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Abstract

Background: Conserved domains are recognized as the building blocks of eukaryotic proteins. Domains showing
a tendency to occur in diverse combinations (‘promiscuous’ domains) are involved in versatile architectures
in proteins with different functions. Current models, based on global-level analyses of domain combinations in
multiple genomes, have suggested that the propensity of some domains to associate with other domains in
high-level architectures increases with organismal complexity. Alternative models using domain-based phylogenetic
trees propose that domains have become promiscuous independently in different lineages through convergent
evolution and are, thus, random with no functional or structural preferences. Here we test whether complex protein
architectures have occurred by accretion from simpler systems and whether the appearance of multidomain
combinations parallels organismal complexity. As a model, we analyze the modular evolution of the PWWP domain
and ask whether its appearance in combinations with other domains into multidomain architectures is linked with
the occurrence of more complex life-forms. Whether high-level combinations of domains are conserved and
transmitted as stable units (cassettes) through evolution is examined in the genomes of plant or metazoan species
selected for their established position in the evolution of the respective lineages.

Results: Using the domain-tree approach, we analyze the evolutionary origins and distribution patterns of the
promiscuous PWWP domain to understand the principles of its modular evolution and its existence in combination
with other domains in higher-level protein architectures. We found that as a single module the PWWP domain
occurs only in proteins with a limited, mainly, species-specific distribution. Earlier, it was suggested that domain
promiscuity is a fast-changing (volatile) feature shaped by natural selection and that only a few domains retain their
promiscuity status throughout evolution. In contrast, our data show that most of the multidomain PWWP
combinations in extant multicellular organisms (humans or land plants) are present in their unicellular ancestral
relatives suggesting they have been transmitted through evolution as conserved linear arrangements (‘cassettes’).
Among the most interesting biologically relevant results is the finding that the genes of the two plant Trithorax
family subgroups (ATX1/2 and ATX3/4/5) have different phylogenetic origins. The two subgroups occur together in
the earliest land plants Physcomitrella patens and Selaginella moellendorffii.

Conclusion: Gain/loss of a single PWWP domain is observed throughout evolution reflecting dynamic lineage- or
species-specific events. In contrast, higher-level protein architectures involving the PWWP domain have survived as
stable arrangements driven by evolutionary descent. The association of PWWP domains with the DNA
methyltransferases in O. tauri and in the metazoan lineage seems to have occurred independently consistent with
convergent evolution. Our results do not support models wherein more complex protein architectures involving
the PWWP domain occur with the appearance of more evolutionarily advanced life forms.
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Background
Conserved protein domains appear as a single (the only
recognizable) architectural unit or in diverse combina-
tions with a variety of other domains, a feature referred
to as “domain versatility” or “promiscuity” [1-3]. Two- or
three domains recurring in a conserved linear order
within different protein contexts may form “cassettes”
with specific functional and spatial relationships [4]. The
biological mechanisms that give rise to new domain com-
binations are largely unknown but novel combinations
may arise through the fusion of one protein with another
or by the loss/gain of fragments particularly at the pro-
teins’ termini [5-8]. Domain promiscuity is considered a
relatively fast-changing (volatile) feature so that only a
few domains retain their promiscuity status throughout
evolution [1-5]. It is suggested also that formation of
multidomain architectures should increase with organis-
mal complexity [9-15] and, thus, the probability of con-
vergent evolution should be low [16]. However, using
domain-based trees, instead of a species tree, Forslund
et al. [17] found no strong functional bias for multiple in-
dependent evolutionary events of protein architecture
and suggested that many domains have become promis-
cuous independently in different lineages unrelated to
functionality. Both models are based on studies of mul-
tiple genomes from phylogenetically spread species.
Here, we use the domain-based tree approach to analyze

the PWWP domain’s evolutionary patterns and to test
these opposing hypotheses. The PWWP domain has been
identified among the highly promiscuous domains present
in proteins involved in various forms of signal transduc-
tion, in the ubiquitin system, and in chromatin remodeling
[2,12-15]. To be able to infer correlations between species
evolution and the occurrences of protein architectural
complexity we analyze ancestrally related genomes within
the plant and the animal lineages. We test, first, whether
the complexity of the domain architecture of chromatin
proteins has increased during eukaryotic evolution; sec-
ond, whether the assembly of a “versatile” conserved pro-
tein domain into multiple-domain architectures is linked
to the occurrence of multicellular life-forms; and third,
whether arrangements involving the PWWP domain rep-
resent ancestral versus reinvented architectures.
The PWWP domain, discovered in the WHSC1 (Wolf-

Hirschhorn Syndrome Candidate1) gene [18] is named
for a conserved Pro-Trp-Trp-Pro motif found in
eukaryotic, but not prokaryotic, genomes [1]. The do-
main spans about 70 amino acids and is present in a
large number of nuclear proteins involved in cell div-
ision, growth and differentiation. The PWWP, Tudor,
Chromo (chromatin-binding), and MBT (malignant
brain tumor) domains belong to the ‘Royal Family’ of
proteins involved in chromatin functions. Three con-
served beta-stranded core regions relate them to a
common ancestor [19-21]. Emerging evidence implicates
PWWP domains in epigenetic regulation through inter-
actions with histones [21-23], with DNA [24-27], or both
[28].
By sequence similarity, multiple alignment, and tree-

reconstruction approaches, we investigate the phylogen-
etic relationships among the PWWP domains of proteins
from the genomes of species with established evolution-
ary relationship within the plant and metazoan lineages
(see Additional file 1 and Additional file 2) [29,30].
The species with the smallest genome among the free-

living eukaryotes Ostreococcus tauri (O. tauri) is among
the earliest members of the green lineage [31]. Here, it
provides a model for the minimum of PWWP-domain
containing proteins required for life as a free cell.
Chlamydomonas reinhardtii (called here Chlamydomo-
nas) and Volvox carteri (Volvox) were chosen to follow
the fate of the PWWP domain in connection with multi-
cellular transitions [32-35]. The moss Physcomitrella
patens (Physcomitrella) and the lycophyte Selaginella
moellendorffii (Selaginella) are used as models for the
early evolution of the PWWP genes in land plants. Phys-
comitrella is considered a phylogenetic link half-way be-
tween algae and angiosperms [36-38] while Selaginella,
with no true roots and leaves, occupies an important
node of the plant evolutionary tree [39-41]. Sorghum bi-
color was chosen as a model for a monocot because its
genome is highly related to the other grasses, but con-
tains fewer repetitive DNAs than its closest relatives [42].
Since its palaeopolyploidization (approximately 70 mil-
lion years ago) most duplicated gene sets have lost one
member [43] facilitating our analyses by limiting protein
redundancy while preserving the PWWP-encoding
genes retained for basal monocot functions. Populus
trichocarpa, Arabidopsis thaliana and Arabidopsis lyrata
were analyzed as eudicot models. The need to thrive in
fixed locations over centuries under changing environ-
mental conditions and biotic and abiotic stresses sets the
poplar apart from the short-lived herbaceous plants.
Populus and Arabidopsis lineages have diverged ~100–
120 Ma and Populus homologs have been identified for
each Arabidopsis gene, but poplar has more (1.4–1.6)
protein-coding genes than Arabidopsis [44]. The contri-
bution of gametes from very old individuals accounts for
the remarkably reduced rate of sequence evolution. Sub-
stantially lower rates of nucleotide substitution, tandem
gene duplication, and gross chromosomal rearrangement
in Populus than in Arabidopsis have suggested that the
poplar genome resembles more closely the ancestral
eurosid genome [44].
The evolution of the PWWP-encoding genes in the ani-

