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Abstract 

Background:  Dengue is a common vector-borne disease in tropical countries caused 
by the Dengue virus. This virus may trigger a disease with several symptoms like fever, 
headache, nausea, vomiting, and muscle pain. Indeed, dengue illness may also present 
more severe and life-threatening conditions like hemorrhagic fever and dengue shock 
syndrome. The causes that lead hosts to develop severe infections are multifacto-
rial and not fully understood. However, it is hypothesized that different viral genome 
signatures may partially contribute to the disease outcome. Therefore, it is plausible 
to suggest that deeper DENV genetic information analysis may bring new clues about 
genetic markers linked to severe illness.

Method:  Pattern recognition in very long protein sequences is a challenge. To over-
come this difficulty, we map protein chains onto matrix data structures that reveal pat-
terns and allow us to classify dengue proteins associated with severe illness outcomes 
in human hosts. Our analysis uses co-occurrence of amino acids to build the matrices 
and Random Forests to classify them. We then interpret the classification model using 
SHAP Values to identify which amino acid co-occurrences increase the likelihood of 
severe outcomes.

Results:  We trained ten binary classifiers, one for each dengue virus protein sequence. 
We assessed the classifier performance through five metrics: PR-AUC, ROC-AUC, 
F1-score, Precision and Recall. The highest score on all metrics corresponds to the 
protein E with a 95% confidence interval. We also compared the means of the clas-
sification metrics using the Tukey HSD statistical test. In four of five metrics, protein E 
was statistically different from proteins M, NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5, 
showing that E markers has a greater chance to be associated with severe dengue. Fur-
thermore, the amino acid co-occurrence matrix highlight pairs of amino acids within 
Domain 1 of E protein that may be associated with the classification result.

Conclusion:  We show the co-occurrence patterns of amino acids present in the 
protein sequences that most correlate with severe dengue. This evidence, used by 
the classification model and verified by statistical tests, mainly associates the E protein 
with the severe outcome of dengue in human hosts. In addition, we present informa-
tion suggesting that patterns associated with such severe cases can be found mostly 
in Domain 1, inside protein E. Altogether, our results may aid in developing new 
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treatments and being the target of debate on new theories regarding the infection 
caused by dengue in human hosts.

Keywords:  Dengue virus, Protein amino acid co-occurrence, Machine learning

Background
Dengue is a viral infection that in most cases leads to a febrile syndrome without high 
clinical risk, accompanied by headaches, orbital, muscles and joints aches, nausea, 
vomiting and skin rashes. However, cases of severe dengue, like the dengue shock 
syndrome, occur with a certain frequency. Patients with severe dengue conditions 
may have difficulty breathing, severe bleeding, severe abdominal pain, frequent vom-
iting, fluid retention and fatigue. This combination of symptoms makes severe dengue 
potentially fatal [1]. Early identification of the infection combined with appropriate 
treatments can reduce the chances of fatality by more than 99% [2, 3].

Dengue cases may be found in all continents, excluding Antarctica. However, the 
virus has established and persisted endemically in urban areas of tropical and sub-
tropical, which are favorable for the maintenance of the Aedes aegypti mosquito, the 
main vector of dengue [4, 5]. Statistical studies indicate that approximately 390 mil-
lion people are infected every year, of which 96 million need some kind of medical 
attention [6]. Analyzes of infected patient samples indicate cases of fatal infection 
between 2.5% and 5.9% [7, 8]. Although the global distribution of dengue is uncertain, 
research indicates the establishment of the Aedes aegypti mosquito in 129 countries, 
suggesting a population of 3.9 billion people at risk for the infection [6, 9, 10].

Dengue viruses are divided into four groups of antigenically distinct serotypes, this 
feature enables dengue reinfections through new serotypes for the host’s immune 
system [11]. Despite this, it is believed that primary dengue infection generates het-
erotypic immunity within 1–3 years, and that secondary infection causes extensive 
cross-protection, resulting in rare post-secondary infections [12–14]. However, sec-
ondary infection increases the risk of severe dengue [15].

The genetic material of the virus consists of single-stranded RNA (single-stranded 
RNA—ssRNA) with approximately 10,200 nucleotides and can be represented by 
a sequence of characters taken from a specific alphabet. To preserve the biological 
functions of each protein, specific relationships between nucleotides occur in every 
coding RNA. Thus, the dengue RNA coding region is divided into three structural 
proteins that make up the virion: C, M and E and; in seven non-structural proteins 
used in viral replication: NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5. In the com-
plete genome illustrated in Fig.  1, the regulatory regions 5’UTR and 3’UTR that do 
not translate proteins, called ncRNA [16, 17] are also observable.

