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Abstract

Spider neurotoxins are commonly used as pharmacological tools and are a popular source of novel compounds with
therapeutic and agrochemical potential. Since venom peptides are inherently toxic, the host spider must employ strategies
to avoid adverse effects prior to venom use. It is partly for this reason that most spider toxins encode a protective proregion
that upon enzymatic cleavage is excised from the mature peptide. In order to identify the mature toxin sequence directly
from toxin transcripts, without resorting to protein sequencing, the propeptide cleavage site in the toxin precursor must be
predicted bioinformatically. We evaluated different machine learning strategies (support vector machines, hidden Markov
model and decision tree) and developed an algorithm (SpiderP) for prediction of propeptide cleavage sites in spider toxins.
Our strategy uses a support vector machine (SVM) framework that combines both local and global sequence information.
Our method is superior or comparable to current tools for prediction of propeptide sequences in spider toxins. Evaluation of
the SVM method on an independent test set of known toxin sequences yielded 96% sensitivity and 100% specificity.
Furthermore, we sequenced five novel peptides (not used to train the final predictor) from the venom of the Australian
tarantula Selenotypus plumipes to test the accuracy of the predictor and found 80% sensitivity and 99.6% 8-mer specificity.
Finally, we used the predictor together with homology information to predict and characterize seven groups of novel toxins
from the deeply sequenced venom gland transcriptome of S. plumipes, which revealed structural complexity and
innovations in the evolution of the toxins. The precursor prediction tool (SpiderP) is freely available on ArachnoServer
(http://www.arachnoserver.org/spiderP.html), a web portal to a comprehensive relational database of spider toxins. All
training data, test data, and scripts used are available from the SpiderP website.
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Introduction

Spiders are the dominant insect killers and the most successful

venomous animal on the planet. Their evolutionary success is due

in large part to the evolution of exceedingly complex venoms [1],

which have been predicted to contain as many as 10 million

unique peptides [2]. Most spider-venom peptides are produced as

prepropeptide precursors containing N-terminal signal peptide

and propeptide regions in addition to the C-terminal region that

will become the mature toxin [3]. Proteolytic enzymes excise the

propeptide and signal peptide in order to release the active toxin

(Fig. 1). Mature spider-venom peptides tend to be cysteine-rich,

and the propeptide is always N-terminal to the cysteine-rich

scaffold which restricts the access of proteolytic enzymes [4].

Propeptide regions allow spatial and temporal control of toxin

activation, providing a means by which the peptide can be safely

shuttled to its final destination. Thus, the propeptide can prevent

aberrant activation of the toxin, which might have lethal

consequences for the spider. Moreover, propeptides can facilitate

protein folding [5] and encode certain types of posttranslational

modifications [6]. In order to investigate the evolutionary

trajectory of spider toxins and study toxin structure and function,

it is necessary to identify the mature region in precursor toxin

sequences. Given the enormous number of spider toxins [2], the

experimental approach requiring fractionating whole venom

followed by sequencing of amino acids is highly time-consuming

and expensive, motivating the development of an in silico strategy.

Propeptide cleavage is catalysed by a different set of enzymes to

those involved in removal of the signal peptide during protein

transfer across the endoplasmic reticulum and through the

secretory pathway. Propeptide convertases (PPCs) constitute the

major family of endoproteases responsible for cleaving propeptides

from prohormones and neuropeptides [4]. In eukaryotes, a large

family of PPC typically recognizes a dibasic motif (usually ‘KK’,

‘RK’ or ‘KR’) on a protein substrate, and by cleaving at the C-

terminal end of the motif, releases the active peptide from the
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proregion. Other types of proteases can recognize the same

cleavage signals. For example, Tex31, a cysteine-rich secreted

protease from cone snails, is believed to recognize similar sites to

PPCs [7]. Hence, the mechanism of proteolytic cleavage and the

group of enzymes involved in cleavage varies between species, and

also tissue types, and it is likely that many substrate-specific

proteases are yet to be identified [4]. For this reason, algorithms

designed to predict propeptide cleavage sites in all eukaryotes can

fare poorly when used to predict propeptide cleavage sites in

precursors of venom proteins due to differences in protease

recognition patterns between species.

Propeptide cleavage in spider-toxin precursors follow the loose

constraints of the Processing Quadruple Motif (PQM), where an

arginine residue at position 21 partners a glutamic acid residue at

either positions 22, 23 or 24 [8]. However, in certain species

such as Australian funnel-web spiders, the motifs ‘KR’ and ‘RR’ at

positions 22 and 21 are also used [9].

We evaluated several machine-learning strategies based on their

ability to correctly identify propeptide cleavage sites in spider

toxins. The final predictor we developed (SpiderP) is based on a

linear support vector machine and is available through the

ArachnoServer website [9]. To test the accuracy of our tool we

used cross-validation and generated new experimental datasets.

