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Abstract

Genome-scale datasets have been used extensively in model organisms to screen for specific candidates or to predict
functions for uncharacterized genes. However, despite the availability of extensive knowledge in model organisms, the
planning of genome-scale experiments in poorly studied species is still based on the intuition of experts or heuristic trials.
We propose that computational and systematic approaches can be applied to drive the experiment planning process in
poorly studied species based on available data and knowledge in closely related model organisms. In this paper, we suggest
a computational strategy for recommending genome-scale experiments based on their capability to interrogate diverse
biological processes to enable protein function assignment. To this end, we use the data-rich functional genomics
compendium of the model organism to quantify the accuracy of each dataset in predicting each specific biological process
and the overlap in such coverage between different datasets. Our approach uses an optimized combination of these
quantifications to recommend an ordered list of experiments for accurately annotating most proteins in the poorly studied
related organisms to most biological processes, as well as a set of experiments that target each specific biological process.
The effectiveness of this experiment- planning system is demonstrated for two related yeast species: the model organism
Saccharomyces cerevisiae and the comparatively poorly studied Saccharomyces bayanus. Our system recommended a set of
S. bayanus experiments based on an S. cerevisiae microarray data compendium. In silico evaluations estimate that less than
10% of the experiments could achieve similar functional coverage to the whole microarray compendium. This estimation
was confirmed by performing the recommended experiments in S. bayanus, therefore significantly reducing the labor
devoted to characterize the poorly studied genome. This experiment-planning framework could readily be adapted to the
design of other types of large-scale experiments as well as other groups of organisms.
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Introduction

To understand the functions of gene products and the interplay

between them, significant effort has been spent on performing and

analyzing genome-wide expression profiling experiments. Com-

pared to traditional experiments that study protein functions on

the single-gene scale, modern high-throughput techniques effi-

ciently characterize expression of the whole genome. One of the

most popular techniques is the gene expression microarray, with

thousands of expression profiles available for the commonly-

studied species. For example, in the Gene Expression Omnibus

repository, over 150 datasets comprised of 2400 conditions were

available for Saccharomyces cerevisiae as of 2007 [1], with data

continuing to appear at an enormous rate. These large scale data

have been used to accurately predict gene functions [2–4], protein-

protein physical interactions [5] and functional relationships for

yeast [6] and other model organisms [7,8], as well as human [9].

On the other hand, new genomes are being sequenced at an

exponentially growing rate [10], with more than 2,200 genome

sequencing projects completed or ongoing to date. These

sequencing efforts accelerate our understanding on diverse species,

but identifying the gene sequence is not sufficient to define the

biological role of its product, and functional annotation of these

genomes lags far behind sequencing.

Many of these newly sequenced species are amenable to

further experimental study in the lab. The lack of such functional

annotation is partly due to the fact that experiments in poorly-

studied species are still mainly based on expertise experience or

heuristic trials, rather than using a systematic approach based on

comparative functional genomics. Although the heuristic ap-

proach is useful in directing specific experiments, it is often far

from optimal for a systematic functional annotation of all proteins

(or at least the majority) in a newly-sequenced genome.

Furthermore, experiments that target a specific biological process

may also provide accurate functional signal for additional

pathways. For example, hyperosmotic shock datasets not only

elucidate stress responses, these experiments provide information

on regulation of DNA replication initiation because of the cell

cycle arrest that occurs under this condition. This functional

coverage information is often implicit. We propose here that
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systematic analysis and quantification of this information in a

well-studied species could be the foundation of a systematic

experimental design scheme in related poorly-studied species.

In recent years, computationally directed experiments have been

applied to different fields. The most prominent application domain

is the prediction of protein function with follow-up in vivo tests. For

example, the prediction results of an ensemble of three algorithms

have been used to direct experiments to find genes required for

mitochondrial biogenesis [2]. Experiments that detect physical or

genetic interactions have also been directed through computation-

ally integrating quantitative genetic interactions and TAP-MS data

[11]. The recent development of the Robot Scientist ‘‘Adam’’ marks

the state-of-art pipeline of computationally directed studies, which

generate hypotheses and experimentally test them [12]. However,

these computational efforts have not been extended to direct

experiments in a poorly studied species for functional annotation

based on existing knowledge in a well characterized species.

In this paper, we developed a systematic approach to

recommend experiments for functional annotation of S. bayanus

(a poorly-studied yeast species) based on the wealth of available

gene expression data in the model organism S. cerevisiae (baker’s

yeast). The system identifies experiments that are informative of

genes participating in each function and then uses an optimized

combination of the predictive power of each experimental

treatment with the coverage overlap between treatments to rank

a list of experiments that are able to predict the maximum

spectrum of biological processes using the minimum number of

arrays. Based on functional analysis we estimated that experimen-

talists can achieve similar functional coverage in the same or

related species with less than 10% of the arrays. We further carried

out these recommended experiments in S. bayanus and the resulting

arrays achieved similar functional coverage to all the existing S.

cerevisiae arrays with a 10 fold reduction in labor. Our approach is

readily adaptable to other sequencing-based measurements of

expression and to measurements of protein and metabolite levels,

and is potentially applicable to other large-scale experiment types.