Each protein is responsible for a specific task. Protein E is responsible for recog-
nition and entry into the cell to be infected [18], while protein NS1 participates of 
RNA replication and helps in the formation of immune complexes [19, 20]. The NS2A 
protein is important for viral pathogenesis, while the NS2B and NS3 proteins play an 
important role in viral protease functions [21–23]. The NS4A protein is associated 
with the M protein through internal regions and performs membrane rearrangement 
[24]. There is evidence that NS4A and NS4B can function cooperatively in viral repli-
cation and anti-host response [24, 25]. Finally, the NS5 protein bypasses the infected 
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organism’s innate immune response system and is the viral RNA-dependent RNA pol-
ymerase [26, 27].

In this study, we explored and compared all these dengue proteins looking for amino 
acid patterns that may be associated with severe dengue. Machine learning algorithms 
rely on numerical inputs to perform prediction tasks. Based on this need, we propose 
the encoding of protein coding sequence in co-occurrence matrices of amino acids.

For this, we assembled a data set, in which the coding RNA sequences were aligned, 
translated and segmented to obtain the deduced proteins. We then encode these pro-
teins into amino acid co-occurrence matrices, labeling them with the associated degrees 
of infection. Subsequently, these matrices are classified by a Random Forest (RF). Finally, 
the instance-label associations learned by the classifier are interpreted locally using 
SHAP Values (SHapley Additive exPlanations), revealing the co-occurrence patterns of 
amino acids that increase the probability of severe dengue in the sample.

Our results suggest that protein E has a better association with the degree of infection, 
with more relevant patterns for severity present in the region called Domain 1 of this 
protein. In addition to these results, the database of this work can be considered an addi-
tional contribution, as we provide data from protein-segmented dengue RNA samples 
containing information on the serotype and severity of the host-associated infection.

Methods
Framework for severe dengue explanation

The general objective of this research is to explore, through a machine learning (ML) 
explainability technique, the interaction between amino acids present in dengue proteins 

Fig. 1  (Above) Artistic conception of a dengue virion. Genomic RNA is surrounded by structural proteins. 
(Below) Dengue virus RNA encoding representation. Each protein is indicated by a unique color. At the 
RNA ends it is possible to observe the regulatory regions 5’UTR and 3’UTR. As virion components, structural 
proteins work on viral entry, fusion and assembly, while non-structural proteins work on viral replication
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and how they generate patterns capable of associated the severity of dengue infection. 
For this, our framework is divided into 5 steps, namely: (1) viral RNA alignment and 
protein segmentation so that they can be explored independently; (2) sequence normali-
zation and tokenization as steps to standardize and obtain protein amino acids; (3) gen-
eration of co-occurrence matrices of amino acids that will serve as training data for the 
classifier; (4) prediction of the degree of infection through the Random Forest (RF) algo-
rithm and; (5) local explanation of the RF classification model for the training samples in 
order to extract sets of co-occurrences of significant amino acids for prediction of severe 
dengue.

Input data

Proteins are chains of amino acids, such that amino acids are represented by charac-
ters taken from a specific alphabet known as IUPAC (International Union of Pure and 
Applied Chemistry) [28]. Let P be a protein such that, for any pi ∈ A , P can be math-
ematically represented by the series P = p1p2p3 . . . pn−1pn , where pi is a amino acids, A 
is the alphabet and n is the number of amino acids in the protein.

Data scraping

Despite the large amount of dengue genomes publicly available for research in gene 
sequence repositories, we found a great scarcity of samples labeled with the clinical pic-
ture of the infected patient. Therefore, we mine the NCBI (National Center for Biotech-
nology Information) and NCBI Virus Variation repositories in search of dengue genomic 
sequences labeled with the patient’s clinical outcome. A total of 562 labeled samples 
were obtained. Of this total, 61 samples have the complete dengue genome encod-
ing all 10 proteins. For each protein, we generate a separate data file in the following 
order: Additional file 1: C protein, Additional file 2: M protein, Additional file 3: E pro-
tein, Additional file  4: NS1 protein, Additional file  5: NS2A protein, Additional file  6: 
NS2B protein, Additional file 7: NS3 protein, Additional file 8: NS4A protein, Additional 
file 9: NS4B protein, and Additional file 10: NS5 protein. This subset of carefully selected 
sequences is another a contribution of our work. We also make a copy available in a pub-
lic repository via the link https://​doi.​org/​10.​5281/​zenodo.​58856​37.