mal lineage was followed in the genomes of Homo sapiens
and the cnidarian, sea anemone (Nematostella vectensis).
The gene number and composition of Nematostella is
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more similar to vertebrates than are flies and nematodes
suggesting that the complexity shared with humans must
be ancient [45]. To trace the fate of the PWWP domain
genes back to their unicellular origins, we analyzed the
choanoflagelatum, Monosiga brevicollis (Monosiga), shar-
ing a unicellular ancestor with Metazoa more than 600
million years ago [46].
Analyzing a limited selection of ancestrally related

genomes positioned at important transitional stages in
the evolution of either the plant or metazoan lineages
allowed us to ask: 1) whether the modular evolution and
the presence of the PWWP domain in complex protein
architectures is linked to the occurrence of more com-
plex life-forms; 2) whether assembled PWWP domain
combinations are evolutionarily conserved and transmit-
ted as cassettes, and 3) whether the PWWP domain has
become promiscuous independently in different lineages
through convergent evolution and, thus, the protein
architectures are of multiple evolutionary origins and
readily reinvented [17].

Results
The PWWP containing proteins in the plant lineage
The PWWP in unicellular ancestors of green plants: The
volvocine algae and O. tauri
To explore the evolutionary history of the PWWP domains
in the plant lineage, we analyzed the genomes of the green
algae, Chlamydomonas, Volvox, and Ostreococcus (see
Additional file 1) as they share a common ancestor an esti-
mated one billion years ago [31-36,39]. As novel protein
domains and/or combinations are thought to have contrib-
uted to multicellularity [9-11], we analyzed the PWWP do-
main containing proteins in volvocine algae including both
unicellular and multicellular species with various levels of
morphological and developmental complexity.
Five PWWP-encoding proteins were identified in

Chlamydomonas, four in Volvox, most similar to each
other’s respective homologs (Figure 1), and five PWWP-
domain proteins in O. tauri (Figure 2). Surprisingly,
none of the O. tauri PWWP proteins showed significant
similarity to either the Volvox or PWWP proteins. In all
O. tauri proteins the PWWP domain is found assembled
in high-level architectures (Figure 2). In two of the pro-
teins the PWWP domain appears within a region
defined as a Tudor/PWWP/MBT superfamily domain
but is combined with different additional domains. In
XP_003080396, there is a region of 854 amino acids that
is related to the CW-type zinc finger (Figure 2a), while
in XP_003081381 the combination is with an Ubiquitin
carboxyl-terminal hydrolase family 1 domain (most simi-
lar to ubiquitinases of animal origin) and with a domain
from the RuBisCo LSMT substrate-binding protein
(Figure 2b). It is interesting to note that both the CW-
type zinc finger and the Rubis-s domains (see Figure 2a, b)
showed structural similarity to the Set domain fold charac-
teristic of the SET domains of histone methyltransferases.
We note also that the Rubis-s domain of O. tauri shows
the highest similarity to RuBisCo holoenzyme complex
proteins from other algae but not to the Chlamydomonas,
Volvox, or the green plants. The two proteins provide
examples of high-level multiple domain assemblies in O.
tauri that are not found in Chlamydomonas, Volvox, or in
the land plants.
PWWP in multidomain combinations found in Volvox

and in Chlamydomonas , but not in land plant relatives,
are illustrated by two Volvox (XP_002950874 and XP_
002951402) and two Chlamydomonas (XP_001692864
and XP_001701055) proteins in Figure 1c, d. These pro-
teins are members of the nucleosome modifying SNF2
and the ASH1 histone methyltransferase families, re-
spectively. Despite highly conserved in land plants, none
of the numerous plant members of these families have a
PWWP domain. We did not identify PWWP domains in
the highly conserved SNF2 and ASH1 family members
from O. lucimarinus, O. tauri, or Micromonas sp. either,
but a divergent (EFWPA) domain is present in an SNF2
protein from Chlorella variabilis. The results suggest
that some algal SNF2 and ASH1 proteins have ‘gained’ a
PWWP domain as species-specific features.
Two solo PWWP domain containing proteins in Chlamy-

domonas (XP_001696496, XP_001696190) are highly
related to the Volvox (XP_002946286, XP_002949372, note
the duplicated PWWP motif in the latter, Figure 1a, b) and
to proteins in other algal and marine metagenomes (i.e.,
Chlorella variabilis, Micromonas pusilla, O. lucimarinus
and O. tauri). Interestingly, these proteins have no similar
counterparts in the land plants but are closely related to
bacterial proteins (without the PWWP domain) suggesting
common origins. In the unicellular marine eukaryotes the
PWWP domain has apparently been ‘gained’ for algal
specific functions.
The relationship uncovered between the Chlamydomo-

nas protein XP_001693149, the O. tauri, XP_003078017,
and the land plant proteins from the ATX1/2 and ATX3/
4/5 subgroups of the trithorax family are among the most
revealing findings of this study. The Chlamydomonas
protein (Figure 1e) contains the PWWP, the FYRN-
FYRC (DAST), ePHD, and SET domains in the linear
arrangement characteristic for the plant ATX1/2 pro-
teins (Figure 3, clades 2,3; Figure 4, clade2,3). Phylogen-
etically, each of the architectural domains of the
Chlamydomonas protein is most closely related to the
respective domains in plants defining the Chlamydomo-
nas protein as the earliest ancestral relative of the land
plants’ ATX1/2. Presence of PWWP in a linear combin-
ation with DAST-ePHD-SET domains is a signature fea-
ture of the plant Trithorax family setting it apart from
animal Trithorax proteins [47]. Notably, the PWWP
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Figure 1 Domain architecture of the PWWP-containing proteins in Chlamydomonas and Volvox. Domains in the five Chlamydomonas
and four Volvox proteins are drawn to scale. a) - b) single PWWP-containing proteins that are most similar to each other’s respective homologs.
These proteins do not have counterparts in land plants but are highly conserved in extant algal and marine metagenomes; c) two algal
PWWP containing proteins from the nucleosome modifying SNF2 family. Only the Chlamydomonas/Volvox proteins have ‘gained’ PWWP
domains as a volvocine-specific feature; d) two PWWP containing proteins from the ASH1 histone methyltransferase family. Only the
Chlamydomonas/Volvox proteins have ‘gained’ PWWP domains as a volvocine-specific feature; e) the earliest occurrence of the Trithorax (ATX1/2)
type architecture with a fully assembled PWWP- DAST-ePHD-SET domain combination in Chlamydomonas. f) The PWWP domain has been lost
from the Volvox protein.
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domain is missing from the highly related Volvox
ATX1/2 counterpart (Figure 1f ), most likely, being lost
during its separation from Chlamydomonas.
A PWWP domain, associated with an ePHD, and SET

