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Treatment options for lung cancer patients have been generally limited to standard thera-
pies or targeted interventions which involve a small number of known mutations. Although
the targeted therapies are initially successful, they most often result in drug resistance,
relapse, and mortality. We now know that the complexity of lung cancer comes not only
from genomic changes, but also from aberrant epigenetic regulatory events. Epigenetic
therapies have shown promise as single agents in the treatment of hematological malig-
nancies but have yet to meet this expectation in solid tumors thus fostering researchers to
pursue new approaches in the development and use of epigenetic interventions. Here, we
review some recent pre-clinical findings involving the use of drugs targeting histone mod-
ifying enzymes both as single agents and as co-therapies against lung cancer. A greater
understanding of the impact of these epigenetic compounds in lung cancer signaling is
needed and further evaluation in vivo is warranted in several cases based on the pre-clinical
activity of a subset of compounds discussed in this review, including drugs co-targeting
HDACs and EGF receptor, targeting Brd4 and targeting Jumonji histone demethylases.

Keywords: HDAC inhibitors, BRD4, Jumonji demethylases, Jumonji inhibitors, EZH2 inhibitors, pre-clinical studies,
lung cancer, epigenetic therapeutics

INTRODUCTION
The discovery and characterization of the epigenome has produced
a greater understanding of how the many different cells in an indi-
vidual can have the same DNA sequence and yet develop and
maintain unique phenotypes. Numerous discoveries have demon-
strated specific and significant changes in the epigenetic control of
cancer cells leading to the description of the “cancer epigenome”
(1–3). We now recognize that altered gene expression patterns
observed in cancer cells represent the cumulative output of aber-
rant genomic and epigenomic activity (4). Although some DNA
mutations are targetable, they are not reversible (5). However, dele-
terious epigenetic patterns can potentially be reversed by targeting
the corresponding enzymatic activities (6, 7).

Lung cancer has been primarily viewed as a disease driven by
oncogenic mutations and/or oncogenic addictions (8–10). How-
ever, recent discoveries reveal a more complex view of lung pathol-
ogy involving aberrant gene expression caused by cancer-specific
epigenetic modifications (11). Recent non-small cell lung can-
cer (NSCLC) clinical trials involving epigenetic modulators have
reported varying degrees of success with the most conspicuous
trial published by Juergens et al. from Johns Hopkins (12). Using a
low-dose regimen of entinostat and 5-azacytidine, they showed the
first example of a durable response in NSCLC patients. Although
the success rate in this heavily pre-treated cohort was only a mod-
est 4%, these results should encourage new therapeutic approaches
involving epigenetic agents. This mini-review focuses on new pre-
clinical studies in lung cancer evaluating histone modifying drugs
either as single agents or in combination with other treatment
modalities.

HDACs AND CANCER
Histone deacetylases (HDACs) are enzymes responsible for remov-
ing acetyl marks from histones thereby restoring the positive
charge to their lysine side chains and condensing chromatin.
There have been 18 HDACs identified and they are subdivided
into four major classes based on sequence homology and catalytic
mechanism. HDACs have deep phylogenetic roots suggesting they
evolved to regulate many proteins besides histones. Treatment of
human cells with pan-HDAC inhibitors resulted in proteome-wide
changes in acetylation (13). Specifically, HDACs deacetylate some
of the most notorious lung cancer proteins including p53, c-myc,
NF-κB, and HIF-1α (14, 15).

Although there is little evidence that somatic HDAC muta-
tions play a role in oncogenesis, the aberrant expression and
activity of HDACs is seen in many malignancies (15, 16). The
global loss of acetylated H4K16 (ace-H4K16) has been observed
in many tumor cell lines and tissues, and a recent study of a
large number of NSCLC tissues showed that loss of acetylation
for both H4K16 and H3K9 was predictive of disease recurrence
(17). Furthermore, genome wide expression studies in NSCLC tis-
sues demonstrated that both increased HDAC1 mRNA expression
and reduced expression of class II HDACs were associated with
poor prognosis (18, 19).