We used our tool to gain new biological insights into venom

complexity by uncovering novel structurally variable toxins in the

venom of an Australian tarantula.

SpiderP provides a simple interface that allows users to input

amino acid sequence(s) in FASTA format (see http://www.

arachnoserver.org/spiderP.html). The algorithm outputs a list of

predicted precursor and mature peptide sequences, and it can

easily be modified as more experimentally confirmed sites are

identified. SpiderP incorporates SignalP [10] to predict signal

peptides, which are removed prior to performing propeptide

predictions (Fig. 1).

Results and Discussion

Training and Test Sets
Starting with 126 spider toxin sequences, we created positive

training and test sets for both whole proteins and 8-mers (Fig. 2).

We began by assembling the set of 8-mers centered on the known

cleavage site in each of the 126 toxin proteins. Following removal

of duplicate 8-mers, the set comprises 93 distinct 8-mers. We then

randomly split this set of 8-mers into approximately equal-sized

training and test sets (47 and 46 8-mers, respectively) and created

whole-protein training and test sets based on the 8-mer training

and test sets. The whole-protein training set contains one

representative protein for each of the 47 members of the 8-mer

training set. Similarly, the test set contains 46 proteins, one for

each member of the 8-mer test set. The positive whole proteins in

the training and test sets are labeled with the position of the known

cleavage site.

We also created negative sets of proteins and 8-mers. The

negative set of proteins comprises 48 spider toxins that do not

encode propeptides. Here, we began by first randomly splitting the

48 sequences into equal-sized whole-protein training and test sets

(24 sequences each). We then created the 8-mer training and test

sets consisting of the set of all 8-mers that occur in each of the

corresponding whole-protein sets. The negative 8-mer training

and test sets contain 3,731 and 3,039 cleavage-site negative 8-

mers, respectively.

The 8-mer training set was only used to learn the user-settable

parameters of each type of 8-mer classifier, as described below

under each classifier heading. We then fixed those parameters to

the learned values and assessed the accuracy of the 8-mer classifier

using cross-validation on the test 8-mer test set. To create the

whole protein classifier, we trained the 8-mer classifier on the

entire training set of 8-mers. We then tested the resulting whole-

protein classifier using the test set of whole proteins. All testing and

training sets are available through http://www.arachnoserver.

org/spiderP.html.

Figure 1. Bioinformatic prediction of signal and propeptide cleavage sites in spider toxin prepropeptide precursors using a combination of SignalP
[10] and SpiderP. Propeptide convertases recognizes the propeptide cleavage site, which is typically located N-terminal to a cysteine-rich scaffold.
doi:10.1371/journal.pone.0066279.g001

Prediction of Propeptide Cleavage in Spider Toxins
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Given the small dataset and imbalance between positive and

negative datasets, we used SVMs that assigned different misclas-

sification costs to each class by assuming that the number of

misclassified examples from each class is proportional to the

number of examples in each class to address the problem of

overfitting (see Methods). Also, cross-validation datasets were

randomly assigned from positive and negative classes to minimize

potential overfitting bias. Moreover, because of the skewed dataset

we present precision-recall curves, in addition to receiver

operating characteristic (ROC) curves. Precision-recall curves are

able to provide a more insightful picture of an algorithm’s

performance when the number of negatives greatly exceeds the

number of positives. Undoubtedly, the true distribution of toxins

in nature would be more accurately represented by a larger

positive randomly sampled dataset. However, at this time, the cost

and time in obtaining the required experimentally validated data is

prohibitive.

Algorithm
We explored several propeptide cleavage site prediction

strategies. Cleavage of propeptides is based on protease recogni-

tion of specific amino acid residues surrounding the site of

cleavage, so our predictors predict whether each of the overlap-

ping 8-mers in a protein contains a cleavage site between the

fourth and fifth residue. Before evaluating 8-mers, however, our

predictors first predict and remove any (putative) signal peptide

from the N-terminal end of the protein. They then predict whether

each overlapping 8-mer contains a cleavage site and choose the

predicted cleavage site that is (i) closest to the most N-terminal

cysteine residue in the protein and (ii) N-terminal to it. If the

protein contains no cysteine residue, the classifier chooses the most

C-terminal predicted cleavage site, based on current biological

knowledge [9]. Given an input protein sequence, each of our

propeptide cleavage site prediction strategies outputs a single

predicted cleavage site position, or predicts that the protein does

not contain a propeptide cleavage site.

To create classifiers for predicting whether a given 8-mer

contains a propeptide cleavage site, we trialed three distinct

machine learning strategies: support vector machines (SVMs)

(linear and radial basis function (RBF) kernel), decision trees and

hidden Markov models (HMMs). To predict and remove any

(putative) signal peptide from the input protein, our propeptide

cleavage site predictors used the SignalP 4.0 algorithm [10].

