
BMC Proceedings

Proceedings
A framework for analyzing both linkage and association: an analysis
of Genetic Analysis Workshop 16 simulated data
E Warwick Daw*, Jevon Plunkett, Mary Feitosa, Xiaoyi Gao,
Andrew Van Brunt, Duanduan Ma, Jacek Czajkowski, Michael A Province
and Ingrid Borecki

Address: Division of Statistical Genomics, Washington University School of Medicine, 4444 Forest Park Boulevard, Campus Box 8506, St. Louis,
Missouri 63108 USA

E-mail: E Warwick Daw* - warwick@wustl.edu; Jevon Plunkett - jevon.plunkett@gmail.com; Mary Feitosa - mfeitosa@wustl.edu;
Xiaoyi Gao - xgao23@wustl.edu; Andrew Van Brunt - andrew@dsgmail.wustl.edu; Duanduan Ma - duan@dsgmail.wustl.edu;
Jacek Czajkowski - jake@dsgmail.wustl.edu; Michael A Province - mprovince@wustl.edu; Ingrid Borecki - ingrid@dsgmail.wustl.edu
*Corresponding author

from Genetic Analysis Workshop 16
St Louis, MO, USA 17-20 September 2009

Published: 15 December 2009

BMC Proceedings 2009, 3(Suppl 7):S98 doi: 10.1186/1753-6561-3-S7-S98

This article is available from: http://www.biomedcentral.com/1753-6561/3/S7/S98

© 2009 Daw et al; licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We examine a Bayesian Markov-chain Monte Carlo framework for simultaneous segregation and
linkage analysis in the simulated single-nucleotide polymorphism data provided for Genetic Analysis
Workshop 16. We conducted linkage only, linkage and association, and association only tests under
this framework. We also compared these results with variance-component linkage analysis and
regression analyses. The results indicate that the method shows some promise, but finding genes
that have very small (<0.1%) contributions to trait variance may require additional sources of
information. All methods examined fared poorly for the smallest in the simulated “polygene” range
(h2 of 0.0015 to 0.0002).

Background
Both linkage analysis and association analysis provide
useful, but slightly different, forms of information in
identifying genetic contributions to complex traits.
Frequently, either one or the other type of analysis is
employed, which can result in information being over-
looked: linkage does not account for the association
frequently seen between disease alleles and nearby
markers, while association (on family data) may account
for family structure, but does not make use of the

location information that the meiotic events provide.
When both are used, the analyses are typically done
under different frameworks. Here, we consider an
integrated analysis of both linkage and association
under an oligogenic model [1] and compare it with a
linkage method and an association method.

Data
For Genetic Analysis Workshop (GAW) 16, a simulated
data set was provided based on the Framingham Heart
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Study. Multiple replicates of the simulation were pro-
vided to help assess methods and we used several of these
replicates for this purpose. This simulation used
~550,000 single-nucleotide polymorphisms (SNPs)
(GeneChip® Human Mapping 500 k Array Set and the
50 k Human Gene Focused Panel) from actual Framing-
ham data, also provided to GAW16. Traits were simulated
on to these SNPs by selecting several SNPs as oligogenes
(h2 of 0.01 to 0.001) and 1000 SNPs as polygenes (h2 of
0.0015 to 0.0002) for each trait. Some of the “polygenes”
have effects as large as those of the “oligogenes.” As in real
data, the boundary between the two is fuzzy. The
polygenes were selected more randomly, although some
were selected as clusters. We focused our analysis on
chromosome 11 and simulated low-density lipoprotein
(LDL) and high-density lipoprotein (HDL) at the first
visit. For linkage, we selected two subsets of 1-cM spaced
markers with a simple algorithm that traversed the
chromosome at 1-cM distances given two starting points.
Linkage information is captured almost completely by
markers at this density. Thus, adding additional markers
only provides a marginal increase in information, while
increasing the computational burden [2]. We selected two
subsets to control for both potential tight associations
between markers and trait genes and for the potential
effects of undetected typing error. We examined our
ability to identify both oligogenes and polygenes,
including clusters of polygenes, and in particular, if
there is any benefit to conducting linkage and association
analysis in a common framework.