The labels found were: dengue fever (DF), dengue hemorrhagic fever (DHF) and den-
gue shock syndrome (DSS). Given the low amount of DHF and DSS samples and because 
they are severe cases of dengue, we performed the binary labeling of our database, where 
DF became “classic dengue” and DHF and DSS, “severe dengue”. All samples, with the 
exception of two samples collected from the spleen, were collected through blood mate-
rial isolated from infected humans between 1985 and 2017. Data are from Brazil, Cam-
bodia, Chile, China, Colombia, Cuba, Spain, Philippines, Ghana, India, Indonesia, Japan, 
Malaysia, Mexico, Paraguay, French Polynesia, Sri Lanka, Vietnam, Thailand and Taiwan 
(Republic of China).

Protein sequences pre‑processing

To avoid non-conformities in the classification and explanation of results steps, the pro-
tein sequences go through the steps of: alignment, normalization and tokenization, as 
illustrated in Fig. 2.

https://doi.org/10.5281/zenodo.5885637
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Sequence alignment and segmentation

The sequences were aligned using the MUSCLE algorithm available in the UGENE [29] 
software. MUSCLE is a three-stage alignment algorithm for multiple sequences [30]. 
After the alignment is completed, protein segmentation is performed. The segmentation 
of enconding sequences into deduced proteins was performed based on the reference 
sequences available in GenBank for each dengue virus serotype.

Sequence alignment allows for standardization of raw data samples, filling incomplete 
sequences with gaps so that they line up with 61 samples with complete genomes, allow-
ing the creation of a database for each protein (Fig. 2). The sequence alignment process 
is based on the calculation of similarity of conserved regions between sequences. There-
fore, it is natural that the alignment adds gaps in partially incomplete sequences so that 
the conserved regions of each sequence are aligned, increasing the similarity between 
sequences [30–32]. This procedure can result in extensive gap regions for very incom-
plete sequences, causing entire proteins to be represented solely by gaps. To get around 
this problem, before any processing to generate co-occurrence matrices, we chose to 
remove samples formed by more than 15% of gaps. For the remaining sequences, the 

Fig. 2  Methodology diagram. In the example, the method receives raw sequences containing proteins 1, 2 
and 3 as input. Once aligned, it is possible to segment each protein. Then, the normalization and tokenization 
protein sequence processes are performed. Subsequently, amino acid co-occurrence matrix sets are 
generated for each protein, which will be classified by an individual RF for each protein. Finally, each RF is 
interpreted by Shap Values, thus generating explanations for each protein
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gap character “-” was removed, since it has no meaning and was entered by the align-
ment algorithm. For instance, the sequence “- - - -ACA​GAA​- - - - -” becomes “ACA​GAA​
”, while the sequences “ACA-GUA” and “ACA- -GUA” becomes “ACA​GUA​”.

The alignment, filling, selection and segmentation procedure ended up generating 10 
databases, one for each protein. Furthermore, based on the hypothesis that identical 
samples could be used in several researches and that, moreover, duplicate samples do 
not add value to the learning of a ML classifier, identical sequences of the same cod-
ing protein were eliminated. After that, the final distribution of the bases can be seen in 
Table 1.

Normalization

The normalization step consists of analyzing the nucleotides of the sequences, stand-
ardizing nucleotides without biological meaning, probably caused by sequencing errors. 
Therefore, in normalization, nucleotides that are not defined in the IUPAC nucleotide 
code are replaced by the pattern character I that represents indeterminacy.

Tokenization

Tokenization consists of segmenting each sequence into smaller subsequences, obtain-
ing an ordered list of these subsegments. In our experiments, codons are the sequence 
substructure used for tokenization. Codons consist of nucleotide triplets that can be 
transcribed to amino acids [33]. Then, in the tokenization step, the amino acids of each 
protein sequence are obtained.

Amino acid co‑occurrence matrices

Co-occurrence matrices have been used to collect statistics from varied data, espe-
cially image and text data [34–36]. In medical image analysis, co-occurrence matrices 
are used to measure image textures [37]. In the field of Natural Language Processing 
(NLP), co-occurrences can provide clues to semantic relationships between words in a 
body of text [38]. The application of co-occurrence matrices also expands into the field 
of bioinformatics, for example, in protein sequences, evidence of important functional 

Table 1  Generated database distributions

Protein Samples

Total Duplicates Remaining Classic Severe

C 298 192 106 71 35

M 288 155 133 91 42

E 394 123 271 190 81

NS1 275 118 157 110 47

NS2A 270 132 138 104 34

NS2B 270 167 103 70 33

NS3 270 88 182 132 50

NS4A 270 145 125 85 40

NS4B 270 144 126 89 37

NS5 270 60 210 148 62
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relationships for protein biological processes can be found when identical patterns of 
amino acid co-occurrence are present in different regions [39, 40].