We trained SVM, Decision Tree and HMM classifiers to

classify 8-mers as to whether they contain a cleavage site using the

training set (Fig. 1). We then measured the accuracy of each 8-mer

classifier (except HMM) on an independent test set of 8-mers using

10-fold cross-validation. From each 8-mer classifier, we also

constructed propeptide cleavage site predictors as described above,

and tested the ability of these predictors to exactly predict the

correct cleavage site using the test-set proteins. The results for each

type of classifier are shown below.

SVM (linear)
SVMs have been widely used to identify the cleavage sites of

protease substrates [11]. In this study, we use both linear and

Gaussian RBF kernels. We first transformed our sequences using a

method of binary encoding (described in Methods) and then used

model selection on the 8-mer training set to obtain an overall soft

margin value (C) of 1.0. Ten-fold cross-validation was then used to

determine the predictive ability of this classifier on 8-mers. We

observed an overall accuracy (see Methods for definitions of

accuracy measures) of 98.9%, a balanced accuracy (taking into

account uneven sample sizes) of 98.2%, a sensitivity score of

97.5%, a specificity score of 98.9%, and a false positive rate (FPR)

of 0.01 at the default score threshold of 0, averaged over all folds

(Table 1). Fig. 3 shows the ROC curve for predicting if an 8-mer

contains a cleavage site, plotting the true positive rate versus the

false positive rate for varying score thresholds. When we use the

trained linear SVM in our whole protein prediction framework to

predict the exact location of the cleavage site (or its absence), the

sensitivity and specificity on the independent test set were 97.7%

and 93.8%, respectively.

SVM (RBF)
Using grid search on our 8-mer training set, we obtained a C

value and c parameter of 1000.0 and 0.1, respectively. As with the

linear SVM, we used the default score threshold of 0 to classify 8-

mers. The RBF classifier yielded a better balanced accuracy and

sensitivity compared to the linear SVM on 8-mers (Table 1). The

result is consistent with the ROC curve (Fig. 3), which suggests

that the SVM with the RBF kernel has higher sensitivity (true

positive rate) at all false positive rates (FPRs) than the SVM using

the linear kernel. Nonetheless, the RBF SVM performs worse than

the linear SVM when used in our whole protein prediction

framework for predicting propeptide cleavage sites (Table 2).

Despite the fact that the underlying 8-mer classifier has better

balanced accuracy, the whole-protein cleavage site predictor based

on the RBF SVM has lower sensitivity and lower specificity than

the predictor based on the linear SVM (discussed below).

Decision tree
We used our tree classifier to predict proteolytic sites on our 8-

mer test set. On 8-mers, the method achieved a high level of cross-

validated specificity (99.7%) but low cross-validated sensitivity

(61.5%). Unlike SVMs, which have a score threshold, decision

trees make ‘hard’ (e.g., binary) classifications; hence we cannot

report ROC values. Because the performance of the trained

classifier is already substandard compared to the other classifiers

we trialed on 8-mer sequences (Table 1), we did not further test the

algorithm with whole sequences.

Figure 2. Partitioning of cleavage-site positive and cleavage-
site negative training and test sets.
doi:10.1371/journal.pone.0066279.g002

Prediction of Propeptide Cleavage in Spider Toxins

PLOS ONE | www.plosone.org 3 July 2013 | Volume 8 | Issue 7 | e66279



HMM
Against whole sequences in the independent test dataset, the

HMM propeptide predictor produced 88.6% sensitivity and 100%

specificity (Table 2). The HMM propeptide predictor is more

sensitive and specific than the RBF SVM predictor but does not

perform as well as the linear SVM on the test data. It has a

balanced accuracy of 94.3% measured on an independent test set.

SpiderP
Our results show that the whole protein predictor based on an

SVM with a linear kernel is the most effective at predicting the

location of propeptide cleavage sites in spider toxins (Table 2).

This may seem surprising, given that the RBF kernel has better

balanced accuracy for predicting if an 8-mer contains a cleavage

site (Table 1) and that although precision-recall curves for both

linear and RBF kernels show high precision for high recall rates,

the RBF kernel performs slightly better than the linear kernel

(Fig. 4). The reason for this is because the false positive rate of the

linear kernel is much lower than that of the other 8-mer classifiers

(Table 1 and Fig. 3, vertical lines). For a given false positive rate, as

the length of the input sequence increases, the expected number of

false positives will increase with sequence length following a

cumulative binomial distribution. Because the propeptide predic-

tor must predict the exact location of the cleavage site for a

prediction to be counted as correct, it is important that the

underlying 8-mer classifier makes few false positive predictions. In

other words, if the 8-mer classifier has high a FPR, it is likely that

the propeptide predictor will select the wrong putative cleavage

site, or that a cleavage site will be predicted when there is none.