Results

Our experiment planning scheme includes four components

(Figure 1): 1. Ranking experiments by their accuracy in predicting

a specific biological process; 2. Recommending a list of

experiments that maximally covers different functions but shows

minimum overlap. 3. Estimating the minimum number of arrays

for experiments that consist of a large number of arrays and were

originally designed for large-scale characterization of the genome.

4. Finally, combining these three aspects, we recommend a final

list of experiments that are optimized for functional coverage of

the entire genome; these recommended experiments were carried

out and evaluated in S. bayanus. Details of these components, as

well as computational (through cross-validation) and experimental

(through S. bayanus experiments) evaluations are presented below.

Priority of experimental treatments determined by their
different coverage of biological processes

Genes play individualized roles in the cell and one gene product

can be involved in several different biological processes. Hence for

a given experimental treatment or genetic perturbation, we would

expect that genes of some functional groups respond more strongly

than others. Thus, different datasets are more or less informative

of particular processes, including processes that are not necessarily

the direct target of the experiment’s design. This information, i.e.,

the informativeness of a dataset when used to predict certain

biological process, could be used to select experimental treatments

to target certain biological process.

However, this information is often implicit and must be

quantified statistically. The Brem et al., 2005 dataset, for example,

represents the progeny from an outcross between two strains,

executed with the goal of using the resulting expression profiles as

phenotypic traits in genetic mapping. It performs well in

predicting a wide range of biological processes, including terms

not directly related to genetic crossing such as electron transport

and sulfur metabolic process (Figure 2A). Our method can rank

the candidate experiments according to their informativeness, or

how much information each experiment provides on telling

whether a gene is related to a certain biological process. We

propose to access such informativeness by assessing the predictive

performance of a machine learner that uses the data in the

experiment under consideration to predict proteins involved in

that process. The intuition is that the machine learner will achieve

higher accuracy if the training data provides more information

about the specific process (at least in terms of functional

annotation), and thus this experiment is likely to be highly

effective in interrogating this functional group in the evolutionarily

related, less well-studied organism. To do this, we use Support

Vector Machine (SVM), a state-of-the-art machine learning

algorithm [4,13], though the method can be used with any

machine learning approach.

We used bootstrap cross-validation [14] to characterize the

performance of our S. cerevisiae microarray data collection in

predicting Gene Ontology (GO) biological process (BP) terms that

are annotated with 10 to 500 genes in S. cerevisiae (Figure 2B). We

employed several different measurements, including AUC (area

under the receiver operating characteristic curve), which charac-

terizes the overall ability of a dataset resulting from an

experimental treatment to predict function for proteins in a

certain biological process; and precision (accuracy) at 1 percent, 10

percent, 50 percent and 80 percent recall, which focuses more on

discovering new genes. It is important to note that these measures

assess the ability of experimental treatments to interrogate

participants in specific biological processes. Although these

measures are influenced by the quality of data as well, we found

that they are sensitive to different experimental treatments,

because these measures are highly correlated across GO terms

in the same treatment between S. cerevisiae and S. bayanus (see

Author Summary

Microarray expression experiments allow fast functional
profiling of an organism’s entire genome and significant
efforts are devoted to analyzing the resulting data.
Available genome sequences are also increasing quickly.
However, it is unexplored how to use available functional
genomics data to direct large-scale experiments in newly
sequenced but poorly studied species. In this paper, we
propose a strategy to systematically plan experimental
treatments in the poorly studied species based on their
model organism relatives. We consider both the accuracy
of the datasets in capturing different biological processes
and the redundancy between datasets. Quantifying the
above information allows us to recommend a list of
experimental treatments. We demonstrate the efficacy of
this approach by designing, performing and evaluating S.
bayanus microarray experiments using an available S.
cerevisiae data repository. We show that this systematic
planning process could reduce the labor in doing
microarray experiments by 10 fold and achieve similar
functional coverage.

Systematic Planning of Genome-Scale Experiments
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below). If a different property of experimental design is desired,

such as ability to assess regulatory interactions or binding partners,

this particular characteristic can be optimized through the same

evaluation methodology.

With this information, experimental treatments can be ranked

by how effective they are in predicting a given biological process.

We make this method available to the scientific community

through our interactive website, where the users can search for the

most relevant experiment(s) for the biological process of interest.