A amino acid co-occurrence is the occurrence of two amino acid in a protein segment. 
Let P be a sequence of amino acid and S a segment of P, the co-occurrence matrix X can 
be obtained by the formula: Xij =

∑

S Kij , where,

and Xij denotes the number of times amino acid j was in the same segment as amino acid 
i. Thus, Xi,j is proportional to the joint probability P(i, j), which represents the probabil-
ity of occurrence of the terms i and j in the same segment.

The segment, or context window, reflects on the type of information provided by the 
matrices, for example, large segments reflect the coverage of large areas of the genome, 
generating co-occurrences between distant amino acid and reflecting on the ability of 
the co-occurrence matrices to capture long-distance correlations. Similarly, small seg-
ments define a search for closer patterns within a small region.

In order for the co-occurrence matrices of each sample of the same coding region to 
have identical dimensions, it was necessary to create a global dictionary containing all 
amino acids present in the samples. With possession of the global dictionary, it was pos-
sible to generate a template co-occurrence matrix that integrates all its co-occurrences. 
For example, let the samples be A1 = {[CAU ][ICG][GGC]} , A2 = {[CAU ][GCG][UGU ]} 
and A3 = {[GAU ][GCG][AIC]} it is possible to get the global amino acid dictionary d = 
{CAU, ICG, GGC, GCG, UGU, GAU, AIC} which allows us to generate the template co-
occurrence matrix present in Fig.  3. The fact that co-occurrences are interchangeable 
generates a symmetrical co-occurrence matrix.

Co‑occurrence matrix resizing and vectorizing

Based on the symmetry of the co-occurrence matrices, the first scaling step is to extract 
only elements of the upper triangular matrix. The generated co-occurrence matrices 
have dimensions Rd×d , where d is the size of the amino acid dictionary. The fact that the 
matrices are symmetric and interchangeable allows the resizing of the upper triangular 
matrix into a vector of dimension Rd(d+1)/2×1 . Finally, through these vectors it is pos-
sible to build a tabular database, where each column of the base represents a co-occur-
rence between pairs of amino acids.

(1)Kij =

{

1, if i, j ∈ S
0, otherwise

Fig. 3  Co-occurrence matrix. A template matrix for samples A1 , A2 and A3
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Feature selection

In order to achieve maximum classifier performance by reducing problem complexity 
and eventually an overfitting, we eliminate co-occurrences that carry little or no infor-
mation. For this, we use the Mutual Information (MI) algorithm that measures the 
dependence between two variables by calculating entropy using the k-nearest neigh-
bors. In this context, two variables can be considered independent if, and only if, the MI 
coefficient between them is zero. In contrast, the greater the dependence between two 
variables, the greater their mutual information value [41, 42]. Therefore, mutual infor-
mation values between co-occurrences and clinical picture were calculated for each pro-
tein base. Finally, the 50 co-occurrences that presented the greatest mutual information 
related to the clinical picture of dengue were selected for each database.

Random‑forest

The scarcity of publicly available samples with the clinical outcomes makes complex 
classification algorithms like CNN and LSTM have great difficulties in learning pat-
terns in our data, considering the large amount of samples that these algorithms require 
for parameter optimization. Therefore, we chose to use the Random-Forest (RF) classi-
fier for our experiments. Overall, RF classifiers are significantly less complex than deep 
machine learning methods, yet they are still widely used in the field of bioinformatics 
[43–47]. RF (Fig. 4) can be defined as models that consist of structured collections of 
{h(x,�k), k = 1, . . .} decision trees , where �k are independent and identically distrib-
uted variables and x is an input vector. After generating the trees, RF selects the most 
popular class among the trees for input x [48].

The RFs are part of a set of methods called ensembles, which are nothing more than 
combinations of several models to obtain a single result, making the ensembles more 

Fig. 4  Random-forests example. Three decision trees compose the RF classifier. The red nodes represent the 
path taken by the data until the classification leaf
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robust when compared to simpler algorithms such as trees decision or kNN [49, 50]. The 
basic structure of RF have as their basic unit binary decision trees (binary estimators) 
that employ recursive data partitioning.

To build each decision tree, the algorithm randomly selects variables from the training 
data and, from these, selects the most informative one to be the initial node (root node) 
that will have the first condition verified, giving rise to two child nodes that will initiate 
branches to the left and right of the root node. The node generation process is repeated 
throughout the tree, determining rules that define the data flow through the tree’s 
branches and establish its decision making [43, 51]. All these processes are repeated in 
the generation of the next trees. Finally, the RF defines the predicted class based on the 
class vote of the generated n-trees, where, the most predicted class in all the trees will be 
the final class of the RF [43].