The explanation for why the RBF kernel gives a much higher

mean FPR (0.0247) when the kernel is a better performer than the

linear kernel in the ROC curve is based on the fact that the final

result is based on the default score threshold of zero, which yields a

less than optimal score (See vertical lines in Fig. 3; the FDR for the

linear kernel (blue line) is lower than the RBF FDR (red line) at the

default score threshold.) Hence, it can be seen from Fig. 3 that it

would, in principle, be possible to increase the score threshold of

the RBF 8-mer classifier in order to lower its FPR, and it might be

possible to find the optimum score threshold using the training set

(in terms of balanced accuracy of the propeptide predictor);

Figure 3. Cross-validated ROC curves for predicting if an 8-mer contains a cleavage site using linear (6) or RBF kernel (N) SVMs. Each
point shows the average true positive rate (over the cross-validation folds) at the given FPR. Vertical lines denote the average false positive rate (1–
specifity) (over cross-validation folds) when the SVM score threshold = 0 (the solid line corresponds to the linear SVM and the dashed line corresponds
to the RBF SVM). Cross-validation was performed on the 8-mer test set.
doi:10.1371/journal.pone.0066279.g003

Table 1. Mean cross-validated test set accuracy (standard error) of 8-mer classifiers.

Classifier Sensitivity (%) Specificity (%) False positive rate Balanced accuracy (%)

SVM 97.5 98.9 0.011 98.2

(linear) (2.5)a (0.1) (0.001) (1.2)

SVM 100 97.5 0.0247 98.8

(RBF) (0) (0.36) (0.0036) (0.18)

Decision 61.5 99.7 0.0034 83.9

tree (1.9) (0.05) (0.0005) (0.97)

doi:10.1371/journal.pone.0066279.t001

Prediction of Propeptide Cleavage in Spider Toxins
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however, we did not explore this approach. We note that it is also

possible that an integrated tool combining SVM with HMM may

yield further increases in accuracy. SpiderP achieved 75%

accuracy on independent test sequences that contain a propeptide

but no cysteine framework.

To produce the final algorithm that is available on the

ArachnoServer website (http://www.arachnoserver.org/SpiderP.

html), we used the linear SVM 8-mer classifier. We used the C-

value derived from the training set (C = 1.0, adjusted to take into

account unbalanced examples) to train the model on the entire

dataset. The final SVM 8-mer classifier contains 442 support

vectors.

Accuracy of SpiderP on new protein data
To test the accuracy of the algorithm on new toxins with

experimentally determined propeptide cleavage locations, we used

Edman degradation to sequence five mature peptides from the

venom of the Australian tarantula Selenotypus plumipes (Araneae:

Mygalomorphae: Theraphosidae) (Fig. 5). The peptides comprise

six cysteine residues that form three disulfide bonds in the mature

toxin. The complete sequences of the prepropeptide precursors

encoding these toxins were obtained by BLASTing the mature

toxin sequences against a venom-gland transcriptome. This is the

first time that spider-venom peptides have been sequenced from

this spider genus, and the 8-mers containing the cleavage site in

each of the five proteins are distinct from all cleavage site 8-mers in

the training set. SpiderP correctly predicted 80% of propeptide

cleavage sites in this small test set with an 8-mer specificity of

99.6% (1 FP).

Comparison of SpiderP with other propeptide predictors
Existing programs for predicting propeptide cleavage sites

showed low sensitivity and specificity on our dataset of 174 spider

toxin precursors. ProP 1.0 [12] is based on neural networks that

primarily identify the dibasic sequences RR and KR recognized

by PPCs. On the set of known spider toxins used for this study,

ProP yielded 12.2% sensitivity and 60.4% specificity. On our set of

novel tarantula-venom peptides, ProP showed 0% sensitivity.

Spiders use other enzymes in addition to PPCs and this probably

accounts for the observed low accuracy. The ConoServer

precursor sequence analysis tool [13], which was designed to

identify propeptide cleavage sites in toxin precursors from marine

cone snails, performs much better on the same spider-toxin

dataset, with sensitivity and specificity values of 82.1% and 85.4%,

Table 2. Accuracy in predicting the exact location (or absence) of a cleavage site in whole proteins measured on an independent
test set.

Underlying Classifier Sensitivity (%) Specificity (%) Balanced accuracy (%)

SVM (linear) 95.5 100 97.8

SVM (RBF) 84.1 95.8 90.0

HMM 88.6 100 94.3

doi:10.1371/journal.pone.0066279.t002

Figure 4. Cross-validated precision-recall curves for predicting if an 8-mer contains a cleavage site using linear (6) or RBF kernel (N)
SVMs. Recall is equivalent to the TPR and the precision rate/positive predictive value is defined as TP/(TP+FP). Each point shows the average recall
(over the cross-validation folds for a set FPR) versus the precision (the solid line corresponds to the linear SVM and the dashed line corresponds to the
RBF SVM). Cross-validation was performed on the 8-mer test set.
doi:10.1371/journal.pone.0066279.g004