Redundancy in information provided by different
datasets plays an important role in experiment planning

An important phenomenon we observed through the function-

dataset informativeness analysis is that some biological processes

are well represented in many datasets, while others are only

reflected in a small fraction of datasets (Figure 2B). For example,

signals for the group of ribosome- and translation-related

biological processes are present in the majority of the S. cerevisiae

expression datasets. Metabolism, mitosis, carbohydrate, and

amino acid-related terms are also well represented by many

datasets. However, most of the biological processes, for example,

transcription, cell cycle, stress and transport-related terms, are only

detectable in particular datasets.

Datasets that have the best overall performance in our analysis

showed this same range of variability in the terms that they could

cover (Figure 2A). For example, transcription from RNA

polymerase I promoter (GO:0006360) and electron transport

(GO:0006118) are reflected in most of the top 10 datasets. On the

other hand, response to toxin (GO:0009636) has strong signal only

in the Chitikila02 dataset [15] and the Brem02 set1 data [16], and

function of proteins in peroxisome organization and biogenesis

(GO:0007031) is well represented only in the Boer05 dataset,

which profiles the expression pattern of a leu3 mutant strain [17].

The phenomenon of different functional sensitivity of different

expression datasets is consistent with previous studies using

different machine leaning methods to estimate informativeness

[1,18]. Therefore, both the accuracy and the redundancy between

datasets should be considered for planning experiments.

To quantify the overlap in information between datasets, we

calculated pair-wise conditional mutual information (CMI). This

CMI analysis is highly informative of functional redundancies and

therefore is critical to our experiment planning system as shown

below. Intuitively, CMI quantifies the overlapping information

between datasets in predicting functions. The CMI analysis

effectively identified datasets that result from similar experimental

treatments (Figure 3). For example, the Brem et al. 2002, Brem

et al., 2005 and Yvert et al., 2003 datasets have very high mutual

information, and in fact are overlapping subsets of the same type

of experiment [16,19,20]. Less obvious is identification of datasets

that are different in their treatments but essentially targeting the

same biological processes, for example, the Tai et al. 2005 and

Boer et al., 2005 datasets have very high mutual information,

although the former is a nutrient limitation treatment, while the

latter studies the expression in leucine auxotroph mutants. This

Figure 1. Three-step schematic of the genome-scale experiment planning procedures. First, the informativeness of each experiment in
predicting each Gene Ontology (GO) biological process is quantified by bootstrap support vector machine (SVM). Genes in the model organism are
grouped into ‘Positives’ (those annotated to the GO under study), and ‘Negatives’ (those not annotated to the GO term). The Area Under the Receiver
Operating Characteristic Curve (AUC) of each experiment is estimated by bootstrap SVM, resulting in the GO-experiment matrix. Secondly,
conditional mutual information (CMI) was used to quantify the overlap between pair-wise experiments. This results in a symmetric mutual
information matrix. Finally, for datasets that contain a large number of arrays, we estimated the minimal number needed to achieve satisfactory
function prediction results by a randomized test. The experiment planning system combines the above three aspects and recommends a final list of
experimental treatments to be carried out in a related poorly-studied species.
doi:10.1371/journal.pcbi.1000698.g001

Systematic Planning of Genome-Scale Experiments
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overlap is likely because both experiments were performed in

chemostat culture which may induce similar responses in yeasts.

[17,21]. Less obvious relationships identified by the CMI analysis

are those among datasets that do not directly share the same or

similar experiment treatments but still contain high mutual

information. For example, a set of cell cycle-related experiments

are clustered together by their high mutual information, including

Spellman98 cyclin [22] and the two technical replicates from Iyer,

Figure 2. Microarray datasets contain signals for different yet overlapping biological processes. A. The performance (in AUC) of each of
the top 10 datasets (in order) recommended by the planning system in predicting different biological processes. B. The performance (in AUC) for the
prediction for all GO biological process terms by the entire S. cerevisiae microarray repository, clustered by hierarchical clustering. Datasets are very
different in their relative performance for different biological processes. Some of the biological processes are well-covered by a variety of experiment
treatments, while the majority are only covered by a small fraction of the datasets.
doi:10.1371/journal.pcbi.1000698.g002

Systematic Planning of Genome-Scale Experiments
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et al. 2001 [23] (Figure 3). These experiments altered key cell cycle

regulators including the cyclins and the transcriptional regulator

MBF/SBF. Although these experiments do not analyze a time

course of synchronized cells, they measure the transcriptional

response to these key regulators and so are very informative about

gene expression regulation in the cell cycle. Similarly, stress-

response experiments Rutherford01 [24], Fernandes04 [25] and

Gasch00 HOresponse [26] are clustered together, despite the fact

that they represent diverse experimental treatments, including iron

homeostasis, hydrostatic pressure and hydrogen peroxide. The

CMI quantification allows us to statistically identify redundant

datasets and avoid such redundancies in experimental recommen-

dations for the less-studied species.

