 297 1573 335,874,766 338,442,011 71 882 10,181,047 10,992,795 395 1095 2,664,990 3,258,586 99 6430 1,000,410,410 1,005,057,233

gzip 573,452,240 9,594,000 4,289,888 1,315,388,208
LZMA 402,125,144 7,420,464 2,902,904 1,097,012,288

Description length Σ ¼ �log2 P xtf g; bð Þ in bits, as well as inferred number of token groups BN and memory groups BM for different data sets and Markov order n (for detailed descriptions, see Methods
section Data sets). The value Σ0 ¼ �log2 P xtf gð Þ corresponds to the direct Bayesian parametrisation of Markov chains of ref. 28, with noninformative priors. Values in grey correspond to the minimum of
each column. The bottom rows show the compression obtained with gzip and LZMA, two popular variations of Lempel-Ziv54, 55
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Minneapolis, Dallas and Chicago at the third level. This extra
information tells us that these airports serve as alternative
destinations to itineraries that are similar to those that go through
Atlanta. Likewise, Las Vegas is grouped together with alternative
destinations Phoenix and Denver. This type of similarity between
airports—which is not merely a reflection of the memory patterns
—is not expressed with the assortative approach of the map
equation, which solely clusters densely connected memories with
long flow persistence times2. A more direct comparison between
our Bayesian inference framework and the map equation is not
meaningful, since these two approaches represent the network
divisions differently (for a detailed discussion, see Methods
section ‘Comparison with the map equation for network flows
with memory’). Indeed, it is the simultaneous division of
memories and tokens that effectively reduce the overall complex-
ity of the data, and provide better compression at higher memory
order. Consequently, the community-based Markov model can
capture patterns of higher-order memory that conventional
methods obscure.

Temporal networks. A general model for temporal networks
treats the edge sequence as a time series6, 40, 41. We can in
principle use the present model without any modification by
considering the observed edges as tokens in the Markov chain,
that is, xt= (i, j)t, where i and j are the endpoints of the edge at
time t (see Fig. 1b). However, this can be suboptimal if the net-
works are sparse, that is, if only a relatively small subset of all
possible edges occur, and thus there are insufficient data to reli-
ably fit the model. Therefore, we adapt the model above by
including an additional generative layer between the Markov
chain and the observed edges. We do so by partitioning the nodes
of the network into groups, that is, ci ∈ [1, C] determines the
membership of node i in one of C groups, such that each edge (i,
j) is associated with a label (ci, cj). Then we define a Markov chain
for the sequence of edge labels and sample the actual edges
conditioned only on the labels. Since this reduces the number of
possible tokens from O(N2) to O(C2), it has a more controllable
number of parameters that can better match the sparsity of the
data. We further assume that, given the node partitions, the edges
themselves are sampled in a degree-corrected manner, condi-
tioned on the edge labels,

P ði; jÞ ðr; sÞj ; κ; cð Þ ¼ δci;rδcj;sκiκj if r≠s
2δci;rδcj;sκiκj if r ¼ s

( )
; ð13Þ

where κi is the probability of a node being selected inside a group,
with

P
i2r κi ¼ 1. The total likelihood conditioned on the label

sequence becomes

P ði; jÞt
� � ðr; sÞt

� ��� ; κ; c
� � ¼ Y

t

P ði; jÞt ðr; sÞt
�� ; κ

� �
: ð14Þ

Since we want to avoid overfitting the model, we once more use
noninformative priors, but this time on {κi}, and integrate over
them,

P ði; jÞt
� �j ðr; sÞt

� �
; c

� �
¼

Z
P ði; jÞt

� � ðr; sÞt
� ��� ; κ; c

� �
PðκÞ dκ: ð15Þ

Combining this result with eq. (9), we have the complete
likelihood of the temporal network,

P ði; jÞt
� �

c; bj� � ¼ P ði; jÞt
� � ðr; sÞt

� ��� ; c
� �

P ðr; sÞt
� �

bj� �
; ð16Þ

conditioned only on the partitions. As we show in detail in the

Methods section Temporal networks, this model is a direct
generalisation of the static DCSBM, with a likelihood composed
of two separate static and dynamic terms. One recovers the static
DCSBM exactly by choosing BN= BM= 1, making the state
transitions memoryless.

Finally, to make the model nonparametric, we again include
the same prior as before for the node partition c, in addition to
token and memory partition b, such that the total nonparametric
joint likelihood is maximised,

P ði; jÞt
� �

; c; b
� � ¼ P ði; jÞt

� �
c; bj� �

PðcÞPðbÞ: ð17Þ

In this way, we again protect against overfitting, and we can infer
not only the number of memory groups BN and token groups BM,
as before, but also the number of groups in the temporal network
itself, C. If, for example, the temporal network is completely
random—that is, the edges are placed randomly both in the
aggregated network as well as in time—we again infer BN= BM=
C= 1 with the largest probability. We refer to the Methods
section Temporal networks for a complete derivation of the final
likelihood.

We employ this model in a variety of dynamic network data
sets from different domains (for details, see Table 2 and Methods
section Data sets). In all cases, we infer models with n> 0 that
identify many groups for the tokens and memories, meaning that
the model succeeds in capturing temporal structures. In most
cases, models with n= 1 best describe the data, implying that
there is not sufficient evidence for higher-order memory, with
exception of the network of chess moves, which is best described
by a model with n= 2. This result is different from the results for
the comparably long non-network sequences in Table 1, where we
identified higher-order Markov chains. Again, this is because the
alphabet size is much larger for temporal networks—correspond-
ing to all possible edges that can be encountered. Hence, for the
data sets in Table 2 the size of the alphabet is often comparable
with the length of the sequence. In view of this, it is remarkable
that the method can detect any structure at all. The intermediary
layer where the Markov chain generates edge types instead of the
edges directly is crucial. If we fit the original model without this
modification, we indeed get much larger description lengths and
we often fail to detect any Markov structure (not shown).