Prediction of Propeptide Cleavage in Spider Toxins
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respectively. On our novel set of tarantula-venom peptides,

ConoServer showed 80% sensitivity. The ConoServer tool uses

a rule-based, pattern-matching approach that takes into account

arginine cleavage by glutamic acid control (E to R rule), a cleavage

type that also exists in spiders but not in mammals [4,8]. However,

ConoServer is unable to predict propeptide cleavage sites in linear

toxins that do not contain a cysteine framework, which represent a

sizable fraction of our toxin dataset. This is unsurprising given that

despite convergent evolution of some toxin genes, toxins have

evolved independently in different lineages, and have adapted

different strategies, complicating generalization across taxa. In

contrast to cone snails and other eukaryotes, spiders do not appear

to use ‘‘KK’’ or ‘‘RK’’ as propeptide cleavage sites.

Predicting novel toxins from the venom gland
transcriptome of an Australian tarantula

Using SpiderP and homology information, we uncovered and

analyzed 970 unique mature-toxin sequences from the venom-

gland transcriptome of the Australian tarantula S. plumipes. A

putative toxin is defined by the presence of both predicted signal

peptide and propeptide, either a high degree of similarity to known

spider toxins, or the presence of four or more cysteines in the

predicted mature toxin sequence. Due to possible sequencing and

assembly errors the number of sequences we obtained is likely to

be an overestimate of the actual number of toxin sequences. Thus,

all sequences were clustered into groups based on three or more

homologous contigs and similarity to known spider toxins were

determined as described below. All reads were quality clipped and

we note a high average consensus quality (MIRA: 33) and the

absence of any unresolved repeat positions across contigs. Raw

cDNA reads were assembled into contigs and six-frame translated

into amino acid sequences (136,469 six-frame translated sequenc-

es). We considered contigs as putative toxins if both signal

sequences and propeptides were predicted. 3,514 sequences met

these criteria. Of these, 2,761 were highly similar to known spider

toxins (E-value,1025). Given that spider toxins tend to be

cysteine-rich, we also kept sequences (149) exceeding this E-value

threshold if four or more cysteines were present in the predicted

mature toxin sequence.

The vast majority of sequences (2,638) matched 29 toxins from

eight classes of toxins of unknown molecular target and function

with inferred ion channel modulating activity from the Chinese

earth tiger tarantula, Chilobrachys jingzhao (Fig. 6, Dataset S1) [14].

A small fraction of the S. plumipes sequences were most similar to

toxins from other tarantula species, not C. jingzhao. These toxins

included a Coremiocnemis valida insecticidal toxin (UniProt accession

number P82601) [15], Haplopelma huwenum toxins with putative

trypsin inhibitory and voltage-gated potassium channel blocking

activities (UniProt B2ZBB6 and B3FIVO), and a Grammostola rosea

toxin that targets mechanosensitive channels (UniProt Q7YT39)

[16]. Four peptides were most similar to a CAP (cysteine-rich

secretory proteins, antigen 5, and pathogenesis-related 1 proteins)

domain-containing venom peptide from Lycosa singoriensis [17]

(UniProt A9QQ26, E-value,1027). This is a distantly related

araneomorph species that last shared a common ancestor with the

mygalomorph S. plumipes more than 250 million years ago. The

sequences from the two species only share slight similarities in their

N-terminal regions but are highly divergent at their mature C-

termini indicating that the similarities are coincidental and not

reflective of true evolutionary history (Fig. S1). Notable differences

between the S. plumipes and L. singoriensis peptides include the

absence of a propeptide in the L. singoriensis precursor compared

with its predicted existence in S. plumipes, and fewer cysteine

residues (2–7) in the S. plumipes toxins compared with the peptide

from L. singoriensis (19).

Given the large number of putative toxins found, we clustered

all predicted mature toxins from S. plumipes to approximate

functional groupings based on homology. 29 groups were

identified containing clusters of two sequences or more with 85

sequences that did not cluster (Fig. 7, Dataset S2). There is high

jackknife support for all groups (at least 89%). The average identity

within groups is 70%, where n.3. Our data supports the

expression of at least 29 distinct classes of toxins in S. plumipes.

Each of these groups may comprise closely related gene family

members and/or different allelic variants. To err on the side of

caution, only groups containing three or more sequences were

considered a functional class and further analysed.