Model explainability with SHAP Values

Many machine learning algorithms are considered functional black boxes because, 
given their complexity, it is almost impossible to understand their internal processes. 
However, in bioinformatics it is essential that there is a human domain over the classi-
fier’s decisions. Given this issue, several explainability methods have been proposed to 
explore the decisions made by ML models by evaluating the influence of input variables 
on the prediction results [52–56].

We can also mention other explanation techniques used in biological sequence clas-
sification problems through Deep Learning (DL) models [57–59], where the classifier 
is a Convolution Neural Network (CNN). Therefore, in these works it is assumed that 
the explanations are linked to the significant values of the CNN filters and the positions 
in which these values occur, then these values are backtracked to the input sequence 
and the relevant patterns are collected. As they are DL-based models, they need large 
amounts of data to be trained and explained, and unfortunately, our small amount of 
samples makes it impossible to use DL-based methods. Therefore, given the limitations 
imposed by the amount of samples, we chose the Random Forest classifier and used the 
SHAP values method with its specific explainer for tree-based models.

Explainability methods are divided into two classes: global methods that explain model 
results for all data inputs; and local methods that explain an individual input. Our inter-
est in model explanation is to be able to understand what happens in the classification of 
severe dengue, making it possible to identify significant amino acids co-occurrences for 
classifier assign a sample to the severe dengue class. Therefore, in explaining the model 
we want to encode its learned patterns and decision-making into information explain-
able in human terms.

Therefore, we decided to use in our experiments the SHAP Values [54] method that 
performs a local explanation under the trained model and the instance of interest, mak-
ing it possible to independently interpret classical dengue samples and severe dengue 
samples. The basic concept of SHAP Values is to ensure that two models f and g have 
approximate results for each instance. For this to occur, the condition g(x′)− f (hx(x

′))) , 
where f is the original predictive model, g is the interpreter model, and x′ is a simplifica-
tion of the original instance x that can be mapped to the original instance from a func-
tion h, such that x = hx(x

′) . For a more detailed understanding, SHAP Values unifies the 
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importance of variables through a conditional expected value function of the f model, 
such that, fx(z′) = f (hx(x

′))) = E(f (x)|xS) , where S is the non-null subset of x′ . Finally, 
the general equation of the method explanation model takes the form of the conditional 
expectation function f (hx(x′)) = E(f (x)|xS) [54].

TreeExplainers

TreeExplainer is a specific method for local explanations of tree-based models, provid-
ing fast and accurate results by calculating the SHAP values for each leaf of a tree. The 
algorithms estimate f (hx(x′)) = E(f (x)|xS) recursively following the decision path for 
an input instance x in a tree. The complete methodology, as well as the algorithms that 
define the TreeExplainer, can be found at [60].

SHAP Values explanations results

Machine learning models internally perform multiple mathematical operations to obtain 
results. For example, to perform predictions, classifiers generate real values which in 
turn will be associated with labels. As described earlier, SHAP Values performs variable 
explanation from the conditional expectation function.

From there, the method assigns positive and negative impacts to the input instance 
variables so that the expected value of the interpreter E(f (x)|xS) is equal to the output 
value of the original model f. Thus, the magnitude of the impact reflects the influence 
of the variable in the classification of the sample, such that positive impacts increase 
the probability of correct classification of the sample, while negative impacts have the 
opposite effect, suggesting that variables with positive impacts have a greater capacity to 
characterize the sample class [61]. Therefore, for each sample, the SHAP Values method 
generates a table that associates a classification impact value with the features in the 
sample.

To facilitate viewing the patterns provided by SHAP, we chose to generate a global 
explanation from multiple local explanations. For this purpose, after obtaining all the 
tables, the positive impact score of each co-occurrence is calculated, which consists of 
the number of times each co-occurrence had a positive impact divided by the number 
of times the co-occurrence appeared. Then, the average impact value of each of them 
is calculated. After that, each co-occurrence is ranked in descending order by the two 
metrics. Finally, we selected the resulting co-occurrences located in the first 20% rank-
ing positions and the final 20%. That is, the 20% with the highest positive impact and the 
highest positive impact score and the 20% with the lowest positive impact and lowest 
positive impact score.