To illustrate how the model characterises the temporal
structure of these systems, we focus on the proximity network
of high school students, which corresponds to the voluntary
tracking of 327 students for a period of 5 days42. Whenever the
distance between two students fell below a threshold, an edge
between them was recorded at that time. In the best-fitting model
for these data, the inferred groups for the aggregated network
correspond exactly to the known division into 9 classes, except for
the PC class, which was divided into two groups (Fig. 4). The
groups show a clear assortative structure, where most connections
occur within each class. The clustering of the edge labels in the
second part of the model reveals the temporal dynamics. We
observe that the edges connecting nodes of the same group cluster
either in single-node or small groups, with a high incidence of
self-loops. This means that if an edge that connects two students
of the same class appears in the sequence, the next edge is most
likely also inside the same class, indicating that the students of the
same class are clustered in space and time. The remaining edges
between students of different classes are separated into two large
groups. This division indicates that the different classes meet each
other at different times. Indeed, the classes are located in different
parts of the school building and they typically go to lunch
separately42. Accordingly, our method can uncover the associated
dynamical pattern from the data alone.
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Temporal prediction. Using generative models to extract pat-
terns in data yields more than a mere description, since they
generalise observations and predict future events. For our Baye-
sian approach, the models can even be used to predict tokens and
memories not previously observed. This ability is in strong con-
trast to more heuristic methods that are only designed to find
partitions in networks or time series, and cannot be used for
prediction. Furthermore, the predictive performance of a model is
often used on its own to evaluate it, and serves as an alternative
approach to model selection: since an overly complicated model
incorporates noise in its description, it yields less accurate pre-
dictions. Thus, maximising the predictive performance also
amounts to a balance between quality of fit and model com-
plexity, similarly to the minimum description length approach we
have used so far. It is important, therefore, to determine if these
two different criteria yield consistent results, which would serve
as an additional verification of the overall approach.

We show this consistency by considering a scenario
where a sequence is divided into two equal-sized contiguous
parts, xtf g ¼ x�t

� �
∪ x′t
� �

. That is, a training set x�t
� �

and a
validation set x′t

� �
. We then evaluate the model by fitting it to the

training set and use it to predict the validation set. If we observe
only the training set, the likelihood of the validation set is
bounded below by P x′t

� �
x�t

� ��� ; b�
� � � expð�ΔΣÞ, where b� ¼

argmaxb P b x�t
� ���� �

is the best partition given the training set and
ΔΣ is the description length difference between the training set
and the entire data (for a proof, see Methods section Predictive
held-out likelihood). This lower bound will become tight when
both the validation and training sets become large, and hence can
be used as an asymptotic approximation of the predictive
likelihood. Table 2 shows empirical values for the same data sets
as considered before, where n= 0 corresponds to using only the
static DCSBM to predict the edges, ignoring any time structure.
The temporal network model provides better prediction in all
cases, and the best Markov order always coincides with the one
that yields the minimum description length, thus confirming a
full agreement between both criteria in these cases.

Discussion
We presented a dynamical variation of the degree-corrected
stochastic block model that can capture long pathways or large-

scale structures in sequences and temporal networks. The model
does not require the optimal Markov order or number of groups
as inputs, but infers them from data because the underlying
arbitrary-order Markov chain model is nonparametric. Its non-
parametric nature also evades a priori imposed timescales. We
showed that the model successfully finds meaningful large-scale
temporal structures in real-world systems and that it predicts
their temporal evolution. Moreover, in the Methods section we
extend the model to situations where the dynamics take place in
continuous time or is nonstationary. In contrast to approaches
that force network-formation dynamics into discrete time win-
dows, and require a priori knowledge about the appropriate
amount of dynamical memory, our approach provides a prin-
cipled and versatile alternative.

Methods
Bayesian Markov chains with communities. As described in the main text, a
Bayesian formulation of the Markov model consists in specifying prior probabilities
for the model parameters, and integrating over them. In doing so, we convert the
problem from one of parametric inference where the model parameters need to be
specified before inference, to a nonparametric one where no parameters need to be
specified before inference. In this way, the approach possesses intrinsic regular-
isation, where the order of the model can be inferred from data alone, without
overfitting30, 43.

To accomplish this, we rewrite the model likelihood, using eqs. (1) and (5), as

P xtf gjb; λ; θð Þ ¼
Y
x;x

θxλbx ;bx
� �ax;x ¼ Y

x

θkxx
Y
r<s

λersrs ; ð18Þ

and observe the normalisation constraints
P

x2r θx ¼ 1, and
P

r λrs ¼ 1. Since this
is just a product of multinomials, we can choose conjugate Dirichlet priors
probability densities Dr θxf g αxf gjð Þ and Ds λrsf gj βrsf gð Þ, which allows us to exactly
compute the integrated likelihood,

P xtf gjα; β; bð Þ ¼
Z

dθdλ P xtf gjb; λ; θð Þ

´
Y
r

Dr θxf g αxf gjð Þ
Y
s

Ds λrsf g βrsf gjð Þ

¼
Y
r

Γ Arð Þ
Γ er þ Arð Þ

Y
x2r

Γ kx þ αxð Þ
Γ αxð Þ

" #

´
Y
s

Γ Bsð Þ
Γ es þ Bsð Þ

Y
r

Γ ers þ βrsð Þ
Γ βrsð Þ

" #
;