To describe novel groups we used BLAST to search all grouped

sequences, where the number of sequences in a clade (n) is .5,

Figure 5. Selenotypus plumipes toxin sequences determined through Edman degradation. Signal peptides, propeptides, mature toxins and
post-translational modifications are green, orange, black and blue, respectively. Cysteines resides in the mature toxin are in red.
doi:10.1371/journal.pone.0066279.g005

Prediction of Propeptide Cleavage in Spider Toxins
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against a database of signal peptides from ArachnoServer. Signal

peptides are conventionally used to assign toxins into ‘superfamily’

groupings [3,18], as toxins tend to evolve rapidly in mature and

propeptide regions. We found seven out of 17 groups of toxins

(where n.5) that did not match to known spider toxin signal

peptides using an E-value cut-off of 1025 (groups D, E, H, L, M, N

and O). Four of these groups (D, M, N and O) did not match any

sequences even at an E-value cut-off of 1, indicating that these are

novel categories of toxin sequences. Whether these groups of

toxins are specific to the S. plumipes lineage will require future

transcriptomic analysis of related species.

Figure 6. Pie chart showing the relative number of top BLAST hits from Selenotypus plumipes sequences to toxins of different
species from the ArachnoServer database. Numbers represent the counts of S.plumipes sequences that match known toxins from species,
including Chilobrachys jingzhao (Chinese earth tiger tarantula), Coremiocnemis valida (Singapore brown tarantula), Haplopelma huwenum (Chinese
bird spider), Grammostola rosea (Chilean rose tarantula), and Lycosa singoriensis (wolf spider). With the exception of L.singoriensis, all of these spiders
are primitive mygalomorphs that are closely related to S. plumipes.
doi:10.1371/journal.pone.0066279.g006

Figure 7. Representation of a 3D image from the clustering of predicted S. plumipes toxin sequences by homology showing distinct
clusters. A sequence is represented by a single dot. Connecting lines indicate a BLAST similarity where p,10215.
doi:10.1371/journal.pone.0066279.g007

Prediction of Propeptide Cleavage in Spider Toxins
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Due to their role in the formation of disulfide bonds, the

number of cysteines plays a critical role in determining the

structure and function of venom proteins. The number of encoded

cysteines in the predicted S. plumipes toxins varied from zero to 16.

As expected, the most frequent number of cysteines is six, the

number required to form the highly stable inhibitor cystine knot

(ICK) structural motif [19], which is common in spider-venom

peptides [20]. The ICK motif comprises a ring formed by two

disulfide bonds and the intervening sections of polypeptide

backbone, which is bisected by a third disulfide. Peptides

containing the ICK motif can function as ion channel blockers,

antimicrobial and antiviral molecules, or as haemolytic agents

[21]. Surprisingly, S. plumipes toxin cysteine numbers varied

dramatically within homology groups. We identified variation in

cysteine numbers and sequence lengths within each group (n.3)

along different toxin lineages (Fig. 8, Fig. S2, S3, S4). As the ICK

structure promotes protein folding and is highly thermodynami-

cally stable, we expected the number and spacing of cysteines to

remain relatively invariant within a group, being subjected to a

high level of purifying selection. Our result points to diversifying

selective pressure in promoting the addition and deletion of

cysteines to facilitate novel structure and function in S. plumipes

toxins. We note that incomplete sequencing and sequencing errors

that cause premature translation termination will cause artifactual

variations in sequence length. However, many of short sequences

are highly homologous, suggesting that the observed variants are

unlikely to be sequencing artifacts (Dataset S2). Integration of

proteomic results, including confirmation of these putative

sequences by peptide mass matching, together with functional

characterization of these toxins, and comparative analyses of

venoms between spider species will help to understand the genetic

basis underlying the diversity of spider venom proteomes and are

challenges for future research.

Summary
Constant advances in sequencing technologies are yielding an

unprecedented amount of DNA and RNA sequence data. In the

face of this deluge of sequence data, an automated system is

necessary to extract the active portion of venom proteins for

further study. We have developed a strategy that meets this need.

Our model employs an SVM algorithm and not only takes into

account residues preceding the cleavage site but also incorporates

trailing residues, which are also likely to play a role in substrate

recognition. Our program shows high sensitivity, and can

distinguish, with high accuracy, propeptide-containing toxins from

those that do not encode prodomains. Importantly, it also

performs well on toxin sequences that do not contain a cysteine

scaffold.

Methods

Measuring accuracy
Balanced accuracy is defined as [sensitivity+specificity]/2,

where sensitivity = TP/[TP+FN], specificity = TN/[TN+FP], and

where TP = number of true positives, FP = number of false

positives, TN = number of true negatives, FN = number of false

negatives. Overall accuracy is defined as [TP+TN]/

[TP+FN+FP+TN]. False positive rate is defined as 1–specificity.

Precision rate/positive predictive value is defined as TP/[TP+FP].