domains, but lacking the DAST domain, is present also
in O. tauri (Figure 2e). Phylogenetically, however, the
domains from the O. tauri protein are related to the
plant proteins of the ATX3/4/5 subgroup but not to any
of the Chlamydomonas, or to the plant Trithorax
(ATX1/2), proteins. Thereby, the O. tauri protein
XP_003078017 represents an ATX3-architype and the
earliest ATX3 predecessor (among available sequenced
genomes). It carries all structural domains in a linear
order conserved in land plants suggesting that it has been
transmitted as a stable unit through evolution.
This analysis provided important evidence for the dif-

ferent phylogenetic origins of the two subgroups of the
plant Trithorax family. While the linear arrangement of
the PWWP-DAST-ePHD-SET domains in the Chlamy-
domonas protein is an early version of the multidomain
architecture of the plant ATX1/2, the PWWP-PHD-
ePHD-SET linear arrangement in O. tauri represents the
earliest version of the ATX3/4/5 trithorax subtypes.
These linear arrangements have been transmitted as
stable, not volatile, combinations through green plants’
evolution. In addition to the conserved cassettes, more
domains are present on the respective algal proteins
(Figure 1c, Figure 2e) indicating that multidomain com-
binations involving the versatile PWWP domain have
been assembled in the unicellular ancestor of plants and,
thus, complexities of protein architectures do not correl-
ate with organismal complexity.
It is important to note also that the two O. tauri

PWWP genes encoding putative DNA-methyltransferases
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Figure 2 Domain architecture of the PWWP-containing proteins in Ostreococcus tauri. The five PWWP-containing proteins are drawn to
scale. a) The PWWP domain (red box) is within a region defined as a Tudor/PWWP/MBT superfamily domain (region in blue) in combination with
a domain related to a CW-type zinc finger. Note that this structure is related also to the Set domain fold. b) an O. tauri specific protein with a
similarly organized PWWP domain in a unique combination with an Ubiquitin carboxyl-terminal hydrolase family 1 domain (most similar to
ubiquitinases of animal origin) and with a domain from the RuBisCo LSMT substrate-binding protein. The latter domain shows the highest
similarity to RuBisCo holoenzyme complex proteins from other algae, but not to the Chlamydomonas, Volvox, or the green plants. This domain is
also related to the SET domain carrying a histone methyltransferase activity; c) a putative DNA-methyltransferase most similar to proteins from
other ocean metagenomes; d) a putative DNA-methyltransferase highly similar to the bacterial methyltransferases; e) an architecturally complex
protein related to the proteins of land plants grouped in the ATX3/4/5 clade but the HMG, the SAND, and the zf-CW domains are absent from
the plant versions.
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(Figure 2 c, d) are found in Micromonas, Chlorella, and
other ocean metagenomes, but not in Chlamydomonas/
Volvox or in the land plants genomes [48]. A PWWP do-
main in combination with DNA-methyltransferase activity
is a characteristic feature of the metazoan DNA-methyl-
transferases, however. Excluding the PWWP domain, the
other O. tauri DNA-methyltransferase (XP_003079195 in
Figure 2d) is most related to the bacterial methyltrans-
ferases [48].

The PWWP during land plants’ evolution
The colonization of land by plants has been associated
with substantial changes in morphology, as well as in
cellular and physiological regulatory processes to resist
heat, cold, desiccation, and UV-induced DNA-damaging
effects. Some molecular clocks set the separation of
mosses and vascular plants at ~ 700 Ma [38-41], while
lycophytes have diverged from the fern/seed plant lineage
at least 400 million years ago [40]. Whole-genome
searches of the model species here identified 7 genes in
Physcomitrella, 10 in Selaginella, 10 in S. bicolor, 15 in
P. trichocarpa, 16 in A. thaliana and 14 in A. lyrata encod-
ing putative PWWP-domain proteins (see Additional file 3).
Here, we analyze the distribution and the phylogenetic
relationship of the PWWP domain containing proteins of
land plants to assess whether it appears as inherited



Figure 3 Likelihood phylogeny of PWWP containing proteins in A. thaliana and A. lyrata. PWWP-domain sequences with the highest
BLAST scores were used to generate the Maximum Likelihood phylogenetic tree. The distinct PWWP-domain subgroups (as discussed in the main
text) are indicated by numbers and shaded in different colors. Domain names and representative domain architecture are shown for the major
PWWP-domain protein families. Species abbreviations correspond to A. thaliana (At) and A. lyrata (Alyrata). The branch length is proportional to
the number of substitutions per site. Numbers in red correspond to the branch support values. The FATC and the PIKKc_ATM domains in the
ATM proteins represent the FRAP, ATM, TRRAP C-terminal domain and the phosphoinositide 3-kinase-related protein kinase_Ataxia telangiectasia
mutated (ATM), catalytic domain, respectively.
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assemblies, as single domain acquisitions/deletions, or as
entirely novel occurrences in plant-specific combinations.