Only a small fraction of some of the large scale datasets
is needed for functional annotation

Large-scale microarray experiments designed for characteriza-

tion of the whole genome tend to be of very high accuracy but

often include a large number of arrays. For example, among the

top performing datasets in predicting gene functions are the Brem

et al., 2005 experiments designed to detect segregation of

expression patterns in an outcross [19] and the Hughes et al.,

2000 experiments designed for genome-wide mutation analysis

[27]. They include 130 and 300 arrays respectively. Although both

datasets are among the top recommended experiments, intensive

labor is required to repeat these experiments in a new species.

We attempted to minimize the number of arrays in these large-

scale microarray experiments while retaining their function

prediction capability. Through randomized selection of subsets

of datasets, we could estimate the accuracy versus number of

arrays included in the subsets. Surprisingly, a rather small fraction

of the arrays (25–40) can achieve very similar performance in

overall function prediction to the entire datasets (Figure 4A and

4B). Additional arrays only add to marginal improvement in

performance. Therefore only a small proportion of the arrays of

these very large scale experiments are required for our experiment

planning system. Of course, this does not mean that these

additional data are not biologically relevant, in fact, for genetic

linkage experiments the entire dataset is informative. Rather, a

subset of these experiments of optimized size can be used for this

specific goal of functional annotation; if a different biological

question is important, the size of the appropriate subset or entire

dataset can be estimated specifically for that question (e.g.

regulatory relationship prediction).

Biological processes differ in their sensitivity to the number of

arrays required for reasonable assessment of each process

(Figure 4C). For example, we could accurately predict the biological

process ‘ribosome biogenesis and assembly’ (GO:0007046) with

only about 15 arrays from the Brem et al., 2005 [19] dataset.

Additional arrays add no improvement in predicting this term.

Predictions for many of the other biological processes have different

sensitivity to the number of arrays. For example, ‘cellular lipid

catabolic process’ (GO:00044242) and ‘histidine metabolic process’

(GO:0006547) could be captured with relatively small number of

arrays. On the contrary, ‘co-factor biosynthetic process’

(GO:0051188) and ‘G1 phase of mitotic cell cycle’ (GO:0000080)

require a large number of arrays to be well characterized. There are

also terms like ‘cell growth’ (GO:0016049), which cannot be

captured even using the maximum number of array we tested. For

this case, increasing the number of arrays is meaningless. The

requirement for the number of arrays on a per-biological process

basis was calculated and provided though our online searchable

system. For the general recommendation process, we define the

minimum number of arrays based on the average AUC across all

GO functional SLIM terms [28] and therefore guarantee the overall

performance.

The complete experimental planning scheme effectively
captures functions with a limited number of experiments
in S. bayanus

Our experiment planning system flexibly leverages both the

accuracy of each experimental treatment in capturing different

functions and the overlap in information between them. We

determined the overall accuracy of a dataset by its average AUC

Figure 3. Conditional mutual information could quickly
identify redundant datasets in the S. cerevisiae microarray
repository. A. Overall demonstration of the pair-wise mutual
information between datasets, with mutual information values clus-
tered with hierarchical clustering. The mutual information between
datasets is highly structured, where black blocks represent several
highly overlapping datasets. B. Examples of mutual information
between specific datasets. Dataset pairs generated under the same
experimental treatment have very high mutual information.
doi:10.1371/journal.pcbi.1000698.g003

Systematic Planning of Genome-Scale Experiments
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across GO functional SLIM terms (as listed in Figure 2B), which

are terms curated by biologists to represent functions specific

enough for experimental characterization, but which do not have

any parent terms satisfying this criterion [28]. The redundancy

between datasets was quantified by pair-wise conditional mutual

information as described above. A trade-off factor (a) between

accuracy and redundancy, where a higher value means more

weight on accuracy and vice versa, allows flexibility in the

experiment design process. In our study, a was optimized through

cross-validation; in the web-interface, the users can optimize this

factor according to their specific preferences.

Recommendation of datasets for functional annotation requires

leverage between data precision and redundancy. We applied

bootstrap cross-validation [14] to evaluate the ability of the

selected set of data in predicting different functions (Figure 5A).

We found that we could optimize the function prediction

capability of the top 10 datasets by a trade-off factor a= 0.9

(Figure 5B). Function prediction by SVM maps the original data

Figure 4. A small number of arrays in some of the very large-scale experiments are sufficient for function prediction. The
performance (in AUC) of the random subsets of different numbers of arrays of the (A) Brem et al., 2005 dataset and (B) Hughes et al., 2000 dataset. The
mean, median and standard deviation were estimated through 25 sub-samplings. C. The performance (in AUC) of different number of arrays from the
Brem et al. dataset in predicting different biological processes. The performance of the randomly selected subsets is defined as the average AUC of
the GO functional slim biological processes.
doi:10.1371/journal.pcbi.1000698.g004

Systematic Planning of Genome-Scale Experiments
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into feature space, which relies on the accuracy of the datasets and

penalized by the redundancy in information between them. Thus

an adjustable trade-off factor is necessary and provides flexibility

for the experiment recommendation process.