ð19Þ

where Ar ¼
P

x2r αx and Bs ¼
P

r βrs . We recover the Bayesian version of the
common Markov chain formulation (see ref. 28) if we put each memory and token
in their own groups. This remains a parametric distribution, since we need to
specify the hyperparameters. However, in the absence of prior information it is
more appropriate to make a noninformative choice that encodes our a priori lack of
knowledge or preference towards any particular model, which amounts to choosing
αx= βrs= 1, making the prior distributions flat. If we substitute these values in eq.
(19), and re-arrange the terms, we can show that it can be written as the following
combination of conditional likelihoods,

P xtf gjb; esf gð Þ ¼ P xtf gjb; ersf g; kxf gð Þ
´P kxf gj ersf g; bð ÞP ersf g esf gjð Þ; ð20Þ

where

P xtf gjb; ersf g; kxf gð Þ ¼
Q

r<s ers!Q
r er !

Q
s
es!

Y
x

kx !; ð21Þ

P kxf gj ersf g; bð Þ ¼
Y
r

nr
er

� �� �" #�1

; ð22Þ

P ersf g esf gjð Þ ¼
Y
s

BN

es

� �� �" #�1

; ð23Þ

with
m
n

� �� �
¼ mþ n� 1

n

� �
being the multiset coefficient, that counts the

number of m-combinations with repetitions from a set of size n. The expression
above has the following combinatorial interpretation: P({xt}|b, {ers}, {kx})
corresponds to the likelihood of a microcanonical model39 where a random

Next airport, xAtlanta Las Vegas

Previous n = 3 airports, x
→

Fig. 3 Selection of US flight itineraries for a third-order model. The
itineraries contain stops in Atlanta or Las Vegas. Edges incident on
memories of the type x= (xt−1, Atlanta, xt−3) in red and x= (xt−1, LasVegas,
xt−3) in blue. The node colours and overlaid hierarchical division derive from
the n= 3 model inferred for the whole dataset
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sequence {xt} is produced with exactly ers total transitions between groups r and s,
and with each token x occurring exactly kx times. In order to see this, consider a
chain where there are only ers transitions in total between token group r and
memory group s, and each token x occurs exactly kx times. For the first transition
in the chain, from a memory x0 in group s to a token x1 in group r, we have the
probability

P x1 x0j ; b; ersf g; kxf gð Þ ¼ erskx1
eser

: ð24Þ

Now, for the second transition from memory x1 in group t to a token x2 in group u,
we have the probability

P x2 x1j ; b; ersf g; kxf gð Þ ¼

eut kx2
et eu

; if t≠s; u≠r; x2≠x1;

eus�1ð Þkx2
es�1ð Þeu ; if t ¼ s; u≠r; x2≠x1;

ert kx1�1ð Þ
et er�1ð Þ ; if t≠s; u ¼ r; x2 ¼ x1;

ert kx2
et er�1ð Þ ; if t≠s; u ¼ r; x2≠x1;

ers�1ð Þkx2
es�1ð Þ er�1ð Þ ; if t ¼ s; u ¼ r; x2≠x1;

ers�1ð Þ kx1�1ð Þ
es�1ð Þ er�1ð Þ ; if t ¼ s; u ¼ r; x2 ¼ x1:

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

ð25Þ

Proceeding recursively, the final likelihood for the entire chain is

P xtf g bj ; ersf g; kxf gð Þ ¼
Q

rs ers!Q
r er !

Q
s es!

Y
x
kx!; ð26Þ

which is identical to eq. (21).
The remaining terms in eqs. (22) and (23) are the prior probabilities on the

discrete parameters {kx} and {ers}, respectively, which are uniform distributions of
the type 1/Ω, where Ω is the total number of possibilities given the imposed
constraints. We refer to ref. 39 for a more detailed discussion on those priors.

Since the integrated likelihood above gives P({xt}|b, {es}), we still need to include
priors for the node partitions {bx} and {bx}, as well as memory group counts, {es}, to
make the above model fully nonparametric. This is exactly the same situation
encountered with the SBM37–39. Following refs. 38, 39, we use a nonparametric two-
level Bayesian hierarchy for the partitions, P({bi})= P({bi}|{nr})P({nr}), with
uniform distributions

P bif gj nrf gð Þ ¼
Q

r nr !
M!

; P nrf gð Þ ¼ M � 1

B� 1

� ��1

; ð27Þ

where nr is the number of nodes in group r,M ¼ P
r nr , which we use for both {bx}

and {bx}, that is, P(b) = P({bx})P({bx}). Analogously, for {es} we can use a uniform
distribution

P esf g bjð Þ ¼ BM

E

� �� ��1

: ð28Þ

The above priors make the model fully nonparametric with a joint and marginal
probability P({xt}, b)= P({xt}, b, {es})= P({xt}|b, {es})P(b)P({es}). This approach
successfully finds the most appropriate number of groups according to statistical
evidence, without overfitting32, 37, 38, 44. This nonparametric method can also
detect the most appropriate order of the Markov chain, again without overfitting28.
However, in some ways it is still sub-optimal. The use of conjugate Dirichlet priors
above was primarily for mathematical convenience, not because they closely
represent the actual mechanisms believed to generate the data. Although the
noninformative choice of the Dirichlet distribution (which yields flat priors for {ers}
and {es}) can be well justified by maximum entropy arguments (see ref. 30), and are
unbiased, it can in fact be shown that it can lead to underfitting of the data,
where the maximum number of detectable groups scales sub-optimally as

ffiffiffiffi
N

p
37.