Arabidopsis thaliana and Arabidopsis lyrata
The eudicot A. thaliana, with a relatively small genome,
is routinely used as the choice model for key compari-
sons with other plant genomes. Using the PWWP
domain sequence of ATX1 (ARABIDOPSIS HOMOLOG
OF TRITHORAX1) as a probe [49], we identified 16
genes encoding PWWP-containing proteins in the
genome of A. thaliana (see Additional file 3). Based on
the similarity of the PWWP amino acid sequences, two
types of trees, ML and NJ-trees, were constructed. Both
approaches yielded identical distribution patterns of the
proteins within the subgroups (see Additional file 4,
Additional file 5 and Additional file 6) supporting the
phylogenetic relationships between the PWWP-
containing proteins of A. thaliana. These relationships
were further confirmed by analyses of the PWWP-
containing proteins of A. lyrata. As a very close relative
[50-52], the genome of A. lyrata provides a well-suited
system for distinguishing paralogs (the members of the
same clade) from orthologs (the members of the other
clades) and for revealing correlations between whole-



Figure 4 (See legend on next page.)
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Figure 4 Neighbor-Joining phylogeny of PWWP containing proteins in plants. The evolutionary history was inferred using the Neighbor-
Joining method. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (5000 replicates) are
shown next to the branches. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to
infer the phylogenetic tree. All positions containing gaps and missing data were eliminated only in pairwise sequence comparisons (Pairwise
deletion). Phylogenetic analyses were conducted in MEGA4. The distinct PWWP-domain subgroups (as discussed in the main text) are indicated
by numbers and shaded in different colors. Domain names and representative domain architecture are shown for the major PWWP-domain
protein families.
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protein structures and their segregation into specific
subgroups. Fourteen genes encode PWWP-containing
proteins in A. lyrata (see Additional file 3). Phylogenetic
analysis positioned them into the same clades formed by
the A. thaliana proteins (Figure 3) thus confirming the
relatedness among the paralogs or the orthologs
within each cluster. The gene encoding the A. lyrata
protein XP_002878396 lacks an apparent homolog in A.
thaliana and contains two closely related PWWP
domains (Figure 3, clade 3) representing an A. lyrata
species-specific gene. Another difference, illustrated by
the presence of six A. thaliana, but only four A. lyrata
paralogs in clade 1 (Figure 3) suggested that a du-
plication/deletion event has taken place after the separ-
ation of the two species.
Analyses of the proteins within each clade revealed

characteristic features. Thus, all proteins of clade 1 have a
solo PWWP domain at the N-terminal regions as the only
recognized architectural module. Outside the PWWP do-
main, the proteins are most similar to each other indicat-
ing that similarities of the PWWP sequences reflect the
phylogenetic relationships among the whole proteins. The
remarkable conservation of these proteins in land plants
(see below) and the proliferation of their gene numbers
imply strong functional relevance, although no function
for any protein from this subgroup has been reported.
Related to clade 1 are the PWWP domains of two pro-

teins from the ATM (ATAXIA-TELANGIECTASIA
MUTATED) family (Figure 3, clade 1a). The characteris-
tic feature of these proteins is the combination of the
PWWP domains with the ATM catalytic domains. Mem-
bers of the ATM family carry phosphoinositide 3-kinase-
related (PI3K) activity and are critical for chromosome
stability and for the response to DNA double strand
breaks caused by irradiation [53]. All land plants exam-
ined here, including Physcomitrella and Selaginella, have
several highly conserved genes encoding a putative ATM
activity but, notably, none of these plant proteins carries
a PWWP domain. Apparently, the PWWP has been co-
opted by the ATM gene in the ancestor of the Arabidop-
sis lineage after its separation from the other plants.
These proteins were not included in further tree
reconstructions.
Clades 2 and 3 are remarkable in that they contain the

five proteins from the Arabidopsis Trithorax-like (ATX)
family. The PWWP-domain based tree approach used
here segregated the proteins into the same two sub-
groups established earlier by the relatedness of their SET
(Suppressor of variegation, Enhancer of zeste, Trithorax)
domains [54,55]. Thereby, in addition to the differences
in their SET domains and the presence/absence of the
FYRN/FYRC domain (also called DAST [49]), the mem-
bers of the two ATX subgroups differ also by the nature
of their PWWP domains: ATX1 and ATX2 group to-
gether, while the ATX3, ATX4 and ATX5 form a separ-
ate subgroup suggesting non-monophyletic origins
(Figures 3, 4, and see Additional file 7 and Additional
file 8). The results from the analysis of unicellular algae
(see above) provided strong support to the hypothesis
that the separation of ATX1/2 from ATX3/4/5 is ancient
and that the two subgroups are of apparently distinct
phylogenetic origins.
The last cluster (4) contains PWWP domains in

combination with the VHS_ENTH_ANTH domains.
The VHS, ENTH and ANTH domains are structurally
similar, can bind inositol phospholipids, and are found
in proteins involved in the nucleation and formation
of clathrin-coated vesicles [56]. The only studied mem-
ber, the A. thaliana protein NP_197706, HUA2, con-
tains a nuclear localization signal and may act as a
transcription factor [57]. HUA2 genetically facilitates the
AGAMOUS, AG, gene [57-59] but the molecular role of
the PWWP domain in HUA2 function has not been
established.

The PWWP domain proteins in P. trichocarpa, S. bicolor,
P. patens and S. moellendorffii
Phylogenetic analyses of the PWWP domain containing
proteins from the other model land plants positioned
them into the same clades, as defined by the Arabidopsis
proteins (Figure 4), suggesting common origins for the
plants’ PWWP-containing orthologous groups. However,
in different species different numbers of genes encode
the members of each clade. For example, eight genes in
P. trichocarpa, four in S. bicolor, six in A. thaliana, and
four in A. lyrata encode the proteins in clade 1 of
Figure 4 (see also Additional file 8). Two solo PWWP-
encoding genes from Selaginella, two from Physcomi-
trella, and one S. bicolor are weakly related to the
proteins of clade 1 (Figure 4). Even in the two closely
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related Arabidopsis species these genes are present in a
different copy-number suggesting that the encoded pro-
teins play species-specific roles. This is the most abun-
dant type of PWWP-containing proteins suggesting that
the solo PWWP-encoding genes have important plant
functions, although none has been established yet (see
Additional file 7).
The proteins of clusters 2 and 3 (Figure 4) are

members of the trithorax related ATX3/4/5 and
ATX1/ATX2 subgroups, respectively. The phylogenetic
relationship between the PWWP domains of the
angiosperm trithorax-like proteins is supported by
their architectural content (see Additional file 7 and
Additional file 8) as well as by the relatedness of their
SET domains [47,54]. We note that the two (ATX4
and ATX5) proteins from P. trichocarpa and the Ara-
bidopsis form a subgroup that is distinct, although
related, to the ATX3 subgroup and that the proteins
from Physcomitrella and Selaginella group separately
in a cluster related to the ATX4/5 subgroup in clade
3. We also note that the different plant genomes con-
tain different numbers of proteins belonging to either
the ATX3/4/5 or ATX1/ATX2 subgroups suggesting
that specific duplication events multiplying members
of these subgroups have taken place in individual
plant’s genomes.
Clade 4 contains the PWWP- VHS_ENTH_ANTH

containing proteins (see above). Four genes in Arabidop-
sis, three in S. bicolor, and two in P. trichocarpa encode
members of this clade. Given the role of the A. thaliana
HUA2 in flower development [57-59], it is remarkable
that there are PWWP- VHS_ENTH_ANTH encoding
genes in Physcomitrella and in Selaginella indicating
roles different from involvement in flowering.
Collectively, the analyses of the PWWP domain con-

taining proteins in land plants indicate that: 1) all
PWWP-containing proteins are phylogenetically related
consistent with common ancestral origins; 2) the solo
PWWP domain-containing proteins, only weakly
related to the solo PWWP domain proteins of Chlamy-
domonas/Volvox, are the most abundant indicating a
specific proliferation of this group in the land plants;
3) the ancestral version of ATX3, found in O. tauri,
and of ATX1, found in Chlamydomonas, illustrate the
transmission of complex domain arrangements as
stable units. Copies of these genes, appearing together
for the first time in the moss, are present in all exam-
ined here land plants in species-specific copy numbers;
4) all PWWP domain cassettes found in land plants
are found also in unicellular algae suggesting they have
been inherited from the common ancestor. A notable
exception are the PWWP- VHS_ENTH_ANTH con-
taining proteins as no related proteins were found in
the available genomes of unicellular organisms. These
proteins may have occurred as a function specific for
the land plants.

