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Background: Computed tomography plays an important role in the identification and

characterization of thymomas. It has been mainly used during preoperative evaluation for

clinical staging. However, the reliable prediction of histological risk types of thymomas

based on CT imaging features requires further study. In this study, we developed and

validated a nomogram based on CT imaging and included new indices for individualized

preoperative prediction of the risk classification of thymomas.

Methods: We conducted a retrospective, multicenter study that included 229 patients

from twoChinesemedical centers. All the patients underwent cross-sectional CT imaging

within 2 weeks before surgery. The results of pathological assessments were retrieved

from existing reports of the excised lesions. The tumor perimeter that contacted the lung

(TPCL) was evaluated and a new quantitative indicator, the acute angle (AA) formed by

adjacent lobulations, was measured. Two predictive models of risk classification were

created using the least absolute shrinkage and selection operator (LASSO) method in

a training cohort for features selection. The model with a smaller Akaike information

criterion was then used to create an individualized imaging nomogram, which we

evaluated regarding its prediction ability and clinical utility.

Results: A new CT imaging-based model incorporating AA was developed and

validated, which had improved predictive performance during risk classification of

thymomas when compared with a model using traditional imaging predictors. The new

imaging nomogram with AA demonstrated its clinical utility by decision curve analysis.

Conclusions: Acute angle can improve the performance of a CT-based predictivemodel

during the preoperative risk classification of thymomas and should be considered a

new imaging marker for the evaluation and treatment of patients with thymomas. On

the contrary, TPCL is not useful as a predictor for the risk classification of thymomas in

this study.
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INTRODUCTION

Thymomas are rare primary thymic epithelial neoplasms, and
they account for <1% of all adult malignancies (1). These tumors
are often located in the anterior mediastinum and have the
potential for local invasion (1, 2). Traditionally, thymomas are
usually divided into invasive (Masaoka stage III/IV) and non-
invasive (Masaoka stage I/II) lesions according to the Masaoka–
Koga clinical staging system (3, 4). Thymomas can also be
histologically classified as A, AB, B1, B2, or B3 according to the
WHO classification system (revised version of 2015), based on
the morphology of epithelial cells and the ratio of lymphocytes to
epithelial cells (5).WHO types B2 and B3 are typically considered
to be more invasive and are associated with lower survival rates
than types A, AB, and B1. Therefore, thymomas can be divided
into a low-risk group (types A, AB, and B1) and a high-risk
group (types B2 and B3) (6). CT plays an important role in the
identification and characterization of thymomas. This imaging
technique has been mainly used during preoperative evaluation
for clinical staging (4). However, the reliable prediction of
histological risk types of thymomas based on CT imaging features
still needs further exploration (7, 8).

Previous studies have focused on the relationship between CT
imaging findings and the WHO histological classification (9–15).
For instance, one study reported that some features (contours,
heterogeneous enhancement, infiltration of surrounding fat and
lung, and node enlargement) are significantly associated with
the WHO classification categories (13). Another study reported
that the histological features of aggressive thymomas were
significantly correlated with decreased doubling time (DT) and
increased growth when DT was evaluated retrospectively and
dynamically (14). However, these studies were based exclusively
on the evaluation of inter-group CT imaging feature differences
and did not include the development of models for classification
prediction. Furthermore, other studies have explored the
relationship between the tumor perimeter contacting the lung
(TPCL) with postoperative pleural recurrence on preoperative
CT findings (16, 17). One study developed a more objective
and quantitative method, with which the authors measured the
angle formed by adjacent lobulations to predict lung invasion
by thymomas (18). In this previous study, the authors found
that adjacent lung invasion can be precisely predicted by the
multilobulated aspect of the thymoma when it includes at
least one acute angle (AA). However, the relationship between
these quantitative imaging indicators and the WHO histological
classification has been rarely reported.

Until now, the classification of thymomas from preoperative
CT imaging has mostly employed traditional morphological
indicators, without reproducible individualized prediction
models or the inclusion of objective and quantitative indicators
(19–22). Therefore, in this study, we sought to investigate
whether TPCL and an AA formed by adjacent lobulations could
constitute quantitative and reliable predictors of thymoma
classification. We hypothesized that these new quantitative
imaging indicators could be used as independent factors in
the development of a predictive model for the risk categories
included in the WHO histological classification system of

thymomas. Moreover, we also hypothesized that this new
model would outperform a model that only includes traditional
morphological indicators. The goal was to develop and validate
an imaging nomogram to be used in individualized prediction
of the risk classifications of thymomas preoperatively using
non-invasive data and with minimal demand on patients.

METHODS

Clinical Samples
We conducted a retrospective multicenter study that included
229 patients. Inclusion criteria were (i) thymoma diagnosed
by postoperative pathological examination, (ii) contrast-
enhanced CT examination performed, and (iii) CT imaging
performed within 2 weeks before surgery. Exclusion criteria
were (i) CT imaging performed after preoperative neoadjuvant
chemotherapy; (ii) myasthenia gravis, hormone therapy, or other
treatment options; (iii) CT artifacts that affected the assessment
of the lesions; and (iv) recurrent anterior mediastinal mass
after thymectomy. We included 169 patients treated between
September 2011 and May 2019 in center 1 and 60 patients
treated between February 2017 and March 2019 in center 2.
We divided the patients into training, internal validation, and
external validation cohorts. The training cohort included 120
patients (58 low-risk and 62 high-risk) treated consecutively
between September 2011 and October 2016 in center 1. The
internal validation cohort contained 49 patients (26 low-risk and
23 high-risk) treated consecutively between November 2016 and
May 2019 in center 1. The external validation cohort included 60
patients (29 low-risk and 31 high-risk) from center 2 (Figure 1).
We retrieved related clinical information on age, sex, symptoms,
myasthenia gravis, clinical stages, and histological classification
from the surgical records and pathological reports in the
medical records database. Ethical approval was obtained from
the institutional review boards of both center 1 (China-Japan
Friendship Hospital in China) and center 2 (Jinling Hospital,
Medical School of Nanjing University); the need for informed
consent was waived because of the retrospective nature of
this study.