Experiments and results

Five stratified cross-validations were performed to observe the classifier’s response 
on different training and test sets. In view of the evident unbalance of classes in the 
bases presented in the Table 1, the PR-AUC metric (Area Under the Precision-Recall 
Curve) [62] was chosen to evaluate the model, in addition to the metrics: ROC-AUC 
metric (Area Under the ROC Curve), precision, recall and balanced F1-score. Preci-
sion, recall, and F1-score balanced metrics compensate for class imbalance by cal-
culating a weighted average across correctly classified instances, while ROC-AUC is 
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more optimistic than PR-AUC for unbalanced datasets. The mean of the metrics, as 
well as their confidence intervals for all proteins can be seen in Table 2. Also, we per-
form exploratory analyzes to observe the classifier performance in each database. To 
visually compare the results obtained for each database, we used box-plots (Fig. 5) to 
verify the empirical distribution of the metrics.

It is possible to observe in the box-plots in Fig. 5 that for the fivefolds of validation, 
the results of each metric for proteins M, NS1 ,NS2A and NS4A have a high variance 
when compared to the other proteins. On the other hand, the box-plots of protein E 
have low variance in Precision, Recall and F1-score metrics, indicating that for each 

Table 2  Average of the metrics obtained in fivefolds cross validation with 95% of confidence 
interval using Student’s t-distribution

Highlight the best results obtained through bold text

The P, R and F1 columns represent the Precision, Recall and F1-Score metrics, respectively

Protein PR-AUC​ ROC-AUC​ P R F1
Mean ± E Mean ± E Mean ± E Mean ± E Mean ± E

C 0.66± 0.06 0.77± 0.04 0.74± 0.03 0.70± 0.03 0.70± 0.03

M 0.57± 0.06 0.73± 0.04 0.71± 0.03 0.70± 0.03 0.70± 0.03

E 0.67± 0.04 0.85± 0.02 0.80± 0.02 0.79± 0.02 0.79± 0.02

NS1 0.62± 0.06 0.74± 0.04 0.72± 0.02 0.69± 0.03 0.70± 0.03

NS2A 0.52± 0.06 0.73± 0.04 0.74± 0.02 0.70± 0.03 0.71± 0.03

NS2B 0.57± 0.05 0.74± 0.03 0.73± 0.03 0.70± 0.03 0.70± 0.03

NS3 0.58± 0.05 0.75± 0.04 0.73± 0.02 0.71± 0.02 0.71± 0.02

NS4A 0.55± 0.06 0.71± 0.05 0.72± 0.04 0.69± 0.04 0.69± 0.04

NS4B 0.58± 0.05 0.74± 0.04 0.70± 0.03 0.67± 0.03 0.68± 0.03

NS5 0.52± 0.05 0.75± 0.03 0.73± 0.03 0.71± 0.03 0.71± 0.03

Fig. 5  Comparison of results. Proteins M, NS1, NS2A, NS2B and NS4A show results with greater variability 
in the cross-validation fivefolds, while proteins C, E, NS4B and NS5 indicate less variability. For the recall and 
F1-score metrics, the NS3 protein showed low variability, however, containing outliers. The distribution of 
protein E metrics gives evidence that its results are superior. Furthermore, the distribution of E protein metrics 
show low variability, showing that the classifier maintained a uniform performance for each fold
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fold the results obtained are more constant than in the other proteins, which suggests 
a greater capacity for generalization by the classifier when it uses protein E data.

Furthermore, the box-plots of the Precision, Recall and F1-score metrics in Fig. 5 show 
a possible difference between the results obtained for each protein. Therefore, to statisti-
cally test the hypothesis that the mean results are different for each protein, we used the 
one-way analysis of variance (ANOVA) model, which compares sample means through 
the Fisher-Snedecor F distribution [63, 64]. The ANOVA test hypotheses are: the null 
hypothesis H0 , where the sample means are equal, and the alternative hypothesis H1 , 
where at least one of the averages is different from the others.

The data used in the ANOVA test must meet the assumption of homogeneity of vari-
ances, verified by the Levene test [65], as well as the model’s residuals must be normally 
distributed, verified by the Shapiro–Wilk test [66]. The null ( H0 ) and alternative ( H1 ) 
hypotheses for Levene’s test are: the groups variances are homogeneous and the groups 
variances are not homogeneous, respectively. For the Shapiro–Wilk test the hypotheses 
are: H0 data is normally distributed and H1 : data is not normally distributed. All null 
hypotheses are accepted if, and only if, the p-value of the test is greater than a signifi-
cance level of ǫ . The Table 3 presents the results of the ANOVA tests for each metric, as 
well as the tests of their assumptions.