The PWWP proteins during the evolution of the animal
lineage
The PWWP-genes in Monosiga brevicollis
The unicellular choanoflagellate Monosiga brevicolis is con-
sidered the closest known relative of metazoans [46]. Be-
cause genomic features shared by Monosiga and metazoans
were probably present in their last common ancestor, we
extended the evolutionary history of the PWWP domains
to the pre-metazoan era. The architecture of the four M.
brevicollis PWWP-domain proteins is shown in Figure 5.
Two of the proteins carry a PWWP as the only recognized
domain and are, likely, Monosiga-specific as no significant
similarity to any protein in the NCBI database was revealed.
Low-level similarity limited to the PWWP domains is dis-
played by the Monosiga protein XP_001747323 and the
animal HDGF (Hepatoma derived growth factor), a nuclear
protein with mitogenic activity [60].
The other two proteins (Figure 5 a, b) are of a par-

ticular relevance for our model as they represent com-
plex multi-domain arrangements that have been
conserved in evolution. One of the M. brevicollis pro-
teins (XP_001747378) carries two PWWP domains,
two HMG boxes, and three PHD fingers associated
with AWS-SET domains as the earliest recognized ver-
sion of the NSD (WHSC) family members (Figure 5a).
The SET domain, the signature feature for the NSD
family, relates it to the superfamily of the histone ly-
sine methyltransferases. The two PWWP domains (la-
beled PWWPa and PWWPb) are conserved also in the
human genes (see further below). Notably, however,
the human versions represent losses, rather than acqui-
sitions, of additional architectural domains, as seen by
the deletion from the human proteins of either the
HMG-boxes (in WHSC1L1 NM_023034) or the C-
terminal PHD in WHSC1 NM_133330 (see Additional
file 7 and Additional file 9).
The other multidomain protein of Monosiga shows a

remarkable conservation of domains and of their linear
arrangement with members of the animal Peregrin fam-
ily (Figure 5b). Phylogenetically, the Monosiga protein
clusters with the human Peregrin-type proteins (see
Additional file 9) suggesting that it represents an ancient
PWWP-combination that has been assembled in the
common ancestor and conserved in the Monosiga and
metazoan relatives.
Thereby, contrary to the suggestion that abundant do-

main shuffling followed the separation of the choanofla-
gellate and metazoan lineages [46], two of the four
PWWP containing proteins provide examples of com-
plex multi-domain linear combinations that have been
transmitted to the human genomes.



d)

b) 

a) 

c) 

Figure 5 Domain architecture of the PWWP-containing proteins
in Monosiga brevicollis. a) the multi-domain protein containing
two PWWP (labeled boxes ‘a’ and ‘b’), three PHD, an HMG, AWS and
SET-domains has been conserved in the metazoan proteins
although the different human copies have lost either the HMG, or
the terminal PHD domains (see Figure 6); b) a Peregrin-type protein
with the characteristic cassette involving EPL1 (a not well-defined
domain), a PHD, Bromo, and PWWP domains. It represents the
earliest version and a founding member of the BRPF-family (see
Figure 6); c) a Monosiga-specific protein. The PWWP-domain shows
low-level similarity with the PWWP domain of animal HDGF proteins;
d) a single PWWP domain containing Monosiga-specific protein.
Domains are drawn to scale. EPL1 is the Enhancer of polycomb-like
domain.
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The PWWP-genes in the sea anemone Nematostella
vectensis and in humans
Sea anemones constitute the oldest eumetazoan phylum
and the sequenced genome of Nematostella vectensis indi-
cated many genes uniquely shared with animals [45].
Among the 18,000 protein-coding Nematostella genes, six
encode PWWP domain containing proteins. Here, we
compare their evolution to the metazoan (human) lineage.
In the human genome, 24 genes encode more than 70

PWWP containing proteins that form distinct phylogen-
etic clusters (Figure 6, clades 3 and 5). Three genes
(NM_133330, NM_023034, and NM_172349) encode
about 40 proteins from the NSD (WHSC) family repre-
senting differentially spliced isoforms. In addition to the
signature SET domain, presence of two PWWP domains
(marked as PWWP ‘a’ and PWW ‘b’) is a characteristic
feature for the NSD (WHSC) family. Phylogenetic analysis
indicated that ‘a’ and ‘b’ PWW domains form different
phylogenetic subgroups suggesting different origins and
that the NSD (WHSC) proteins may have resulted from
fusion of two different PWWP domain containing pro-
teins. Such a scenario is supported by the Nematostella
protein XP_001635219 (Figure 6, shown in bold) where a
PWWP of the subtype ‘b’, exists in combination with the
PHD, AWS, and SET domains exactly as found in the cas-
sette conserved at the C-terminal-half of the metazoan
NSD proteins. Furthermore, the N-terminal portions of
the human NSD proteins contain a PWWP domain (of
type ‘a’) that is related to a different protein subgroup that
includes the Nematostella (XP_001633052) and the
human ZCWPW1 proteins (Figure 6, clade 4). In addition
to type ‘a’ PWWP domain-sequences, the latter two genes
carry also the zf-CW domain sequences. It is remarkable
that the two N-terminal and C-terminal PWWP-carrying
cassettes are found fused together in the unicellular
Monosiga (Figure 5a; SF 6) and have been propagated as a
unit to the metazoan lineage. In Nematostella, the N-
terminal cassette apparently, has been deleted from the
NSD related protein.
The PWWP domain of the human mismatch repair