Smoking is the most causal element in the initiation and
progression of lung cancers. Recent studies have reported that
lung epithelia exposed to cigarette smoke condensate (CSC)
exhibit global reduction of ace-H4K16 and tri-methyl H4K20
(20). Other studies show that CSC exposure causes cells to lose
E-cadherin expression and undergo epithelial-to-mesenchymal
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transition (EMT) which can be reversed with an HDAC
inhibitor (21).

HDAC INHIBITORS IN COMBINATION THERAPY
There have been numerous in vitro, pre-clinical and clinical stud-
ies in solid tumor models using HDAC inhibitors as single agent
therapeutics with only modest success reported. Although HDAC
inhibitors alter global gene expression, they may not on their own
strongly activate apoptotic pathways. Moreover, unrecognized
pleiotropic effects may be counteracting HDAC inhibitor induced
gene expression changes. Therefore, combinatorial approaches
have been favored in more recent experimental and clinical trial
designs. Genome wide changes in acetylation patterns and expres-
sion output could result in changes that reverse drug resistance to
more established chemotherapy regimens.

Vorinostat
Vorinostat (suberoylanilide hydroxamic acid, SAHA) is the first
non-selective HDAC inhibitor (Figure 1) approved by the Food
and Drug Administration (FDA), specifically for treatment of cuta-
neous T-cell lymphoma (22). In lung cancer models, vorinostat has
shown anti-tumor activity in vitro but no reports of success in clin-
ical trials exist (23, 24). NSCLC cell lines treated with vorinostat
exhibit genome wide gene expression changes, including reduced
expression of hTERT and increased expression of members of
both the protein kinase C (PKCs) and matrix metalloproteinase
(MMP) families (25, 26). The pan-genomic and pleiotropic effects

of vorinostat may lead to potentially confounding issues in pre-
clinical and clinical studies but may also be the catalyst needed to
“re-program”the genome and increase the efficacy of co-therapies.

Vorinostat, EGFR TKIs, and the BIM polymorphism
EGF receptor (EGFR) tyrosine kinase inhibitors (TKIs) have
shown significant success treating NSCLC patients harboring acti-
vating EGFR mutations (27), yet patients who initially show
good response often develop resistance through various mecha-
nisms. Based on significant in vitro and pre-clinical data, it was
postulated that HDAC inhibitors may be able to reverse some
of the acquired resistance mechanisms and re-sensitize cells to
TKI treatment (28, 29). However, clinical trials conducted using
the vorinostat/erlotinib or entinostat/erlotinib combination with
NSCLC patients having EGFR activating mutations and who
had already received erlotinib have shown no additive efficacy
(NCT00503971) (30).

Although most patients carrying EGFR activating mutations
respond to TKIs, about 20% exhibit intrinsic resistance. A report
coming from Kanazawa University concerns the use of vorino-
stat to reverse TKI resistance in patients harboring an intron
deletion polymorphism in BCL2-like 11 protein (BIM) (31). The
BIM protein, specifically the BH-3 domain, which is preferentially
removed by splicing in the polymorphic transcript, is necessary
for TKI sensitivity (32). One NSCLC cell line exhibiting TKI
resistance and the BIM polymorphism was treated with vorinos-
tat resulting in restored expression of the non-mutant transcript

FIGURE 1 | Schematic representation of the mechanism of action of
select histone modifying compounds tested on the lung cancer
epigenome. DZNep lowers EZH2 protein levels, decreasing polycomb
complex activity and H3K27 methylation. JIB-04 inhibits the enzymatic
activity of Jumonji histone demethylases, blocking the demethylation of tri

and dimethylated histone lysines and decreasing tumor growth in vivo, while
LSD1 inhibitors block the demethylation of monomethylated lysines. JQ1
prevents BRD4 binding to histones at acetylated lysines. HDAC inhibitors
prevent the deacetylation of lysines, increasing acetylation and keeping
chromatin in a more open, transcriptionally competent conformation.
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and increased apoptotic response to gefitinib. These findings were
replicated in vivo. When vorinostat was added to the gefitinib pro-
tocol, tumors with the BIM polymorphism showed up-regulation
of wt BIM and regressed almost completely without notable
adverse effects. The specific reason(s) why vorinostat preferentially
induced the wt BIM transcript in BIM polymorph xenografts are
unknown. A comparison of BIM mutations across the NSCLC
demographic reveal that the BIM polymorphism is seen only in
East Asian populations, but is not noted in either Caucasian or
African groups (33).