Support Vector Machines
To encode amino acid residues for SVM input, we chose the

simpler unary residue-encoding scheme over PSI-BLAST position-

specific scoring [22]. For protease cleavage site prediction in HIV

sequences, simple linear classifiers are as effective as more complex

models suggesting that more sophisticated strategies may be

redundant [23]. Hence, we transformed 8-mer peptides into 161-

dimensional input vectors for our SVMs. First, each amino acid is

encoded by a 20-dimensional vector made up of zeros and ones,

where positions in the vector correspond to the 20 possible amino

acids in alphabetical order according to their standard one-letter

abbreviations. For example, alanine is represented by

[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], cysteine by

[0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], etc. Concatenating the

appropriate 20-dimensional encodings of the 8 residues gives a

160-dimensional vector. Second, in order to encapsulate positional

information with respect to the location of the 8-mer along the

protein sequence, we linearly scaled the location of the 8-mer to

values in the interval [0,1], with 0 indicating that the particular 8-

mer was extracted from the N-terminus of the protein. Concat-

enating this scalar with the 160-dimensional vector encoding the

8-mer residues yields a 161-dimensional vector.

We used the Python PyML package (http://pyml.sourceforge.

net) to construct the SVMs. We use cross-validation on a training

set of 8-mers to determine the soft-margin constant (C) and the c
parameter for the Gaussian RBF (see below for descriptions of

training set creation), iterating over a spectrum of values for C (0.1,

1, 10, 100, 1000) and c (0.01, 0.1, 1, 10). We set the values of C

and c to those that maximized the cross-validated balanced

accuracy. Due to the relative rarity of proteolytic sites, there are

considerably more negative than positive instances. To address this

dataset imbalance, we use a feature of the PyML machine learning

package that increases the penalty factor associated with the

misclassification of the positive class [24]. The total misclassifica-

tion cost (SVM soft-margin constant, C) is split into to terms that

assign different values of the soft-margin constant for the positive

(C+) and negative C2 class, such that C+n+ = C2n2, where n+ and

n2 are the numbers of positive and negative examples, respectively

[24].

Decision Trees
We used a decision tree classification algorithm implemented in

the MATLAB Statistics Toolbox (R2010a; MathWorks, Natick,

MA, USA) to construct a predictor for propeptide cleavage. We

used a form of vector-based encoding similar to the SVM input,

but excluding positional information. We determined the pruning

depth for the tree using cross-validation on the 8-mer training set,

iterating over five pruning depths defined by the MATLAB

function ‘prune’, which is based on an optimal pruning scheme

that successively prunes grouped branches that give the least

improvement in error cost.

Hidden Markov Models
Although the HMMER package is widely used to construct

profile hidden Markov models (profile HMMs) for sensitive

database searching, it has also been successfully used to build

profile HMMs for eukaryotic signal peptide detection [25]. We

used HMMER 3.0 (www.hmmer.org) to construct an HMM for

the positive 8-mer training set using amino acid sequences in the

form of a FASTA file. From these sequences, we used the

HMMER command ‘hmmbuild’ to construct an HMM. We then

used the command ‘hmmpress’ to prepare the HMM database for

searching of whole sequences for which we used the command

‘hmmscan’. For maximal sensitivity, we used the ‘–max’ parameter

to turn off speed-increasing filters to include low scoring hits.

To predict the cleavage site, we used E-values assigned by the

program ‘hmmscan’ to portions of the whole protein sequence

matching the HMM profile. For each reported alignment, we
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checked whether the conditional E-value is less than 1 and inferred

cleavage sites to only occur subsequent to arginine residues [9].

We then only keep alignments where arginine residues are N-

terminal to any cysteines within the whole protein (minus the

signal peptide). Where multiple alignments are identified, the

arginine residue contained within the alignment with the lowest E-

value is selected as the residue immediately N-terminal to the point

of propeptide cleavage.

N-terminal sequencing of five crude venom peptides
A single milking of an adult S. plumipes adult (,10 g total body

weight) yielded 35169 mg dry weight/mL of venom (average of

Figure 8. For groups clustered by CLANS, a histogram of cysteine numbers in the mature peptide with the consensus sequence
below. For each of the 29 groups clustered by CLANS based on homology, we assigned labels A to Q to the groups (based on the total number of
sequences within each group ordered from largest to smallest). The consensus sequence represents the most frequent residue in each column of the
multiple sequence alignment. A dash ‘2’ denotes cases where the most frequent character is empty at an alignment position. Groups A to D are
presented in this figure (For analogous information for other sequence groups see Figures S2, S3, S4). ‘n’ denotes the number sequences in the
group. The percent sequence identity for each group (‘seq id’) is shown.
doi:10.1371/journal.pone.0066279.g008
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four fortnightly milkings of 10 individuals). Venom was fraction-

ated by reverse-phase (RP) HPLC using a Vydac C18 analytical

RP-HPLC column (Grace Division, Deerfield, IL). Solvent A was

0.1% trifluoroacetic acid (TFA) in water and Solvent B was 0.1%

TFA in acetonitrile. Venom was eluted at a flow rate of 1.0 mL/

min, yielding ,50 peaks that eluted before 60% Solvent B. We

selected RP-HPLC fractions with insecticidal activity (determined

by injection into mealworms) and further fractionated these

fractions using an orthogonal cation exchange chromatography

step in order to isolate individual insecticidal peptides, which were

then desalted using RP-HPLC. Free cysteines in the peptides were

then alkylated using 4-vinylpyridine. Alkylated samples were then

sent to the Adelaide Proteomics Centre (Adelaide, South Australia)

and the Australian Proteome Analysis Facility (Sydney, New South

Wales) for N-terminal sequencing via Edman degradation.