After obtaining the confirmations of the ANOVA test, we applied the Tukey test to 
verify the difference between the means of the metrics for each protein. The null hypoth-
esis for Tukey’s test assumes that there is no statistically significant difference between 
the means of two samples, while the alternative hypothesis assumes the opposite. Pro-
tein pairs with statistically distinct means of metrics can be seen in Fig. 6. As we can see, 
for all metrics, protein E presents statistically different averages at least one protein in 
Tukey pair comparison.

Explanations

After being trained, the classifiers were interpreted using the SHAP Values method 
through the TreeExplainer algorithm. The SHAP Values method generates individual 
explanations for each data sample. For our explanations we use force plots, which in turn 
show the impact of sample variables on the prediction [61]. Then, from the force plots 
we can extract the impact of each co-occurrence on the probability of classification of 

Table 3  For a significance level of ǫ = 0.05 the Levene and Shapiro–Wilk tests show evidence that 
the metrics have homogeneous variances and that the residuals of the ANOVA model are normally 
distributed

Finally, the null hypothesis of the ANOVA test is rejected, indicating that at least one of the metric means is different from 
the others

Leven’s test p value ANOVA p value Shapiro–
Wilk p 
value

PR-AUC​ 0.83 4× 10
−5 0.83

ROC-AUC​ 0.10 6× 10
−
5 0.09

Precision 0.07 4× 10
−4 0.43

Recall 0.11 2× 10
−5 0.53

F1-score 0.13 2× 10
−5 0.63
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severe dengue. Therefore, the first step of our explanations is to rank the co-occurrences 
that increase the probability of severe dengue, so that, finally, we can visualize the distri-
bution of these co-occurrences and their behavior in samples of classic dengue.

Of the 50 co-occurrences selected by the MI algorithm, the explanation graphs will be 
20% of the most relevant co-occurrences in the classification of severe dengue and the 
20% less relevant. Finally, the co-occurrence values will be compared with classic den-
gue samples. As stated earlier, explanations generate positive and negative impacts. Co-
occurrences do not have a constant impact behavior for each sample, that is, the same 
co-occurrence may have positive impacts in certain samples and negative impacts in 
severe dengue samples.

E protein explanations plots

Protein E explanations reveal distinct characteristics between co-occurrences of signifi-
cant amino acids for severe dengue compared to classic dengue. In general, as we can 
see in Fig. 7, the co-occurrence distributions are mostly distinct for classic and severe 
dengue. Examining the Fig. 7 we can observe differences in the behavior of the empirical 
distributions of amino acids significant for severe dengue compared with their behavior 
in classic dengue. These differences are more evident for the co-occurrence between the 
amino acids Serine and Tryptophan (encoded by UCA and UGG, respectively) which is 
positively significant in 96% of severe dengue samples. In this we can observe that the 
value distribution of this co-occurrence tends to have higher concentrations, close to 10, 
while for severe dengue this figure rises to 20.

Fig. 6  For the Tukey test with a significance level of ǫ = 0.05 , protein E metrics were statistically different 
from other proteins, with the exception of PR-AUC and Precision, which were statistically equal to protein C. 
In these experiments, the co-occurrences present in protein E have a greater capacity to describe the severity 
of dengue when compared to other proteins
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We can observe that for all cases the empirical distributions of significant co-occur-
rences for severe dengue are not graphically identical to those for classic dengue, 
although they are close in some cases. Again, it is important to emphasize that the 
co-occurrences present in Fig. 7 are ranked according to their importance in the clas-
sification of severe dengue in the samples. For example, the first co-occurrence (UCA, 
UGG) was significant for classification of 96% of severe dengue samples, while the last 
co-occurrence (AAG, CGC) was significant for classification of only 35% of severe 
dengue samples.

Co‑occurrences importance by E protein regions

Dengue E protein can be divided into four major regions, namely: Domain 1, Domain 
2, Transmembrane 1 and Transmembrane 2. Each of the four dengue serotypes have 
specific RNA positions that mark the beginning and end of these regions [67–72]. To 
improve the visualization, after analyzing the behavior of the co-occurrences for sam-
ples of each serotype, the co-occurrence values by region for samples of each serotype 
are grouped through the mean, as can be seen in Table 4.

The Domain 1 region of dengue E protein has the highest mean concentration of 
significant co-occurrences for the classification of severe dengue. With the exception 
of the co-occurrence (GUA, UAA) which is on average more present in Domain 2, 
all the others are more frequent in Domain 1, as we can see in Table  4. This is an 
indication that domain 1 may be directly related to the probability of dengue fever in 
the clinical outcome. However, more in-depth experiments are needed to confirm this 
evidence.