Vorinostat with radiotherapy
Approximately half of all lung cancer patients will receive some
kind of radiotherapy (RT), either by external beam or brachyther-
apy. RT is effective, but not often curative. Significant effort
has been dedicated to increasing RT efficacy since this is often
indicated for patients who cannot undergo surgical intervention.
Although we are not aware of any published clinical or xenograft
data utilizing only RT and HDAC inhibitors in lung cancer mod-
els, some interesting observations were made during an in vitro
study using NSCLC cell lines (34). The authors noted a significant
reduction in cell viability using RT/vorinostat co-treatment and
the response appeared to be mediated by increased p53 expres-
sion. Moreover, they noted the accumulation of ace-K382 on wild
type p53 and a p53-dependent reduction of c-myc expression.
They confirmed this result by showing that a p53 null NSCLC
line shows no additive or synergistic response with co-treatment
and that c-myc expression levels do not change. It will be inter-
esting to see whether or not the encouraging results for this
RT/HDAC inhibitor co-therapy are repeatable with other wild
type p53 NSCLC lines and in xenograft experiments. Of further
interest would be examining the success of co-treatment with non-
deletion p53 mutations since these mutations are very common
in NSCLC. Currently, there is a clinical trial using RT in combina-
tion with cisplatin, pemetrexed, and vorinostat in NSCLC patients
with non-resectable, locally advanced disease with results due in
late 2013.

SINGLE COMPOUND, MULTI-TARGET INHIBITORS
The use of some HDAC inhibitors with other modalities in a
multi-targeting schema has shown success in pre-clinical and clin-
ical studies. However, the use of a multi-drug treatment regimen
can result in pharmacokinetic concerns and additive toxicities. A
new approach seeks to accomplish multi-targeting within a sin-
gle multi-functional compound. Here we talk about a new drug
which combines an HDAC inhibitory functionality with an activity
against HER2 kinases.

CUDC-101
This rationally designed molecule, synthesized by Curis, seeks to
combine inhibition of class I and II HDACs (Figure 1) along
with modulation of EGFR and HER2 kinases (35, 36). In an
effort to overcome TKI resistance after first line treatment, the
molecule CUDC-101 incorporates the HDAC inhibitory hydrox-
amic acid structure with the phenylaminoquinazoline moiety
of the efficacious TKIs. The authors show that the activity of
CUDC-101 in 10 NSCLC cell lines was generally more effec-
tive than a combination of vorinostat and erlotinib. Their results

do include CUDC-101 treatment using two EGFR mutant cell
lines H1975 (activating L858R and EGFR T790M resistance muta-
tion) and HCC827R (EGFR activating deletion with acquired
TKI resistance). Treatment of the erlotinib resistant H1975 cell
line with CUDC-101 gives an IC50 of 500 nM and is able to
significantly reduce the expression of EGFR. The HCC827 cell
line normally exhibits nanomolar sensitivity to erlotinib, but in
their study, they use an erlotinib resistant subculture (HCC827R,
erlotinib IC50 = 7.5 µM) and again show nanomolar sensitiv-
ity to CUDC-101. IHC analysis of CUDC-101 treated HCC827
xenograft tumors showed a reduction in phospho (p) EGFR and
pHER2 as well as a reduction in Ki67 and an increase in caspase-3.
Interestingly, CUDC-101 treatment of the MET amplified NSCLC
cell line H1993 showed that the compound was able to reduce p-
AKT and p-MET. It is believed that an increase in p-Akt and p-Met
may play a role in the establishment of TKI resistance suggesting
the potential importance of this result (37).

Of note, Curis has also produced a second multi-target mole-
cule, CUDC-907, which also employs the same HDAC inhibitory
hydroxamic acid functionality utilized in CUDC-101, but places it
into a core morpholinopyrimidine scaffold structure shared by
PI3K inhibitors (38). This molecule is not as far along in the
developmental pipeline as its CUDC-101 counterpart, but has also
shown some promising activity in NSCLC cell lines.