Methods
We used Markov-chain Monte Carlo (MCMC) methods
to produce Bayesian statistics for segregation, linkage,
and association. These methods are implemented in the
computer program Loki [1]. Covariate effects are also
estimated, and the trait model is given by:
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where μ is the “reference” trait value, X is the incidence
matrix for covariate effects, b is the vector of covariate
effects, Qi is the incidence matrix for the effects of
quantitative trait locus (QTL) i, ai is the vector of effects
for QTL i, e is the normally distributed residual effect, k is
the number of QTLs currently estimated (k ≥ 0), Sj is the
incidence matrix for the effects of SNP j, gj is the vector of
effects for SNP j, and l is the number of SNPs being
tested for association in the analysis run. The MCMC
process samples μ, b, ai, gj, i, and e as well as parameters
such as unobserved marker genotypes and QTL genetic
position. All of these parameters are sampled from the
space of model values consistent with the data observed.

Values are sampled proportional to their posterior
probability. After the number of sampling iterations is
sufficiently large, the sampled values provide an estimate
of the posterior probability distribution over the para-
meter space. The difference between this and previous
applications of the method is in the number of SNPs we
test. Previously, we have included select candidate genes
as genetic covariates. Here we will test all the SNPs
available on chromosome 11 for association with this
method to examine how the method scales up to
genome-wide association testing.

Initially, LDL was analyzed with the two 1-cM SNP
subsets for linkage only (l = 0). Subsequently, single
SNPs and sets of SNPs were added to test for
association. When testing SNPs for association, we
considered 1) z-scores for each of the elements of gj
being non-zero, which assessed the strength of the
association, and 2) whether adding SNP j reduced any
linkage signal found in the region, which indicated that
SNP j was associated with the mutation causing the
linkage signal. If a single SNP in a region produced
the linkage signal, including it for association testing
should eliminate the linkage peak, by moving the effect
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were tested for linage to the included markers. Genetic
effects in the association term were those of typed genes
and thus not reflected in the linkage signal. Even when
not testing for linkage, including the segregation term
could improve association testing as a result of allowing
explicit modeling of the effects of loci other than the
one tested. To examine this hypothesis, we conducted
analysis runs with only one SNP for all ~26,000 SNPs
on chromosome 11.

To evaluate evidence for linkage, we used Bayesian
“L-scores” estimated over 1-cM bins along the chromo-
somes. An L-score is simply the posterior probability
divided by the prior probability. In the absence of any
data, the posterior probability should be equal to the
prior probability. Thus, a L-score of 1 indicated that the
data contained no information for or against linkage,
while a L-score >1 indicated evidence for linkage.

For comparison, we also conducted linkage analysis with
the computer program SOLAR, and association analysis
with a family-based test implemented with PROCMIXED
in the computer program SAS [3]. In addition, we
computed r2 for age- and sex-adjusted HDL in 2-cM
intervals, sliding 1 cM at a time across chromosome 11.
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For this regression analysis, we used PROC REG in SAS
with forward selection and an inclusion threshold of 0.1
for including a SNP in the regression. These r2 values give
an indication of the strength of association in each
replicate, whether due to causative loci or random chance.
In particular, they provide an indicator of the predictive
information present for association present in the data.

Results
First, we compared the MCMC linkage L-scores with and
without simultaneous association testing at most causa-
tive SNPs (Figure 1). Some SNPs could not be placed on
the linkage map and so were excluded. The linkage scores
were reduced, as expected, and 19 out of the 62 SNPs
had association |z-scores| > 2. All of these SNPs were part
of the simulation model, so ideally, we would like to see
more |z-scores| > 2. However, the small effects of some
of these SNPs (with h2 < 0.001) led to insufficient power.
These results indicate that this method can be useful in
candidate gene studies.