We estimated how effective our approach is in reducing the

number of experiments to characterize the overall functionality of

the S. bayanus proteins based on the S. cerevisiae gene expression

compendium. We integrated the information from our analysis of

the minimum number of arrays in the very-large-scale microarray

experiments, and the information from our accuracy and

redundancy analysis. This gives us an ordered list of experiments

in S. cerevisiae, including the number of microarrays that need to be

completed in the very large experiments.

We experimentally generated an S. bayanus expression data

compendium based on the experiments proposed by our system

(GEO accession GSE16544). The list of highly informative

experiments (250 arrays) included cell cycle progression, meiosis,

diauxic shift, nutrient limitation, stress conditions, and outcross

progeny.

The S. bayanus data we generated are highly informative for

diverse biological processes (Figure 6). As no S. bayanus functional

annotation exists, to assess the coverage of S. bayanus experimental

data, we use the gene ontology annotations from S. cerevisiae

orthologs of the S. bayanus genes. This is a conservative

measurement because not all orthologs are conserved in function,

but as most genes are likely to be conserved at least on the level of

functional annotations, this measure should provide a reasonable

lower bound on performance. We used bootstrapping and a linear

SVM classifier to estimate the accuracy of the expression data in

functional annotation of GO functional SLIM terms [28].

Interestingly, the ‘informativeness’ is highly similar between

matched experiments between S. bayanus and S. cerevisiae, further

supporting the validity of our approach (Figure 6).

We find that our dataset of 250 S. bayanus arrays predicts gene

function with an average AUC of 0.74, which is very close to the

AUC (0.75) of predictions made with a set of 2547 S. cerevisiae

arrays (Figure 7A). This is very similar to the theoretical analysis,

where we estimated that less than 10% of the arrays of the total

2569 arrays available in the S. cerevisiae repository as of 2007 would

achieve similar performance. Such performance requires selection

of specific experimental treatments – computational simulation

shows that selection of random subsets of experiments from the

repository substantially decreases overall accuracy (Figure 7). This

indicates that the experiment planning scheme can significantly

reduce the human and technical resources necessary to charac-

terize a newly sequenced species by providing effective guidance

for the most informative sets of experiments for functional

annotation based on related model organisms or other well-

studied species. To further validate our approach, we also

compared the performance of individually matched dataset pairs

between S. bayanus and S. cerevisiae for all GO terms with more than

30 genes annotated to each. The correlation and the similar range

Figure 5. Bootstrap cross-validation determines the trade-off between accuracy and redundancy of datasets. A. A schematic for the
bootstrap cross-validation scheme. Using the selected dataset, genes could be placed into hyperdimensional space where support vector machine
separates the positive and negative examples (as genes annotated to the GO term and genes not annotated). In each iteration, a set of the genes
were bootstrapped as the training set, and the rest remains as the test set. The predicted values of the test set were recorded. After 25 iterations, the
median predicted value for a gene when it is in the test sets were taken as the final prediction value for that gene. This value was later used for
performance analysis. B. The performance (in AUC) of the top 10 datasets selected by a range of a differs in their ability to predict the GO functional
SLIM biological processes. A higher trade-off factor (a) means more weight on the accuracy of the datasets and lower means a heavier penalty is
placed on the overlap between them. a= 0.9 achieved the best performance in functional annotation.
doi:10.1371/journal.pcbi.1000698.g005

Systematic Planning of Genome-Scale Experiments
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of AUC between the two sets (Figure 6) further supports the

recommendation of experiments based on closely-related model

organisms.

Evaluation on iterative recommendations in S. bayanus
Signals for most of the biological processes are very well

represented in our S. bayanus expression compendium, to an extent

comparable to the theoretical maximum in S. cerevisiae (Figure 7A).

However, a small set of biological processes, including aging, ion

homeostasis, hyperosmotic shock, auxotroph starvation, and

alternative carbon sources were not well-captured by the

experiments, with an AUC less than 0.65. Thus, we used the

system to suggest a second round of experiments targeting these

particular processes again based on the accuracy and redundancy

analysis.