protein MSH6 (HSU54777) also belongs to the type ‘a’
and the presence of a PWWP domain in MSH6 is an ex-
clusively metazoan feature, as a similar combination has
not been found in any other mismatch repair in the
examined genomes. The PWWP domain of the human
GLYR1 (glyoxylate reductase 1 homolog of Arabidopsis)
is phylogenetically related to the ‘b’-type. Despite highly
similar to the plant glyoxylate reductase, only the meta-
zoan proteins carry a PWWP domain. The cnidarian
homologous proteins do not carry PWWP-domains sug-
gesting that the PWWP-domain was gained after the
metazoan divergence from Nematostella.
Two cassettes containing a PWWP-PHD and BROMO

domains are found in the ZMYND8/11 and Peregrin
(BRPF) families. Despite similar modular structures, the
PWWP domains from the two cassettes distribute into
different subgroups (Figure 6, clades 2 and 8) suggesting
phylogenetically distinct origins. Nematostella has one
protein belonging to the ZMYND8/11 group but no
Peregrin homolog.
An interesting case of related PWWP domain contain-

ing proteins is presented by the four human proteins in
Figure 6 (clades 6 and 7). One subset carries only the
PWWP domain, the other group represents a combin-
ation of PWWP with DNA methyltransferase activity.
Such a combination is not found in Monosiga but is
present in O. tauri (Figure 4) [48]. Despite the archi-
tectural similarity, however, the PWWP domains of the



Figure 6 Neighbor-Joining phylogeny of PWWP containing proteins in the Sea Anemone Nematostella vectensis and in humans. The
evolutionary history was inferred using the Neighbor-Joining method. The percentage of replicate trees in which the associated taxa clustered
together in the bootstrap test (5000 replicates) are shown next to the branches. The tree is drawn to scale, with branch lengths in the same units
as those of the evolutionary distances used to infer the phylogenetic tree. All positions containing gaps and missing data were eliminated from
the dataset (Complete deletion option). Phylogenetic analyses were conducted in MEGA4. The full-size protein products of the three genes from
the NSD (WHSC) family are included in the analysis. Each of the three proteins appears twice (annotated with an ‘a’ or ‘b’ proteins) in two
separate clades on the phylogenetic tree, as the two PWWP domains of each protein form separate clusters (see text for details). The distinct
PWWP-domain subgroups (as discussed in the main text) are shaded in different colors. Species abbreviations correspond to Nematostella
vectensis (Nv) and the rest of the proteins correspond to humans.
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O. tauri, Nematostella or human DNA methyltrans-
ferases do not appear to be phylogenetically related (see
Additional file 9) suggesting independent occurrence of
the PWWP-DNA methyltransferase association.
Lastly, two separate clades represent proteins with a sin-

gle PWWP domain: the HDGF and the MUM1/EXPAND1
(clades 1 and 9 in Figure 6), respectively. The two human
proteins XP_001127165 and XP_001127139 are predicted,
containing a PWWP domain highly related to the MUM1
subgroup and a domain found in the APC family. Only the
HDGF cluster contains a Nematostella protein.
Collectively, our analyses of the PWWP domain con-

taining proteins in the metazoan lineage suggested that:
1) the higher-level architectural PWWP assemblies found
in the unicellular M. brevicollis genes have been trans-
mitted as stable combinations to the human genome.
However, only one of the Monosiga proteins, the
WHSC-related protein (Figure 5a) is found in Nematos-
tella where it is represented by two separate proteins of
the subtypes ‘a’ and ‘b’ (Figure 6); the gene encoding a
homolog of the Peregrin family is not present in Nema-
tostella; 2) like in the plant lineage, the single PWWP do-
main proteins are species-specific, except for the HDGF
proteins, which contains proteins from both the human
and the cnidarian genomes suggesting ancient origins of
these proteins (clade 1 in Figure 6); 3) the association of
a PWWP domain with a DNA-methyltransferase activity
is found in the human and cnidarian genomes, but not in
M. brevicollis; 4) the combinations of the PWWP domain
with the mismatch repair function (in HSU54777 pro-
tein), and with the glyoxylate reductase 1 homolog
(in the GLYR1 protein) appear to be metazoan-specific.

Discussion
The evolution of complex protein architectures has been
linked to the requirements for novel functions during
the occurrence of multicellular life-forms [1,2]. Here, we
test whether the architectures identified in the genomes
are of evolutionary descent, consistent with low prob-
abilities of convergent evolution [16], or whether the
PWWP domain has become promiscuous independently
in different lineages and, thus, consistent with conver-
gent evolution [17]. Analyzing the distribution patterns
of the promiscuous PWWP domain in ancestrally
related genomes from the plant and metazoan lineages
we follow the tendencies for the PWWP domain to ap-
pear as a single module, in species-specific multidomain
arrangements, and as evolutionarily conserved cassettes
transmitted as stable units.

The PWWP domain as a single module
As a single domain, PWWP is found in proteins
encoded by both unicellular and multicellular genomes.
However, the proteins found in unicellular organisms
are not found in the multicellular and vice versa.
Thereby, a characteristic feature of single-PWWP do-
main proteins is that they are of different phylogenetic
origins and with limited distribution among closely
related species. Examples are the single PWWP domain
proteins of M. brevicolis and from Chlamydomonas/
Volvox that have homologs in other marine metagen-
omes but are not conserved in the animal or plant
lineages. Interestingly, the existence of highly similar
proteins of bacterial origin, but lacking the PWWP do-
main, indicate that marine unicellular eukaryotes have
‘gained’ a PWWP domain for algal specific functions. No
solo PWWP domain encoding genes were found in O.
tauri (see Additional file 7).
Genes encoding single PWWP domain proteins in

multicellular genomes also display limited lineage-
specific distribution. In land plants, such proteins are
clustered in clade 1 (Figure 4). Although functions have
not been established for any member of this subgroup,
they are likely plant-specific. The single PWWP domain
proteins in the animal lineage form two distinct clades
suggesting different phylogenetic origins (Figure 6,
clades 1 and 9). The proteins in clades 1 and 6 (Figure 6)
contain one Nematostella representative but the
MUM1/EXPAND1 members have no PWWP domain
homologs in the cnidarian or in M. brevicollis genomes.