In comparison of the variance-component linkage results
and MCMC oligogenic linkage, we found that within a
simulated replicate for this data set, the two methods
produce similar results (Figure 2). However, between
replicates, the locations in which the signals were found
differed, sometimes markedly (Figure 3). This difference
holds for both linkage methods, so we included only the
LOD plots, which are more familiar to most. We note
that the two different subsets of 1-cM distant SNPs
produced concordant linkage signals within the same
replicate (see yellow and gold lines in Figure 3). The
discordance between replicates likely reflects that
although there were many signals on each chromosome,
the power to map these signals, most with h2 < 0.001,

was marginal and so different replicates may have had
different signal strength at different locations.

To further explore between-replicate variation, we com-
puted r2 explained within 2-cM intervals. In Figure 4, we
show these values (red), the LOD scores (black), and the
locations of the causative SNPs (green bars) for two
replicates. There is variation in both the LOD and r2

between replicates and neither seems to reflect the
concentration of SNPs around 110 cM. These results
suggest that both linkage and association tests alone
might fare poorly within gene clusters with a multitude of
mutations with each h2 < 0.001.

Finally, in single-SNP association tests under the MCMC
oligogenic model, ~1,700 out of ~26,000 SNPs had
|z-scores| > 2. This is slightly greater than the 5% expected
under the null hypothesis. With many simulated “causa-
tive” SNPs, nearly all z-scores could be argued to be “near”
a causative SNP, and thus there was no empirical null in
this data. These single-SNP tests were computationally
intensive, and probably not practical on a genome-wide
scale with current technology. There were some positive
signals here, so an alternate methodology may facilitate
these tests with dense SNPs. As currently implemented,
these methods are best suited to combined linkage and
candidate gene association studies.

Discussion
Oligogenic analysis of combined linkage and candidate
gene association appears to work for genes with an h2 on

Figure 1
Associated SNPs account for linkage peaks. L-scores
for MCMC oligogenic linkage analysis of LDL with (green)
and without (red) simultaneous association testing at most
causative SNPs. Including the causative SNPs reduces the
linkage signal in most regions.

Figure 2
Agreement between methods within replicate.
Comparison of linkage results for simulated LDL at Visit 1,
adjusted for age and sex, for L-scores from oligogenic
simultaneous segregation and linkage analysis (without
association testing) and for LOD from variance-components
methods. Vertical scales are not comparable, but note
agreement of peak locations.
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the order of 0.01. We had issues detecting some of the
“polygenes” in this simulation (h2 of 0.0015 to 0.0002),
but all methods appear to lack power to detect the
smallest of these “polygene” effects. At the margin of
such effects, it is important to extract as much informa-
tion from the data as possible and our motivation here
was to examine the benefits of combining both linkage
and association.

Here, we saw that there was some benefit to examining
both types of information simultaneously. However, the
lack of power to detect the very smallest “polygenes” is
cause for concern. If the genes in this simulation are not
unrealistically smaller than those that exist in real traits,
these results suggest that many true positives could be
due to random reinforcing of true signals, and replica-
tion will be difficult. It could be that the very smallest
effects in the simulation may be undetectable. The

results of computed r2 explained in regression computed
over 2-cM intervals are discouraging because of the poor
correspondence between gene locations and r2 peaks.
However, there does appear to be room for improve-
ment.

The methods used here, in their current state, are very
useful for testing of candidate gene associations. Fully
incorporating genome-wide association study data will
require algorithmic improvements. In particular, while
there were many z-scores with an absolute value >2, they
do not survive multiple testing corrections at the
genome-wide association study level. Incorporating
additional sources of information, such as that on gene
networks, might help with this issue. While our success
here was more limited than we hoped, incorporating
information from multiple sources in a single framework
may help detect marginal genetic signals.

Figure 3
Different signals in different replicates. LDL SOLAR linkage results. While several regions exhibited LOD > 1 in multiple
replicates, no region did so in all replicates.
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Figure 4
Linkage and Association vs. gene locations. HDL Visit 1 adjusted for age and sex analyzed SOLAR and regression
analyses in 2-cM wide windows (moving in 1-cM increments). In Replicate 1, no evidence for linkage was found. In Replicate 2,
a LOD score > 2 at ~80 cM was found.
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