As shown in ref. 38, this limitation can be overcome by departing from the
model with Dirichlet priors, and replacing directly the priors P({ers}|{es}) and
P({es}) of the microcanonical model by a single prior P({ers}), and noticing that
{ers} corresponds to the adjacency matrix of bipartite multigraph with E edges
and BN + BM nodes. With this insight, we can write P({ers}) as a Bayesian
hierarchy of nested SBMs, which replaces the resolution limit above by N/ln N, and
provides a multilevel description of the data, while remaining unbiased.
Furthermore, the uniform prior in eq. (8) for the token frequencies P({kx}|{ers},
(b) intrinsically favours concentrated distributions of kx values. This distribution

is often skewed. We therefore replace it by a two-level Bayesian hierarchy
P kxf gj ersf g; bð Þ ¼ Q

r P kxf gj nrk
� �� �

P nrk
� ���er� �

, with

P kxf gj nrk
� �� � ¼ Q

k n
r
k!

nr !
; ð29Þ

and P nrk
� ���er� � ¼ q er ; nrð Þ�1, where q(m, n) is the number of restricted partitions

of integer m into at most n parts (see ref. 39 for details).
As mentioned in the main text, in order to fit the model above we need to find

the partitions {bx} and {bx} that maximise P({xt}, b), or fully equivalently, minimise
the description length Σ ¼ �ln P xtf g; bð Þ31. Since this is functionally equivalent to
inferring the DCSBM in networks, we can use the same algorithms. In this work we
employed the fast multilevel MCMC method of ref. 36, which has log-linear
complexity O N log2Nð Þ, where N is the number of nodes (in our case, memories
and tokens), independent of the number of groups.

The unified first-order model. The model defined in the main text is based on a
co-clustering of memory and tokens. In the n = 1 case, each memory corresponds
to a single token. In this situation, we consider a slight variation of the model where
we force the number of groups of each type to be the same, that is, BN= BM= B,
and both partitions to be identical. Instead of clustering the original bipartite graph,
this is analogous to clustering its projection into a directed transition graph with
each node representing a specific memory and token simultaneously. When con-
sidering this model, the likelihoods computed in the main text and above remain
exactly the same, with the only difference that we implicitly force both memory and
token partitions to be identical, and omit the partition likelihood of eq. (27) for one
of them. We find that for many data sets this variation provides a slightly better
description than the co-clustering version, although there are also exceptions to
this.

We used this variation of the model in Fig. 4 because it yielded a smaller
description length for that dataset, and simplified the visualisation and
interpretation of the results in that particular case.

Temporal networks. Here we show in more detail how the likelihood for the
temporal network model is obtained. As we discuss in the Results section Temporal
networks, the total likelihood of the network conditioned on the label sequence is

P ði; jÞt
� � ðr; sÞt

� ��� ; κ; c
� � ¼ Y

i
P ði; jÞt

��ðr; sÞt ; κ� �
¼

Y
t
δcit ;rt δcjt ;st

h iY
i
κdii

Y
r
2mrr ;

ð30Þ

where di is the degree of node i, and mrs is the total number of edges between
groups r and s. Maximum likelihood estimation gives κ̂i ¼ di=eci . But since we want
to avoid overfitting the model, we once more use noninformative priors, this time
on {κi}, integrate over them, henceforth omitting the trivial Kronecker delta term
above and obtain

P ði; jÞt
� � ðr; sÞt

� ��� ; c
� � ¼ Q

i di!
Q

r 2
mrrQ

r er !
P dif gð Þ; ð31Þ

with P dif gð Þ ¼ Q
r

nr
er

� �� ��1

. Combining this with eq. (9) as P({(i, j)t}|c, b) = P

({(i, j)t}|{(r,s)t}, c)P({(r, s)t}|b), we have the complete likelihood of the temporal
network

P ði; jÞt
� ���c; b� � ¼

Q
r�s mrs!

Q
r 2

mrrQ
r er !

Y
i
di! ð32Þ

´ P dif gjcð ÞP mrsf gð Þ
Q

u<v e
0
uv !Q

u e
0
u!
Q

v e
0
v !
P e0uvf gð Þ: ð33Þ

This likelihood can be rewritten in such a way that makes clear that it is composed
of one purely static and one purely dynamic part,

P ði; jÞt
� ���c; b� � ¼ P Aij

� ���c� �
´
P ðr; sÞt

� �
b; evf gj� �

P mrsf gð ÞQr�s mrs!
: ð34Þ

The first term of eq. (34) is precisely the nonparametric likelihood of the static
DCSBM that generates the aggregated graph with adjacency matrix Aij= kx= (i,j)
given the node partition {ci}, which itself is given by

lnP Aij
� ���c� � � E þ 1

2

X
rs

ersln
ers
eres

þ
X
i

ln di!

þlnP dif gð Þ þ ln P mrsf gð Þ;
ð35Þ

if Stirling’s approximation is used. The second term in eq. (34) is the likelihood
of the Markov chain of edge labels given by eq. (9) (with {xt}= {(r,s)t}, and
{kx}= {mrs}). This model, therefore, is a direct generalisation of the static DCSBM,
with a likelihood composed of two separate static and dynamic terms. One recovers
the static DCSBM exactly by choosing BN= BM= 1—making the state transitions
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memoryless—so that the second term in eq. (34) above contributes only with a
trivial constant 1/E! to the overall likelihood. Equivalently, we can view the DCSBM
as a special case with n= 0 of this temporal network model.