UP AND COMING COMPOUNDS TARGETING OTHER
HISTONE MODIFIERS
In contrast to the many reports which have been published describ-
ing the activity of HDAC inhibitors as single agents or in thera-
peutic combinations in pre-clinical models of lung cancer, little is
known regarding the activity of other classes of small molecules
targeting other histone modifying enzymes. Several new agents
targeting histone methyltransferases, histone demethylases, his-
tone kinases, and chromatin remodelers have been developed, but
few of these have been evaluated in lung cancer. In this section,
we highlight findings on a modulator of polycomb complexes
affecting EZH2 activity called DZNep, on modulation of the his-
tone demethylase LSD1, on an inhibitor of the Jumonji histone
demethylase family named JIB-04, as well as on the activity of
JQ1, a Brd4 inhibitor targeting bromo domains.

DZNep AND POLYCOMB MODULATION
EZH2 is a H3K27 methylase integral to the polycomb repressive
complex which negatively regulates gene transcription. In lung
cancers, this enzyme has been found to be upregulated both at the
mRNA and protein levels and its downregulation appears to be
therapeutically beneficial (39–42). The S-adenosylhomocysteine
hydrolase inhibitor 3-Deazaneplanocin A (DZNep), was found by
Tan et al to be a modulator of polycomb function through down-
regulation of the EZH2 protein (Figure 1) and other components
of the polycomb complex (43). Two recent studies have reported
on DZNep’s activity against lung cancer.

Kikuchi and colleagues (44) showed that DZNep inhibits the
growth of four NSCLC lines as measured by MTS viability and
soft agar colony formation assays. The compound appears to have
little effect on cell cycle kinetics and is consistent with results
showing decreased cell proliferation after knockdown of EZH2
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(44). A separate study has explored the re-expression of MAGE
genes by DZNep and finds that either downregulation of EZH2 or
DZNep treatment can result in decreases in H3K27 trimethylation
on MAGE regulatory regions and subsequent increased MAGE
expression. This increase expression is further potentiated by treat-
ment with DNA methyl transferase inhibitors. Higher levels of
MAGE expression make the tumor cells more immunogenic and
thus susceptible to T cells (45). Thus, at least in these two stud-
ies DZNep shows some pre-clinical activity against lung cancer
that is mediated by the inhibition of polycomb enzymatic activity.
Combination studies and further in vivo work will be necessary to
define the potential of DZNep against lung tumors.

LSD1
The amine oxidase LSD1 is a histone demethylase acting mainly
on di- and monomethylated H3K4 but with potential to also
demethylate H3K9 di- or monomethylated substrates as part of
regulatory complexes (46, 47). In lung cancer patient samples,
Hayami et al have found overexpression of LSD1 compared to
benign matched tissues both by microarray and qRTPCR (48).
RNAi mediated knockdown of LSD1 in lung cancer lines A549,
LC319, and SBC5 resulted in reduced cell numbers and mod-
est changes in cell cycle distribution (lower S phase and higher
subG1 populations), suggesting LSD1 may contribute to lung
cancer proliferation. In furtherance of this relationship between
LSD1 and lung cancer proliferation, Lv and colleagues used IHC,
immunoblot, and qRTPCR to show LSD1 was overexpressed in
80 NSCLC tumors when compared to 20 normal patient sam-
ples. Importantly, patients with high expressing tumors had poorer
survival as analyzed both by RNA and protein levels (49).

Treatment of lung tumor lines A549 and H460 (which both
express LSD1 with markedly higher levels in H460) with pargy-
line, a general blocker of amine oxidase activity (Figure 1), resulted
in growth inhibition mirroring the effects seen in LSD1 knock-
down experiments. Moreover, overexpression of LSD1 in A549 not
only increased their proliferation but also their invasive potential
as show in Matrigel invasion assays. Knockdown of LSD1 in the
higher expressing H460 cells reduced their migration (49). Taken
together, these data implicate LSD1 as a potential epigenetic target
for lung cancer treatments.