The PWWP domain in species- or lineage-specific
multidomain arrangements
The PWWP module found in various combinations
with other domains may also be species- or lineage-
specific. In unicellular genomes examples are the two
O. tauri proteins (Figure 2a, b; see Additional file 7)
where multiple domains are assembled in a complex
architecture that has not been found in multicellular
organisms. Individual modules from these proteins,
however, have been passed on to multicellular lineages:
i.e., the Ubiquitin carboxyl-terminal hydrolase domain
(most related to ubiquitinases of animal origin) or the
RuBisCo sequences (conserved in plants), illustrate
multidomain assemblies in architectures that are more
complex in the unicellular than in the multicellular
lineages. Acquisitions (accretion) of domains are illu-
strated by the ‘gained’ PWWP domains in the Chlamydo-
monas/Volvox SNF2 and ASH1 proteins (Figure 1 c, d),
not present in the multicellular relatives, illustrating higher-
order architectures in the algal than in plant proteins. Fur-
thermore, the presence of a PWWP in the ATX1 homolog
of Chlamydomonas but lost in Volvox (Figure 1 e, f) nega-
tively correlates with the complexity of this protein archi-
tecture and with the ability of this species to transition to
multicellular forms.
Gain or loss of a PWWP, usually at the N-termini, is

found in proteins of both unicellular and multicellular
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organisms as a species- or lineage-specific trait (see
Additional file 7). For example, we found that the
human mismatch repair protein MSH6 and GLYR1
(glyoxylate reductase 1 homolog of Arabidopsis) have a
PWWP domain only in the metazoan, but not plant,
proteins. Furthermore, clade 4 (in Figure 4) contains
plant proteins with an apparently lineage-specific acqui-
sition of an N-terminal PWWP domain by proteins par-
ticipating in intracellular membrane trafficking, while
the Arabidopsis ATM proteins (Figure 3, clade 1a) pro-
vide an example of an Arabidopsis-specific ‘gain’ of
PWWP sequences by the ATM-PI3K genes upon the di-
vergence of the Arabidopsis species from the eudicots.
Collectively, these findings suggest that gain/loss of

the PWWP domain from the termini of existing proteins
is a recurring feature in the evolution occurring in a
lineage or species-specific pattern that does not support
a model postulating that complex architectures in multi-
cellular systems occur by accretion from simpler systems
[9,10,61].

The PWWP domains in evolutionarily conserved
cassettes
Complex multidomain arrangements of PWWP with
other domains have been found as stable cassettes trans-
ferred through unicellular/multicellular evolutionary
transitions (see Additional file 7). A Peregrin-type pro-
tein with the characteristic cassette involving the EPL1-
PHD- BROMO-PWWP domains (in a rare C terminus
location) is seen assembled in Monosiga, lost in Nema-
tostella, but re-appearing in humans as a small gene fam-
ily (see Additional file 7 and Additional file 9). The Brf1
protein, identified as a TrxG protein with essential roles
in epigenetic memory during vertebrate development
[62], raises the immediate question about its possible role
in the unicellular Monosiga. A different evolutionary
path, however, was revealed for a similar cassette con-
taining the same (PHD- BROMO-PWWP) modules, but
of a phylogenetically different origin: assembled together,
the cassette is present in the cnidarian, inherited in
humans (the ZMYND8/11 proteins) (Figure 6), but not
found in the unicellular organisms or in plants. The earli-
est relatives of the human ZCWPW1/ ZCWPW2 and
ZMYND8/11 PWWP domain proteins are shared with
the cnidarians and, thus, might reflect specific combina-
tions related to multicellular development.
The NSD protein types provide a striking example of a

complex multidomain arrangement present in an
assembled combination in Monosiga and found in
humans (Figure 5a, Figure 6, and see Additional file 7
and Additional file 9). These proteins contain two
PWWP domains (PWWP ‘a’ and PWWP ‘b’) of different
phylogenetic origin and in association with different
domains. Each of the PWWP ‘a’ and PWWP ‘b’ seems to
represent a distinct cassette (as illustrated by the two
separate proteins in Nematostella) but fused into one
gene in Monosiga (Figure 5a). Three ‘fused’ genes in the
human genome encode more than 40 proteins as distinct
isoforms. Plant proteins belonging to the NSD family
have not been identified although a PWWP-AWS-SET
domain in an arrangement similar to the C-terminal part
of NSD proteins are found in theVolvox/Chlamydomonas
ASH1-like proteins (Figure 1d). The NSD proteins illus-
trate complex multidomain arrangements of PWWP
with other domains in stable combinations that have
been preserved through evolutionary transitions and
inherited from unicellular to multicellular lineages as
stable units.
The associations of PWWP with DNA methyltransfer-

ase activities in the two O. tauri proteins, in Nematos-
tella, and in humans provide an interesting example
consistent with a convergent evolution and re-invented
architectures [17]. Despite the similar combination, the
PWWP domain in the O. tauri proteins is at the C-
terminal end, while in the human and cnidarian proteins
the PWWP domain is at the N-terminus. Importantly,
our phylogenetic analysis did not support a relationship
between the metazoan and O. tauri proteins suggesting
distinct phylogenetic origins. Excluding the PWWP do-
main the O. tauri protein XP_003079195 is most similar
to the bacterial methyltransferases, while XP_003084095
including the PWWP domain is most similar to the pu-
tative DNA-methyltransferases from Micromonas, Chlor-
ella, and other ocean metagenomes [48]. Notably, the
DNA methyltransferases from the genomes of Chlamy-
domonas/Volvox, land plants, and Monosiga do not
have PWWP domains.
Evolutionarily distinct origins of the plant ATX1/2 and
ATX3/4/5 trithorax-like genes
An unexpected finding of this study was that the ATX1/
2 and ATX3/4/5 gene types in plants are of a different
origin. The relatedness of their PWWP domains posi-
tioned the proteins into two separate clades, consistent
with their segregation based of the relatedness of their
SET domains [47,54]. Analyses of unicellular algal gen-
omes revealed that a fully assembled ATX1/2 (cassette)
was present in Chlamydomonas (Figure 1), while the
PWWP-ePHD-SET cassette of the ATX3 type has been
assembled in the common ancestor with O. tauri
(Figure 2). The earliest simultaneous presence of both
protein types in land plants is found in Physcomitrella
(Figure 4) where the ATX3-like gene is found as a single
copy but the ATX1 has been duplicated. Different num-
bers of the ATX3-like or ATX1-like gene duplications
have occurred in individual plant genomes, as seen in
Figure 4; see Additional file 8).
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The ATX3/4/5 type proteins are plant-specific, while
the ATX1/2 proteins are related to the metazoan MLL,
except for the presence of the PWWP domain in the plant
trithorax proteins. In Arabidopsis, the ATX1 and ATX2
genes have originated from a chromosomal segmental du-
plication but have evolved divergent biochemical activities
as features on the path of neofunctionalization [63]. It will
be informative to reveal the roles of the duplicated ATX1/
2 genes in other plant species, particularly in the earliest
land plants, to reveal the basal functions of the ancestral
genes.