Predictive held-out likelihood. Given a sequence divided in two contiguous parts,
xtf g ¼ x�t

� �
∪ x′t
� �

, that is, a training set fx : t�g and a validation set x′t
� �

, and if
we observe only the training set, the predictive likelihood of the validation set is

P x′t
� ��� x�t

� �
; b�

� � ¼ P x′t
� �

∪ x�t
� ���b�� �

P x�tf gjb�ð Þ ; ð36Þ

where b� ¼ argmaxb P b x�t
� ���� �

is the best partition given the training set. More-
over, we have

P x′t
� �

∪ x�t
� ���b� �� ¼ X

b0
P x′t

� �
∪ x�t
� ���b�; b0� �

P b0 jb�ð Þ; ð37Þ

where b′ corresponds to the partition of the newly observed memories (or even
tokens) in x′t

� �
. Generally we have P(b′|b*)= P(b′, b*)/P(b*), so that

P x′t
� ��� x�t

� �
; b�

� � ¼ P
b0 P x′t

� �
∪ x�t
� ���b�; b0� �

P b�; b0ð Þ
P x�tf gjb�ð ÞP b�ð Þ

�
P x′t

� �
∪ x�t
� ���b�; b̂0
 �

P b�; b̂0

 �

P x�tf gjb�ð ÞP b�ð Þ ¼ expð�ΔΣÞ;
ð38Þ

where b̂0 ¼ argmaxb0P x′t
� �

∪ x�t
� ���b�; b0� �

P b�; b0ð Þ and ΔΣ is the difference in the
description length between the training set and the entire data. Hence, computing
the minimum description length of the remaining data by maximising the posterior
likelihood relative to the partition of the previously unobserved memories or
tokens, yields a lower bound on the predictive likelihood. This lower bound will
become tight when both the validation and training sets become large, because then
the posterior distributions concentrate around the maximum, and hence can be
used as an asymptotic approximation of the predictive likelihood.

Continuous time. So far, we have considered sequences and temporal networks
that evolve discretely in time. Although this is the appropriate description for many
types of data, such as text, flight itineraries and chess moves, in many other cases
events happen instead in real time. In this case, the time series can be represented—
without any loss of generality—by an embedded sequence of tokens {xt} placed in
discrete time, together with an additional sequence of waiting times {Δt}, where
Δt≥ 0 is the real time difference between tokens xt and xt−1. Employing a
continuous-time Markov chain description, the data likelihood can be written as

P xtf g; Δtf gjp; λð Þ ¼ P xtf gjpð Þ ´P Δtf gj xtf g; λð Þ ð39Þ

with P({xt}|p) given by eq. (1), and

P Δtf g xtf gj ; λð Þ ¼
Y
i

P Δt λxt�1jð Þ; ð40Þ

where

P Δjλð Þ ¼ λe�λΔ; ð41Þ

is a maximum-entropy distribution governing the waiting times, according to the

frequency λ. Substituting this in eq. (40), we have

P Δtf gj xtf g; λð Þ ¼
Y
x

λkxx e�λxΔx ; ð42Þ

where Δx ¼
P

t Δtδxt ;x . To compute the nonparametric Bayesian evidence, we
need a conjugate prior for the frequencies λx,

P λjα; βð Þ ¼ βαλα�1

ΓðαÞ e�βλ; ð43Þ

where α and β are hyperparameters, interpreted, respectively, as the number and
sum of prior observations. A fully noninformative choice would entail α → 0 and β
→ 0, which would yield the so-called Jeffreys prior46, P(λ) ∝ 1/λ. Unfortunately,
this prior is improper because it is not a normalised distribution. In order to avoid
this, we use instead α= 1 and β ¼ P

x λx=M, taking into account the global
average. While this is not the only possible choice, the results should not be
sensitive to this prior since the data will eventually override any reasonable
assumption we make. Using this prior, we obtain the Bayesian evidence for the
waiting times as

P Δtf g xtf gjð Þ ¼
Y
x

Z 1

0
λkx e�λΔxP λjα; βð Þdλ; ð44Þ

¼
Y
x

βαΓ kx þ αð Þ
ΓðαÞ Δx þ βð Þkxþα

: ð45Þ

Hence, if we employ the Bayesian parametrisation with communities for the dis-
crete embedded model as we did previously, we have

P xtf g; Δtf g; bð Þ ¼ P xtf g; bð Þ ´P Δtf gj xtf gð Þ; ð46Þ

with P({xt}, b) given by eq. (10).
Since the partition of memories and tokens only influences the first term of eq.

(46), corresponding to the embedded discrete-time Markov chain, P({xt}, b), the
outcome of the inference for any particular Markov order will not take into account
the distribution of waiting times—although the preferred Markov order might be
influenced by it. We can change this by modifying the model above, assuming that
the waiting times are conditioned on the group membership of the memories,

λx ¼ ηbx ; ð47Þ

where ηr is a frequency associated with memory group r. The Bayesian evidence is
computed in the same manner, integrating over ηr with the noninformative prior of
eq. (43), yielding

P Δtf gj xtf gð Þ ¼
Y
r

βαΓ er þ αð Þ
ΓðαÞ Δr þ βð Þerþα; ð48Þ

where Δr ¼
P

t Δtδbxt ;r . Since this assumes that the waiting times will be sampled
from the same distribution inside each group, the inference procedure will take the
waiting time into account, and will place memories with significantly different
delays into different groups.