The second round experiments included 54 arrays covering 11

biological treatments carried out in S. bayanus (Text S1). On

average we gained a 0.006 (2.5% over random) improvement in

AUC over all GO biological process terms with 10 to 300 genes

annotated to each. This minor improvement indicates the

saturation of the ability to predict functions based on expression

data and transfer of annotation through homology. However, we

Figure 6. Comparative evaluation of the experimental validation in S. bayanus. Each panel depicts the comparison of the performance in
AUC between S. bayanus and S. cerevisiae. GO functional slim terms with more than 30 genes annotated to them were included in all panels.
Experimental validation in S. bayanus shows that 250 arrays based on the recommendations achieve a similar level of accuracy as 2569 arrays in S.
cerevisiae. Also shown here are the comparison of performance of eight individually matched experiment pairs in S. bayanus and S. cerevisiae.
doi:10.1371/journal.pcbi.1000698.g006

Systematic Planning of Genome-Scale Experiments
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Figure 7. Recommended experiments can more accurately predict functions than a random selection of the data repository. A.
Comparison to the performance of randomly selected subsets of the entire expression data repository in S. cerevisiae, the recommended datasets,
and the recommended experiments carried out in S. bayanus. B. Recommended experiments in the second round in S. bayanus significantly improved
weakly represented terms from the first round. Based on the evaluation results in the first round in S. bayanus, we re-designed several microarray
experiments for the weakly-predicted terms in the first round. We found that adding these ,50 experiments to the compendium improved the
predictions on the previously weakly predicted terms.
doi:10.1371/journal.pcbi.1000698.g007

Systematic Planning of Genome-Scale Experiments
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observed an average of 0.012 (10% over random) improvement in

AUC in the targeted GO categories, which were poorly predicted

in the first round. Five out of seven of the targeted GO categories

achieved significantly improved AUC (Figure 7B). Therefore the

second round recommends experiments that provide relatively

orthogonal information to the first round, indicating the ability of

our experimental planning system to extract the information

contained in the existing data and to direct further specific

experiments.

The top improved terms during the second round (Text S1) are

well-explained by the additional datasets. For example, we observed

a 52% improvement (0.071) in AUC for ‘‘double-strand break

repair via nonhomologous end joining’’ (GO:0006303) and a 56%

improvement (0.111) for ‘‘DNA catabolic process, endonucleolytic),

most likely due to the addition of MMS and zeocin DNA damage

datasets. Starvation experiments might explain the 177% improve-

ment in ‘‘nitrogen utilization’’ (GO:0019740) and ‘‘histidine

biosynthetic process’’ (GO:0000105). Experiments of alternating

carbon sources, particularly glycerol, lead to a 35% improvement in

our prediction power on ‘‘hexose biosynthetic process.’’ These

observations suggest that our evaluation scheme is well in

accordance to the established knowledge in this field.

Discussion

In this paper, we propose that existing genome-scale data in

model organisms could facilitate the planning of experiment

treatment in poorly-studied species. We demonstrate the feasibility

of this approach by planning microarray experiments for a

relatively poorly studied yeast species S. bayanus based on an

available gene expression data repository for model organism S.

cerevisiae. In this framework, we recommend an ordered list of

experiments targeting the overall functional annotation of S.

bayanus proteins as well as experiments targeting specific biological

processes. We also detected the minimum number of arrays to

achieve satisfactory performance for some very large-scale

microarray experiments. Our framework results in a substantial

reduction in the resources we need to characterize the functions of

a poorly-studied genome.

Our work represents the first attempt for large-scale experiment

design of a relatively poorly studied organism based on available

data in a related organism, rather than existing functional

genomics data in that species, which in the case of S. bayanus

does not exist. This method is complementary to designing

experiments based on expert knowledge or intuition, which is

irreplaceable when targeting in-depth aspects of biology but is

likely not to be optimal for generating a large compendium for

functional annotation. Of course, after such initial functional

annotation, carefully designed experiments will be necessary to

ascertain specific relationships within functions and to further

explore the functional space. This task should be facilitated greatly

by the availability of the initial functional annotations generated

based on the experiment design system and the resulting data

compendium.

The experiment design system is adaptable, and can be

extended to other related species groups. The current analysis is

restricted to S. cerevisiae and S. bayanus, which are separated from

each other by 20 million years. There are thousands of genome

projects finished or ongoing, and several model organisms with

large amount of genome-scale data. Analysis of these genome-scale

data could be used to design experiments for the poorly-studied

related species. The 20 millions years distance between S. cerevisiae

and S. bayanus is comparable to the sequence divergence between

human and mouse [29]. On the other hand, comparative

genomics often focuses on less diverged groups, for example, the

Drosophila species subgroup or the other sensu stricto yeast species.