Following on these reports, Hazeldine et al. synthesized a
series of low molecular weight amidoximes with in vitro activ-
ity against LSD1 and tested them in the lung tumor line Calu-
6. They observed reactivation of a few silenced tumor sup-
pressor genes following treatment but did not evaluate growth
inhibition (50).

JIB-04 AND OTHER LDR HITS
Using a broad cell-based assay (the LDR or locus depression assay),
we identified a number of potential epigenetic modulators with
activity against lung cancer cells (51, 52). In particular, a series of
8-hydroxyquinolines, which scored as hits, demonstrated potent
anti-proliferative activity in H358 cells and had the ability to
reactivate the expression of the silent CDH13 gene. The com-
pounds in these series, however, did not show activity as HDAC
or DNA methyltransferase inhibitors suggesting they may target
other epigenetic components. These epigenetic targets may be
cancer-specific since at least two hits from the 8-hydroxyquinoline

series demonstrated selectivity for lung tumor lines versus patient-
matched immortalized normal lung epithelial cells (52). Since this
study, several groups have suggested that hydroxyquinolines may
be inhibitors of histone demethylase enzymes, including the iron
dependent Jumonji family (53, 54).

We have recently characterized both in vitro and in vivo, the
anti-cancer activity of a new inhibitor of Jumonji histone demethy-
lases identified in our screen. This compound, JIB-04, shows
potent and selective anti-proliferative activity both in cultured
cells and in mouse xenograft lung cancer models. The compound
affects transcriptional programs in lung cancer cells without affect-
ing normal cell transcriptional patterns. JIB-04 is the first epige-
netic modulator targeting demethylases to show in vivo activity
(Figure 1) and is effective administered either intraperitoneally
or by gavage (55). A number of studies have noted deregula-
tion of members of the Jumonji family of histone demethylases in
lung malignancies (56–61) and investigation in this area actively
continues and is of high interest.

JQ1
BET inhibitors have recently generated much excitement. These
compounds, exemplified by JQ1, block the association of BET
proteins such as BRD2, 3, and 4 with acetylated histones on
DNA (Figure 1). In c-myc-driven tumors, such as those in cer-
tain hematologic malignancies, treatment with JQ1 results in the
downregulation of myc and its target genes (62). Although little
precedent exists supporting a critical role for BET proteins in lung
cancer, the ability for JQ1 to down-regulate myc led to testing this
compound against myc-driven lung adenocarcinomas.

Lockwood et al therefore evaluated the response of lung ade-
nocarcinoma cells to JQ1 inhibition in dose response studies over
72 h exposure and defined a subset of sensitive cell lines that were
growth inhibited. Although the IC50 values were not highly potent
(average 1.2 µM) the response of sensitive cells appears to be
related to the downregulation of the FOSL1 transcription factor
and its target genes, independent of effects on c-myc levels (63).
No animal work has yet been performed to evaluate the effects of
JQ1 in in vivo models of lung cancer, but there is the possibility that
FOSL1 may be a mediator of response in lung adenocarcinomas.

PERSPECTIVE AND CONCLUSIONS
We have briefly summarized selected results from recent work
exploring epigenetic therapies at different stages of development
for efficacy in lung cancer models. Although a number of epige-
netic modulators have not yet been evaluated against lung cancer
(64), we hope to encourage more in depth studies of therapies
which have already shown some promise in pre-clinical studies.
First, a broader exploration of NSCLC cell line sensitivity to these
agents is needed and should include all possible histotypes and
oncogenotypes. This type of panel study will hopefully lead to the
discovery of biomarkers informing epigenetic drug choices. Sec-
ond, it is our hope that labs will continue to take these in vitro leads
through an evaluation process that will include determinations of
efficacy in xenograft and genetically engineered animal models.
More importantly, we hope that the “give the maximum tolerated
dosage” paradigm will be re-evaluated when it comes to the epige-
netic modifiers. Although we may yet discover lung cancer’s silver
bullet among epigenetic drugs, we believe it will be necessary to
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take a more rigorous look at dosing regimens and possibly more
importantly, the timing of administration for these types of agents.
If the goal is to re-program the cancer genome using epigenetic
modifiers, the effects may not be observed in short term, high dose
evaluations but may require longer term treatments at moderate
dosing.
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