As an example of the use of this model variation, we consider a piano reduction
of Beethoven’s fifth symphony (extracted in MIDI format from the Mutopia project
at http://www.mutopiaproject.org), represented as a sequence of E= 4223 notes of

Table 2 Summary of inference results for empirical temporal networks

High school proximity (N= 327, E= 5818) Enron email (N= 87,273, E= 1,148,072) Internet AS (N= 53,387, E= 500,106)

n C BN BM Σ −ΔΣ C BN BM Σ −ΔΣ C BN BM Σ −ΔΣ
0 10 – – 89,577 −64,129 1447 – – 19,701,405 −11,631,987 187 – – 19,701,403 −8,094,541
1 10 9 9 82,635 −49,216 1596 2219 2201 13,107,399 −8,012,378 185 131 131 10,589,136 −6,279,923
2 10 6 6 86,249 −49,533 324 366 313 16,247,904 −8,370,876 132 75 43 14,199,548 −6,921,032
3 9 6 6 103,453 −49,746 363 333 289 26,230,928 −14,197,057 180 87 79 22,821,016 −8,133,665

APS citations (N= 425,760, E= 4,262,443) prosper.com loans (N= 89,269, E= 3,394,979) Chess moves (N= 76, E= 3,130,166)
0 3774 – – 131,931,579 −93,802,176 318 – – 96,200,002 −64,428,332 72 – – 66,172,128 −34,193,040
1 4426 6853 6982 94,523,280 −56,059,700 267 1039 1041 59,787,374 −30,487,941 72 339 339 58,350,128 −30,271,323
2 4268 710 631 144,887,083 −100,264,678 205 619 367 109,041,487 −54,211,919 72 230 266 58,073,342 −30,110,657
3 4268 454 332 228,379,667 −120,180,052 260 273 165 175,269,743 −54,655,474 72 200 205 76,465,862 −32,120,845

Hospital contacts (N= 75, E= 32,424) Infectious Sociopatterns (N= 10,972, E= 415,912) Reality Mining (N= 96, E= 1,086,404)
0 68 – – 484,121 −270,355 4695 – – 8,253,351 −6,876,439 93 – – 21,337,812 −10,835,792
1 60 58 58 245,479 −131,010 5572 2084 2084 4,525,629 −5,834,112 93 1015 1015 14,592,018 −7,813,217
2 62 29 26 366,351 −201,047 5431 3947 3947 7,503,859 −6,311,244 95 1094 2541 14,657,975 −8,185,791
3 50 11 7 644,083 −332,889 1899 829 783 12,527,730 −9,776,214 92 1225 1896 16,482,714 −8,669,765

Description length Σ ¼ �log2 P ði; jÞt
� �

; c; b
� �

in bits as well as inferred number of node groups C, token groups BN, and memory groups BM for different data sets and different Markov order n (see
Methods section Datasets). The value �ΔΣ � ln P x′t

� �
x�t

� ��� ; b�
� �

is a lower-bound on the predictive likelihood of the validation set x′t
� �

given the training set x�t
� �

and its best parameter estimate.
Values in grey correspond to the minimum of each column
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an alphabet of size N= 63. We consider both model variants, where the timings
between notes are discarded, and where they are included. If individual notes are
played simultaneously as part of a chord, we order them lexicographically and
separate them by Δt= 10−6 s. The results of the inference can be seen in Table 3.
The discrete-time model favours an n = 1 Markov chain, whereas the continuous-
time model favours n= 2. This is an interesting result that shows that the timings
alone can influence the most appropriate Markov order. We can see in more detail
why by inspecting the typical waiting times conditioned on the memory groups, as
shown in Fig. 5. For the discrete-time model, the actual continuous waiting times
(which are not used during inference) are only weakly correlated with the memory
groups. On the other hand, for the continuous-time model we find that the
memories are divided in such a way that they are strongly correlated with the
waiting times: there is a group of memories for which the ensuing waiting times are
always Δt= 10−6, corresponding to node combinations that are always associated
with chords. The remaining memories are divided into further groups that display
at least two distinct timescales, that is, short and long pauses between notes. These
statistically significant patterns are only visible for the higher order n= 2 model.

In the above model the waiting times are distributed according to the
exponential distribution of eq. (41), which has a typical timescale given by 1/λ.
However, one often encounters processes where the dynamics are bursty, that is,
the waiting times between events lack any characteristic scale, and are thus
distributed according to a power-law

P Δ βjð Þ ¼ βΔβ
m

Δβþ1 ;
ð49Þ

for Δ>Δm, otherwise P(Δ|β)= 0. One could in principle repeat the above
calculations with the above distribution to obtain the inference procedure for this
alternative model. However, this is in fact not necessary, since by making the
transformation of variables

μ ¼ ln
Δ
Δm

; ð50Þ

we obtain for eq. (49)

P μ βjð Þ ¼ βe�βμ; ð51Þ

which is the same exponential distribution of eq. (41). Hence, we need only to
perform the transformation of eq. (50) for the waiting times prior to inference, to
use the bursty model variant, while maintaining the exact same algorithm.

Nonstationarity and hidden contexts. An underlying assumption of the Markov
model proposed is that the same transition probabilities are used for the whole
duration of the sequence, that is, the Markov chain is stationary. Generalisations of
the model can be considered where these probabilities change over time. Perhaps
the simplest generalisation is to assume that the dynamics is divided into T discrete

epochs, such that one replaces tokens xt by a pair (x, τ)t, where τ ∈ [1, T] represents
the epoch where token x was observed. In fact, τ does not need to be associated
with a temporal variable—it could be any arbitrary covariate that describes addi-
tional aspects of the data. By incorporating this type of annotation into the tokens,
one can use a stationary Markov chain describing the augmented tokens that in fact
corresponds to a nonstationary one if one omits the variable τ from the token
descriptors—effectively allowing for arbitrary extensions of the model by simply
incorporating appropriate covariates, and without requiring any modification to
the inference algorithm.

Another consequence of this extension is that the same token x can belong to
different groups if it is associated with two or more different covariates, (x, τ1) and
(x, τ2). Therefore, this inherently models a situation where the group membership
of tokens and memory vary in time.