The extendibility to further related groups, however, remains to be

validated by future investigation in the intelligent experiment

design field. Nevertheless, currently, GO annotations are often

transferred between species of vast distance based on sequence

alone. Experiment recommendations such as those described here

provide a complementary approach to the current annotation

scheme. Indeed, expression patterns of the majority of genes are

conserved across species over vast distances (e.g. from human to

mouse, and from Candida to S. cerevisiae) [30,31], suggesting the

likely value of applying such experimental design methods across

further distances. Applying the experiment design system could

not only facilitate the annotation of these genomes but also provide

invaluable resources for cross-species expression comparison. In

addition, our current study focuses on the prediction of biological

processes. The same approach could be extended to molecular

function, cellular component and pathway predictions, as well as

predictions of particular types of relationships among proteins (e.g.

physical, regulatory interactions, etc).

The basic framework could also be extended to other data types,

more complex data, and higher organisms. Our current work

focuses on microarray data because it is currently the most

abundant functional genomics data source for most organisms.

This methodology can be readily applied to sequencing-based

measurements of expression and to measurements of protein and

metabolite level. We expect that as more data of these types

become available, applications of this and similar methods will

become more common. An extension of this methodology could

be developed for other types of large-scale experimental methods,

including yeast two hybrid, affinity precipitation, chromatin IP

datasets, etc. These data, like microarrays, are often readily

available in diverse well-characterized model organisms. Further-

more, data from several model organisms could be integrated

together so that more confident experiment planning system could

be established. Novel methodology that integrates both sequence

data and information from these types of large-scale datasets will

ultimately allow us to more accurately and quickly understand the

differences and similarities of functions between species.

Materials and Methods

Microarray data collection and pre-processing
We collected an extensive compendium of S. cerevisiae micro-

array datasets from diverse sources [32–36]. This compendium

includes 125 datasets with 2569 arrays. A complete list of

publications for these datasets is available on the website

supporting this publication http://exprecommender.princeton.

edu.

To allow reasonable comparison between datasets, we carried

out the following normalization steps. For each raw dataset, genes

that are represented in less than half of the arrays were removed,

and missing values were inserted using KNNimpute [37] with

K = 10, Euclidean distance. Technical replicates are averaged,

resulting in datasets with each gene followed by a vector

representing its expression values in a series of arrays.

Quantification of dataset-biological process ‘‘relatedness’’
using support vector machines

Bootstrap aggregation of SVMs to estimate the accuracy

of a dataset. The quantification of the informativeness of

datasets to a particular biological process requires a gold standard

set of positive and negative examples for this biological process.

The positive examples were taken as genes annotated directly to
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certain biological process or to a descendent of this term. Negative

examples were assumed to be all other genes. The basis of our

approach is a support vector machine (SVM) classifier. Our

previous work has shown that a single linear-kernel SVM often

performs better than most of the more complicated machine

learning methods in gene function prediction [4]. Therefore, we

train a linear-kernel SVM on each biological process.

We applied bootstrap cross-validation which performs better

than a variety of cross-validation schemes in error estimation,

especially for classes with a limited number of positive examples

[14]. Specifically, examples (genes) were randomly sampled with

replacement (0.632 bootstrap, meaning the training data will

contain approximately 63.2% of the instances) [38]. For each

bootstrap sample, a model was learned based on the selected

examples, and the resulting classifier was used to give an output on

non-selected (out-of-bag) examples. The final classifier outputs

were taken as the median of out-of-bag values across 25

independent bootstraps, and the ROC curves were derived from

these median values.

We used the SVMlight software to implement the SVM

classifiers [13]. We have experimented with several parameters

and alternative kernels and found that only the cost factor (j), by

which training errors on positive examples outweight errors on

negative examples [39], plays an important role in our function

prediction scenario. This is because we are dealing with very

unbalanced number of positives (genes annotated to a term) and

negatives (genes not annotated to that term). We set j as the ratio of

negative examples to positive examples as defined above.

Therefore,

Minimize :
1

2
DD~wwDD2zj

X
m:yi~1

jmz
X

n:yj~{1

jn

Subject to : Vk : yk½~ww:~xxkzb�§1{jk

[39] xi is the feature vector (microarray data values) for gene i, yi

equals to 1 or 21 depends on whether gene i is annotated to the

GO term in study or not. m is any cases of the positive examples,

and n is any cases of the negative examples.

Detecting the minimum number of arrays required for

very-large-scale experiments. Two of our microarray data in

S. cerevisiae are of very high accuracy in predicting functions but

consist of many arrays (Brem et al., 2005 [19] and Hughes et al.,

2000 [27]). To find out the minimum number of arrays required

for functional profiling, we randomly selected different numbers of

arrays from the original datasets. Specifically, starting from five

randomly selected arrays, we progressively increased this number

until it reached the total number of arrays in that dataset. For each

of the random selections, we used bootstrap cross-validation

described above to characterize their performance in predicting

individual biological processes. We repeated the random selection

for 25 rounds in total, and the average AUC or precision at 1, 10,

20, 50 and 80 percent of recall was used to determine the

performance of a specific number of arrays for that dataset.