cDNA library preparation and transcriptome sequencing
using Roche 454 GS-FLX platform

Four venom glands from two S. plumipes spiders were prepared

and total RNA was extracted using Trizol. RNA concentration

and quality was measured using a Nanodrop (ND-1000, Thermo-

Scientific, Wilmington, DE, USA) and Bioanalyzer (Bioanalyzer

2100, Agilent Technologies, Santa Clara, CA, USA). An Oligotex

Direct mRNA Mini Kit (Qiagen) was used to isolate poly A+

mRNA from the total RNA. Elution was performed first in 5 mM

Tris-HCl (pH 7.5), and subsequently samples were precipitated

with RNAse-free glycogen, sodium acetate, and ethanol. Samples

were again resuspended in RNAse-free water, and then the RNA

concentration and quality were measured using the Nanodrop and

Bioanalyzer. A total of 227 ng of mRNA was submitted to the

Brisbane node of the Australian Genome Research Facility for

sequencing using the Roche 454 GS-FLX platform.

Transcriptomic analysis
Sequences were assembled using MIRA version 3.4.1 using the

parameters mrs = 99, egp = 1 and mrpc = 1 [26]. Thus, in order to

be considered for assembly, the minimum percentage of matching

between two reads has to be 99% (mrs = 99). The large penalty for

alignments containing long gaps (egp = 1) was used to reduce

erroneous long contigs. Sequences were quality-clipped prior to

assembly. We were not stringent, however, with the minimum

number of reads per contig required for assembly (mrpc = 1). This

enabled us to capture potential weakly expressed genes with the

view that downstream proteomics strategies will be capable of

validating these sequences. As we aimed to define a high-level view

of transcriptomic complexity by grouping homologous sequences

by clustering (n.3), if sequencing and assembly errors are small

and distributed randomly, these are unlikely to influence the total

number of groups recovered. ‘Padded’ assembled reads were used

(contigs for which there was minor evidence for additional bases).

Six-frame translated sequences greater than 35 amino acids long

and starting with a methionine were used as input into SpiderP.

We used BlastP 2.2.24 [27] to search against sequences in the

ArachnoServer database using an E-value cut-off of 1025. CLANS

[28] was used to cluster the sequences based on a P-value

threshold of 10215, and results were recorded after 570 successive

rounds of iteration. Jackknife support was calculated after 100

rounds of resampling with 0.1% removal of data for resampling.

Percent identities were calculated using MEGA5 [29]. The

Poisson model and pairwise deletion were used. Multiple

sequences were aligned using Muscle [30], and consensus

sequences were calculated using Jalview [31]. Signal peptide

searches were conducted using BlastP with an E-value cut-off of

1025.

Supporting Information

Figure S1 Alignment of L. singoriensis toxin (UniProt
A9QQ26) with S. plumipes sequences. Gaps are denoted by

dashes.

(EPS)

Figure S2 For CLANS clustered groups E to H, a histogram

showing cysteine numbers in the mature peptide and the

consensus sequence based on an alignment of all the mature

peptide sequences in the group below. The consensus sequence

represents the most frequent residue in each column of the

alignment excluding gaps. ‘n’ denotes the number sequences in the

group. The percent sequence identity for each group (‘seq id’) is

shown.

(EPS)

Figure S3 For CLANS clustered groups I to L, a histogram

showing cysteine numbers in the mature peptide and the

consensus sequence based on an alignment of all the mature

peptide sequences in the group below. The consensus sequence

represents the most frequent residue in each column of the

alignment excluding gaps. ‘n’ denotes the number sequences in the

group. The percent sequence identity for each group (‘seq id’) is

shown.

(EPS)

Figure S4 For CLANS clustered groups M to Q, a histogram

showing cysteine numbers in the mature peptide and the

consensus sequence based on an alignment of all the mature

peptide sequences in the group below. The consensus sequence

represents the most frequent residue in each column of the

alignment excluding gaps. ‘n’ denotes the number sequences in the

group. The percent sequence identity for each group (‘seq id’) is

shown.

(EPS)

Dataset S1 Zipped file containing (1) All FASTA sequences of

translated open reading frame contigs containing predicted signal

and pro- peptides; (2) Parsed BLAST result of these sequences

against the ArachnoServer database; (3) Parsed BLAST result of

grouped sequences against signal peptides of known spider toxins.

(ZIP)

Dataset S2 Zipped file containing CLANS clusters of
sequences by similarity in FASTA format.
(ZIP)
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