Evolution and diversification of the PWWP domain
function
The PWWP domain is defined as a chromatin-binding
domain with dual functions binding both DNA and me-
thyl lysine histones [21-28,64-67]. The third (Trp) and
fourth (Pro) residues of the PWWP motif are highly
conserved but the other residues may vary, illustrating
specific divergences that may underlie different func-
tions. The NMR structures of the PWWP domains from
different proteins show a high-degree similarity and
common topology, although the C-terminal regions of
the PWWP domains are significantly divergent [68]. The
structure of the PWWP domain in complex with bound
substrates has been reported [28,69] and we shall not
discuss it here. It is interesting to note, however, that the
PWWP domain of LEDGF is critical for the function of
the MLL in chromatin [70] and that the functional asso-
ciation of the LEDGF-PWWP domain with MLL at Hox
genes mimics the naturally occurring arrangement of a
PWWP domain at the N-terminus of the plant trithorax
homologs, ATX1/2. These results provide evolutionary
support for a functional link between MLL and a
PWWP. Although promoting the association of MLL
with chromatin, the molecular role of the PWWP do-
main in the H3K4 trimethylation by either the human
MLL or by the plant ATX1 remains unknown.
Given the established roles for the PWWP domains in

chromatin, the finding of a PWWP domain linked to
modules implicated in non-nuclear functions is intri-
guing. For example, the Ubiquitin carboxyl-terminal
hydrolase-RuBisCo domains in O. tauri, the human
GLYR1 involved in lipid metabolism and the cellular
redox homeostasis, and the plant proteins associated
with the VHS-ENTH-ANTH domains implicated in cel-
lular trafficking and membrane functions, raises interest-
ing questions about roles that seem unrelated to
chromatin. The role of HUA2 as a transcription factor in
the nucleus [57], the binding of the HATH/PWWP do-
main of HDGF to cell surface receptors to modulate
downstream signaling, as well as its ability to target the
nucleus by its nuclear localization signals [71] suggested
novel roles for the PWWP domains as integrators in
global cellular signaling networks. These possibilities re-
main to be explored.

Conclusions
Analysis of the distribution patterns of the versatile
PWWP domain in proteins from ancestrally related gen-
omes did not support models wherein complex protein
architectures have appeared with the evolution of multi-
cellularity and increased organismal complexity. Our
analyses revealed that most of the high-level PWWP do-
main combinations in extant green plants’ or human
genomes are present in their respective unicellular rela-
tives. These data do not support models wherein the oc-
currence of complex architectures results by accretion of
domains from simpler systems either. In fact, the sim-
plest arrangements represented by proteins carrying a
single PWWP domain are the least conserved and are
found in both unicellular and multicellular genomes as
species- or lineage-specific genes. Gain/loss of a PWWP
domain at the termini of existing proteins is a recurring
feature reflecting dynamic lineage- or species-specific
events and not an increase in the degree of protein
architecture correlated with increased organismal com-
plexity. When present as a component of a multidomain
arrangement the PWWP domain exists in both species-
or lineage-specific combinations and in conserved cas-
settes inherited through the unicellular/multicellular
evolution. These results indicate that multidomain com-
binations carrying the versatile PWWP domain are not
volatile [17] but rather have survived as stable arrange-
ments, apparently, driven by evolutionary descent and
functional requirements. However, the PWWP domain
in association with the VHS-ENTH-ANTH domains
found in the land plants, but not algae, and of the
PWWP domain in association with the GLYR1 function
found in the human genome, but not in the cnidarian or
the choanoflagellate, may represent novel occurrences in
the plant or metazoan lineages, respectively. PWWP
domains associated with DNA methyltransferases seen
in some marine metagenomes and in the metazoan
lineage provide plausible candidates for reinvented archi-
tectures resulting from convergent evolution.

Methods
PWWP-domain sequence search
PWWP-domain sequences were initially searched in
Arabidopsis thaliana (the NCBI) database. Three search
methods were used to mine new PWWP-domain pro-
teins from all listed organisms: BLAST protein similarity
searches were conducted by BLASTP [72] using the Ara-
bidopsis PWWP-domain sequences as the queries
against the non-redundant database available at NCBI
with the default settings. To find similar protein regions
from un-annotated genomic regions, TBLASTN [72]
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was used to perform similarity searches against nucleo-
tide sequences of the genomes translated in all six
frames. More sensitive searches were performed using
the position specific iteration BLAST (PSI-BLAST) [73].
Each query was used against individual genomes with
the inclusion E-value threshold of 0.001 and four search
iterations. Furthermore, with the PWWP-containing
proteins obtained at the NCBI, new BLAST searches
were conducted to collect sequences from the Phyto-
zome (http://www.phytozome.net/), as well as from the
DOE Joint Genome Institute (http://www.jgi.doe.gov/).
After performing the similarity searches, all non-
redundant hits were compiled and each of these
sequences was manually examined to confirm the pres-
ence of the PWWP domain by searching the Conserved
Domain Database (CDD) available from NCBI [74] as
well as the Simple Modular Architecture Research Tool
(SMART) database [75,76]. In addition, the InterPro
Scan Sequence Search web page (http://www.ebi.ac.uk/
Tools/pfa/iprscan/) was used. All 14 applications, in-
cluding TIGRFAM, Superfamily, Gene3D, Panther,
PFam, were used to re-test and confirm the analyses. In
general, there was a very good consistence between the
various prediction models from these applications and
those at NCBI.

Multiple alignments of SET-domain sequences
The ClustalX software, version 2.0 [77] was employed to
generate multiple sequence alignments of the PWWP-
domain sequences obtained from the different databases
(see Additional file 6). Once created, the ClustalX align-
ments were used to generate Neighbor Joining (NJ)
phylogenetic trees with the MEGA4 program [78]. Mul-
tiple sequence alignment of proteins to generate the
Maximum Likelihood phylogenetic trees was performed
with the MUSCLE software [79].

Phylogenetic analyses
Neighbor-Joining phylogeny of PWWP containing pro-
teins was conducted with the MEGA4 program [78].
The evolutionary history was inferred using the
Neighbor-Joining method [80]. The bootstrap consensus
tree inferred from 5000 replicates was taken to represent
the evolutionary history of the analyzed taxa [81].
Branches corresponding to partitions reproduced in less
than 50% bootstrap replicates were collapsed. The per-
centage of replicate trees in which the associated taxa
clustered together in the bootstrap test (5000 replicates)
are shown next to the branches in all phylogenies. The
trees were drawn to scale, with branch lengths in the
same units as those of the evolutionary distances used to
infer the phylogenetic tree. All positions containing gaps
and missing data were eliminated from the datasets
(Complete deletion option).
Maximum Likelihood phylogeny of PWWP containing
proteins was performed with the “Phylogeny Pipeline”
at http://phylogeny.lirmm.fr/ [82]. Multiple sequence
alignment of proteins was performed with the MUSCLE
software [79], curation of the alignment was done with
the GBLOCKS program [83], Maximum Likelihood
trees with approximate Likelihood Ratio Test for
branches (PhyML+ aLRT) was performed with the
PhyML3.0 program [84,85], and trees were drawn
with TREEDYN software [86].
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