Leveraging accuracy and redundancy of data for a final
list of experiments

Based on the analysis of experiment performance, we observed

that some of the biological processes have strong signal in a wide

range of experiments, but others are only sensitive to one or a very

limited set of experiments. Furthermore, two very accurate

datasets may interrogate a highly overlapping set of processes,

thus providing largely redundant information in terms of

functional annotation. Therefore, when designing a set of

microarray experiments for global function profiling, we should

not only consider the accuracy of each experiment in predicting

function, but also weigh the overlap in information between

datasets. We found using a trade-off factor between the two could

allow flexibility in experimental design for different applications

(see Results). In the following section, we will describe our

measurements of accuracy and redundancy and the combination

of the two.

Determining the overall accuracy of an experiment. The

performance of a specific dataset usually differs when predicting

different biological processes. It is therefore necessary to derive an

overall measurement of accuracy. Simply taking the average over

all GO biological process terms has the disadvantage that not all

GO terms are equally informative (some are too general, for

example) and the hierarchical structure of gene ontology often

makes the performance of one GO term closely related to several

others. Therefore, we took the average AUC across all GO

functional SLIM terms, which is a set voted by biologists to

represent the highest level (in terms of the GO hierarchy)

biological process terms that are experimentally relevant for

function prediction [28]. This average could reasonably represent

the overall accuracy of an experiment.

Determining the information redundancy between

datasets. Our estimation of the overlap between datasets is

based on the conditional mutual information (CMI):

I(X ^ Y DFR)~
X
fr[FR

p(fr)
X
x[X

X
y[Y

p(x,y D fr)log2

p(x,y D fr)

p(x D fr)p(y D fr)

� �

This value is an estimate of the quantity of information shared

between dataset X and Y, given whether genes are functionally

related. For a gene pair FR is true (fr = 1) when they share at least

one co-annotation in the GO functional SLIM terms [28]; it is

false (fr = 0) when each member of the pair has at least one GO

functional SLIM annotation, but they share no co-annotation. In

our situation, we calculated the z-transformed Pearson correlation

x, y [40] between every gene pair in dataset X and Y respectively,

and mutual information therefore represents the similarity in the

distribution of these correlation coefficient values.

Conditional mutual information as calculated above is more

suitable than calculating mutual information and ignoring the co-

annotation of gene pairs. This is due to the fact that the differences

in distribution of correlation coefficient values could be largely due

to the presence of more or less ‘functional relationship true/false’

pairs caused by missing genes in the datasets. In CMI, by

conditioning on the status of functional relationship between gene

pairs, we correct for this bias and only consider the functionally

informative part of the mutual information, thus more accurately

describing the redundancy between datasets in providing func-

tional information.

Trade-off between accuracy and mutual information
To leverage the trade-off between accuracy and mutual

information, we introduced a trade-off factor a, which linearly

combines the two factors:

W (X )~a P(X )z(1{a) max(I(X ^ Xi DFR)), i [ (1, k)

Where P(X) is the overall precision of the dataset X in

consideration, k is the number of experiment selected before X.

This approach allows iterative selection of datasets. Therefore it is

suitable for selecting datasets in a species with several experiments
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available already, which is more likely to be true in the real-world

situations. We provide this feature on our website, allowing the

user to select the experiments already performed and the desired

tradeoff value, so that our system can recommend additional

experiments.

Recommending additional experimental treatment to
cover weakly represented biological processes by the
first round datasets

We identified GO functional SLIM biological processes that are

weakly represented in the first round datasets (below 0.65 in AUC

and with a minimum of 30 genes annotated to it in S. cerevisiae).

This list included 7 biological processes in total (Figure 6).

Experimental treatments that best cover each of these biological

processes were ranked by accuracy and carried out in S. bayanus in

the second round.

Evaluation of the experimental validation in S. bayanus
Based on the recommendations, we carried out the experiments

in S. bayanus. The resulting array data are accessible from the GEO

database with accession ID GSE16544. For both first round and

second round datasets, we borrowed annotations from S. cerevisiae

through orthology and applied bootstrap cross-validation to

estimate the error rates as describe in S. cerevisiae accuracy

estimation.

Web implementation of the experiment design system
We developed a website to facilitate exploration of the

functional analysis of the microarray data and our recommenda-

tion of datasets for yeast species related to S. cerevisiae. This website

supports searchable recommendations for datasets targeting

specific biological processes and ones targeting the entire

functionality of the genome given existing datasets in poorly-

studied species. In addition, the number of arrays (on a per

biological process basis) required for the large-scale datasets is also

searchable by the users. This website is publicly available at

http://exprecommender.princeton.edu.

Supporting Information

Text S1 Supporting information

Found at: doi:10.1371/journal.pcbi.1000698.s001 (0.08 MB

DOC)
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