As an illustration of this application of the model, we consider two literary texts:
an English translation of ‘War and peace’, by Leo Tolstoy, and the French original
of ‘À la recherche du temps perdu’, by Marcel Proust. First, we concatenate both
novels together, treating it as a single text. If we fit our Markov model to it, we
obtain the n= 3 model shown in Fig. 6a. In that figure, we have highlighted tokens
and memories that involve letters that are exclusive to the French language, and
thus most of them belong to the second novel. We observe that the model
essentially finds a mixture between English and French. If, however, we indicate in
each token to which novel it belongs, for example (x, wp)t and (x, temps)t, we
obtain the model of Fig. 6b. In this case, the model is forced to separate between the
two novels, and one indeed learns the French patterns differently from English.
Since this nonstationary model possesses a larger number of memory and tokens,
one would expect a larger description length. However, in this cases it has a smaller
description length than the mixed alternative, indicating indeed that both patterns
are sufficiently different to warrant a separate description. Therefore, this approach
is capable of uncovering change points47, where the rules governing the dynamics
change significantly from one period to another.

The above extension can also be used to uncover other types of hidden contexts.
For example, in a temporal network of student proximity, we know that pairs of
individuals that are far away are unlikely to be conditionally dependent on each
other. If this spatial information is not available in the data, it may be inferred in
same way it was done for language above. If the information is available, it can be
annotated on the transitions, yielding a multilayer version of the model, similar to
the layered SBM15.

Equivalence between structure and dynamics. The likelihood of eq. (4) in the
main text is almost the same as the DCSBM29. The only exceptions are trivial
additive and multiplicative constants, as well as the fact that the degrees of the
memories do not appear in it. These differences, however, do not alter the position
of the maximum with the respect to the node partition. This allows us to establish
an equivalence between inferring the community structure of networks and
modelling the dynamics taking place on it. Namely, for a random walk on a
connected undirected graph, a transition i → j is observed with probability Aijpi(t)/

PC

PC
st

M
P

st1

MP

MPst2

2BIO
1

2
B

IO
2

2B
IO

3
PSIst

(4, 7)

(0, 3)

(3, 5)(1, 6)

(3, 7)

(5, 6)

(6, 7)

(4, 5)

(1, 3)

(2, 6)
(5, 8)

(3, 6)

(0, 5)

(3, 9)

(4, 6)

(7, 8)

(2, 9) (0, 4)

(1, 8)

(0, 2)

(1, 4)

(0, 7)

(2, 5)

(7, 9)

(1, 2)

(3, 8)

(3, 3)

(6, 8) (4, 8)

(5, 9)

(4, 9)

(1, 9)

(0, 1)

(2, 7)

(0, 8)

(2, 8)

(2, 4)

(8, 9)

(0, 6)

(5, 7)
(1, 5)

(2, 3)

(6, 6)

(6, 9)

(0, 9)
(1, 7)

(3, 4)

(7, 7)

(5, 5)

(0, 0)

(4, 4)

(9, 9)

(2, 2)

(8, 8)

(1, 1)

ba

1

8 4

3

2

6

0

9

5

7

Fig. 4 Inferred temporal model for a high school proximity network42. a The static part of the model divides the high school students into C= 10 groups
(square nodes) that almost match the known classes (text labels). b The dynamic part of the model divides the directed multigraph group pairs in a into BN
= BM= 9 groups (grey circles). The model corresponds to an n= 1 unified Markov chain on the edge labels, where the memory and tokens have identical
partitions, as described in detail in the Methods section The unified first-order model

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00148-9 ARTICLE

NATURE COMMUNICATIONS |8:  582 |DOI: 10.1038/s41467-017-00148-9 |www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


ki, with pi(t) being the occupation probability of node i at time t. Thus, after
equilibration with pi(∞)= ki/2E, the probability of observing any edge (i,j) is a
constant: pi(∞)/ki + pj(∞)/kj= 1/E. Hence, the expected edge counts ers between
two groups in the Markov chain will be proportional to the actual edge counts in
the underlying graph given the same node partition. This means that the likelihood
of eq. (4) in the main text (for the n= 1 projected model described above) and of
the DCSBM will differ only in trivial multiplicative and additive constants, such
that the node partition that maximises them will be identical. This is similar to the
equivalence between network modularity and random walks48, but here the
equivalence is stronger and we are not constrained to purely assortative modules.
However, this equivalence breaks down for directed graphs, higher-order memory
with n > 1 and when model selection chooses the number of groups.

Comparison with the map equation for network flows with memory. Both the
community-based Markov model introduced here and the map equation for net-
work flows with memory2 identify communities in higher-order Markov chains
based on maximum compression. However, the two approaches differ from each
other in some central aspects. The approach presented here is based on the
Bayesian formulation of a generative model, whereas the map equation finds a
minimal modular entropy encoding of the observed dynamics projected on a node
partition. Thus, both approaches seek compression, but of different aspects of the
data.

The map equation operates on the internal and external transitions within and
between possibly nested groups of memory states and describes the transitions

between physical nodes [xt is the physical node or token in memory states of the
form x= (xt, xt−1, xt−2, …)]. The description length of these transitions is
minimised for the optimal division of the network into communities. By
construction, this approach identifies assortative modules of memory states with
long flow persistence times. Moreover, for inferring the most appropriate Markov
order, this dynamics approach requires supervised approaches to model selection
that uses random subsets of the data such as bootstrapping or cross validation49.