Fig. 7  The figure shows the density graphs of the co-occurrence distributions that were interpreted as 
significant for severe dengue (in pink) and, for comparison purposes, their density for classic dengue (in 
green). Each label on the y axis is composed of a probability followed by the co-occurrence, for example, for 
the First 20% the first co-occurrence (UCA, UGG) positively impacted 96% of the severe dengue samples , that 
is, the probability of severe dengue increased in 96% of the samples. The x axis contains the co-occurrence 
values.
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Discussion
In this article, we present a method capable of representing and classifying severe den-
gue according to the protein coding sequence of the virus. Furthermore, the method is 
focused on improving the extraction of significant patterns for the classifier. The proce-
dure is based on the segmentation of dengue viral RNA in each of the ten protein cod-
ing sequences, transforming these protein segments into matrices of co-occurrence of 
amino acids within a context window that will be classified by a RF.

The significant co-occurrences for severe dengue class were obtained through the 
SHAP Values explanation model, which employs a range of strategies to select variables 
that have greater weight in the classifier’s decision making, that is, co-occurrences that 
increase the probability of severe dengue. An important piece of information is that the 
context window is not automatically generated, this allows one to adjust the range of co-
occurrences, allowing one to choose between performing local analyses, represented by 
patterns of co-occurrences conserved within the genome, or analyzes in large segments, 
allowing for co-occurrences between distant amino acids to be captured, increasing the 
chance of collecting long-distance correlations between amino acids.

Another important point to highlight is that by applying a classifier with few hyper 
parameters for adjustment, we reduce the need to use large databases for classification. 
Therefore, our method is able to perform on small databases, however, this does not 
mean that additional strategies are excluded, in our problem, for example, it was neces-
sary to binarize labels to reduce the negative effects of high unbalance of our base. One 
of the advantages of using an RF as a classifier is that, because it is a rule-based classifier, 

Table 4  Domain 1 has on average more significant co-occurrences for severe dengue

For E protein regions, highlight, through the bold text, the highest average value of co-occurrences for the significant amino 
acid pairs

Co-occurrence Domain 1 Domain 2 Transmembrane 1 Transmembrane 
2

(UCA, UGG) 4.33 1.81 0.79 0.06

(AAA, CAU) 10.30 3.07 0.03 0.42

(AAU, AGG) 8.30 0.48 1.28 0.22

(AAC, AAG) 8.98 3.45 0.00 0.00

(AUU, CGG) 1.40 0.06 0.34 0.00

(AAG, UCC) 1.22 1.06 0.03 0.00

(AAC, GAG) 6.12 4.06 0.00 0.00

(AUU, UCA) 2.51 1.40 0.66 0.03

(CAU, UAC) 2.78 1.52 0.00 0.00

(AAC, CAA) 10.19 3.35 0.00 0.00

(AAG, UCA) 5.51 3.51 0.04 0.00

(AAA, UGU) 8.94 2.12 0.00 0.00

(UCA, UUG) 3.89 1.64 0.46 0.12

(AAA, UCA) 5.69 4.37 0.08 0.81

(AAA, UCU) 2.75 1.15 0.12 0.06

(CAG, CCC) 1.72 0.32 0.31 0.00

(CAA, GUU) 3.16 0.79 0.00 0.00

(UAU, UGG) 0.85 0.07 0.12 0.27

(CAG, GGA) 9.05 0.69 0.01 0.00

(GUA, UUA) 0.61 0.76 0.12 0.00
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the significant patterns for classification obtained by the SHAP method tend to be more 
concrete, since this classifier does not employ transformations in the input data, as with 
the deep models CNN and LSTM [73].

Finally, we emphasize that the focus of our approach is the exploratory analysis of the 
RNA sequences that produced a clinical outcome known as dengue severe, showing 
amino acid patterns that were related to this event. The presented methodology is flex-
ible, as it would be possible to add metadata along with the co-occurrence vectors, such 
as mass, volume, polarity and charge of the protein segment. There are no limitations on 
the use of our method for classifying and interpreting other biological sequences.

Conclusion
In this work, we described an ML method capable of identifying amino acid co-
occurence patterns associated with severe dengue cases. In our analysis, precisely the 
same amino acids didn’t need to be found in all cases, but a signature of them. The bio-
logical basis of these results needs further evaluation, and other multifactorial aspects 
linked to dengue severe cases like secondary infection and host immunogenetics must 
not be ruled out. On the other hand, the method may be used as an interesting approach 
to identify patterns that may not be easily identified using other techniques.Moreover, 
the statistical analysis results do not support that the presented results occurred only 
by chance. Notwithstanding, the paucity of genomes with available outcome metadata 
may limit the robustness of some of the observed associations. Furthermore, we believe 
that the method described here may also be helpful for other studies with different viral 
agents.
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