On the other hand, the model presented here yields a nonparametric log-
likelihood for the entire sequence as well as the model parameters, with its negative
value corresponding to a description length for the entire data, not only its
projection into groups. Minimising this description length yields the optimal co-
clustering of memories and tokens, and hence assumes no inherent assortativity.
Therefore it can be used also when the underlying Markov chain is disassortative.
Moreover, the description length can also be used for unsupervised model
selection, where the Markov order and number of groups are determined from the
entire data, obviating the need for bootstrapping or cross validation. Furthermore,
the present approach can be used to generate new data and make predictions based
on past observations.

These distinctions mean that the two different approaches can give different
results and that the problem at hand should decide which method to use.

Data sets. Below we give a description of the data sets used in this work.
US flight itineraries: This data set corresponds to a sample of flight itineraries in the
US during 2011 collected by Bureau of Transportation Statistics of the United
States Department of Transportation (http://www.transtats.bts.gov/). The data set
contains 1,272,696 itineraries of varied lengths (airport stops). We aggregate all
itineraries into a single sequence by concatenating the individual itineraries with a
special separator token that marks the end of a single itinerary. There are 464
airports in the data set, and hence we have an alphabet of N = 465 tokens, and a
single sequence with a total length of 83,653,994 tokens.
War and peace: This data set corresponds to the entire text of the english
translation of the novel War and Peace by Leo Tolstoy, made available by the
Project Gutenberg (extracted verbatim from https://www.gutenberg.org/cache/
epub/2600/pg2600.txt). This corresponds to a sequence with an alphabet of size N
= 84 (including letters, space, punctuation and special symbols) and a total length
of 3,226,652 tokens.
Taxi movements: This data set contains GPS logs from 25,000 taxi pickups in San
Francisco, collected by the company Uber (retrieved from http://www.infochimps.
com/datasets/uber-anonymized-gps-logs, also available at https://github.com/
dima42/uber-gps-analysis). The geographical locations were discretised into 416
hexagonal cells (see ref. 2 for details), and the taxi rides were concatenated together
in a single sequence with a special separator token indicating the termination of a
ride. In total, the sequence has an alphabet of N = 417 and a length of 819,172
tokens.
RockYou password list: This data set corresponds to a widely distributed list of
32,603,388 passwords from the RockYou video game company (retrieved from
http://downloads.skullsecurity.org/passwords/rockyou-withcount.txt.bz2). The
passwords were concatenated in a single sequence, with a special separator token
between passwords. This yields a sequence with an alphabet of size N= 215 (letters,
numbers and symbols) and a total length of 289,836,299 tokens.
High school proximity: This data set corresponds to a temporal proximity
measurement of students in a french high school42. A total of N= 327 students
were voluntarily tracked for a period of 5 days, generating E= 5818 proximity
events between pairs of students.
Enron email: This data set corresponds to time-stamped collection of
E= 1,148,072 emails between directed pairs of N = 87,273, senders and recipients
of the former Enron corporation, disclosed as part of a fraud investigation50.
Internet AS: This data set contains connections between autonomous systems (AS)
collected by the CAIDA project (retrieved from http://www.caida.org). It
corresponds to a time-stamped sequence of E= 500,106 directed connections
between AS pairs, with a total of N= 53,387 recorded AS nodes. The time-stamps
correspond to the first time the connection was seen.
APS citations: This dataset contains E= 4,262,443 time-stamped citations between
N = 425,760 scientific articles published by the American Physical Society for a
period of over 100 years (retrieved from http://journals.aps.org/datasets).

Table 3 Joint likelihoods for discrete- and continuous-time Markov models

Discrete time Continuous time

n BN BM −ln P({xt}, b) BN BM −ln P ({xt}, {Δt}, b)

1 40 40 13,736 37 37 58,128
2 35 34 15,768 24 22 47,408
3 34 33 24,877 16 15 54,937

Results inferred from Beethoven’s fifth symphony for different Markov orders n. Values in grey correspond to the maximum likelihood of each column
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prosper.com loans: This data set corresponds to E= 3,394,979 time-stamped
directed loan relationships between N= 89,269 users of the prosper.com website,
which provides a peer-to-peer lending system (retrieved from http://konect.uni-
koblenz.de/networks/prosper-loans).
Chess moves: This data set contains 38,365 online chess games collected over the
month of July 2015 (retrieved from http://ficsgames.org/download.html). The
games were converted into a bipartite temporal network where each piece and
position correspond to different nodes, and a movement in the game corresponds
to a time-stamped edge of the type piece → position. The resulting temporal
network consists of N= 76 nodes and E= 3,130,166 edges.
Hospital contacts: This data set corresponds to a temporal proximity
measurement of patients and health care workers in the geriatric unit of an
university hospital51. A total of N = 75 individuals were voluntarily tracked for a
period of 4 days, generating E= 32,424 proximity events between pairs of
individuals.
Infectious sociopatterns: This data set corresponds to a temporal proximity
measurement of attendants at a museum exhibition52. A total of N= 10,972
participants were voluntarily tracked for a period of 3 months, generating
E= 415,912 proximity events between pairs of individuals.
Reality mining: This data set corresponds to a temporal proximity measurement of
university students and faculty53. A total of N= 96 people were voluntarily tracked
for a period of an entire academic year, generating E= 1,086,404 proximity events
between pairs of individuals.
Beethoven’s fifth symphony: A piano reduction of Beethoven’s fifth symphony,
extracted in MIDI format from the Mutopia project at http://www.mutopiaproject.
org, represented as a sequence of E= 4223 notes of an alphabet of size N= 63.

Code availability. A free C++ implementation of the inference algorithm is
available as part of the graph-tool Python library45, available at http://graph-tool.
skewed.de.

Data availability. The data sets analysed during the current study are available
from their sources listed in the ‘Data sets’ section above, of from the corresponding
author on reasonable request.
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