Computed Tomography Imaging
All the patients underwent CT imaging within 2 weeks before
surgery and obtained the pathological examination results.
They also underwent preoperative cross section spiral CT
scanning examinations. CT images were obtained with a
variety of scanners, namely, 16-row multi-detector CT (MDCT)
(Aquilion; Toshiba, Tokyo, Japan), 320-row MDCT (Aquilion
TM ONE; Toshiba, Tokyo, Japan), and 256-row MDCT
(Revolution; GE Healthcare, Chicago, IL, United States) in
center 1 and dual-source CT (Somatom Definition; Siemens
Healthineers, Erlangen, Germany), 128-row MDCT (Somatom
Perspective, Siemens Healthineers, Erlangen, Germany), and
second-generation dual-source CT (Somatom Flash; Siemens
Healthineers, Erlangen, Germany) in center 2. All images
were obtained when the patients were in a supine position
with suspended inspiration. An intravenously administered
contrast medium was used in all the patients. The images were
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FIGURE 1 | Flow diagram of the study population. The study included 169 patients from center 1 treated between September 2011 and May 2019, and 60 patients

from center 2 treated between February 2017 and March 2019. The training cohort included 120 patients (58 low-risk and 62 high-risk) treated consecutively between

September 2011 and October 2016 in center 1. The internal validation cohort included 49 patients (26 low-risk and 23 high-risk) treated consecutively between

November 2016 and May 2019 in center 1. The external validation cohort included 60 patients (29 low-risk and 31 high-risk) from center 2. IEC, inclusion and

exclusion criteria.

reconstructed from both the mediastinal (window width, 400–
450 HU; window level, 20–50 HU) and lung windows (window
width, 1,000–1,500 HU; window level, −650 to −750 HU).
Images with 5-mm slice thickness after reconstruction were
used for evaluation, and original images with 0.6–1.25-mm slice
thickness were available, when necessary, in all cases.

Computed Tomography Imaging
Interpretation and Pathological
Examination Findings
All the CT images were reviewed using a picture archiving
and communications system (PACS; GE Heathcare, Chicago,
IL, United States) and were retrospectively reviewed by two
radiologists with 10 years of experience, who were all blinded
to the clinical details of the patients and pathological findings
at the time of image interpretation. Where differences occurred,
a third chest tumor radiologist with 23 years of experience
addressed the differences for the final decision. The image
interpretation criteria used standard reporting terms defined by
the International Thymic Malignancy Interest Group (ITMIG)
for anterior mediastinal masses suspected to be thymoma (23).
Evaluated CT features included the following data about the
primary mass and its surrounding structures: lesion location
(tumors in the anteriormediastinumwere classified into centrally
located, right-sided, and left-sided lesions; any tumors that were
located around or on the line running through the sternum were
considered to be central); size in the x, y, and z axes; contour
(smooth, single-lobulated, or irregular multilobulated); internal
density (homogenous or heterogeneous); calcifications (without
calcification, single, or multiple calcifications); infiltration of
surrounding fat; tumor abutment≥ 50% or <50% of an adjacent
mediastinal structure; and direct vascular endoluminal invasion.
The following information regarding the surrounding structures
was also included: adjacent lung abnormalities, pleural effusion

(without, unilateral, or bilateral), mediastinal lymph node
enlargement (>1 cm in short axis on an axial image), and phrenic
nerve involvement (consistent with elevated hemidiaphragm).
Any differences in findings were resolved on a consensual basis.

The thymomas were classified according to the 2015 revised
WHO histology classification (5), which is mainly based on
the morphology of epithelial cells and the ratio of lymphocytes
to epithelial cells. When a tumor showed multiple histological
components, it was classified based on the predominant
component. The thymomas were divided into low-risk (types A,
AB, and B1) and high-risk (types B2 and B3) subgroups, because
types B2 and B3 are considered to bemoremalignant than type A,
AB, or B1 (3, 6). A modified Masaoka–Koga stage was obtained
by reviewing surgical records and pathological reports (24).

Measurement of the New Quantitative
Indices and Evaluation of Their
Consistency
The maximum tumor diameter was measured at the largest
section of the tumor on axial images (size_max) by the same
two radiologists who reviewed the CT images. The TPCL was
measured by manually drawing the surface of the tumor contour
adjacent to the lung, at the two maximum adjacent sections of
the tumor shown on axial images. The average TPCL was then
calculated as the final value. When the tumor contacted the
bilateral mediastinal pleura, only the side overhanging the pleural
cavity was measured to measure the TPCL. In multilobulated
thymomas interfacing with the lung, the smallest angle formed
by adjacent lobulations was uniformly measured twice on lung
windows. The average angle was then calculated and classified
as an AA or an obtuse angle (OA) (Figure 2). All tumors with
smooth contours were counted as OA (18).

Intraclass correlation coefficients were used to determine
intra- and inter-observer agreement in the measurement of new
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FIGURE 2 | Computed tomography imaging evaluation of contour, internal density, and measurement of the new index. (A) Axial contrast-enhanced chest CT image

obtained at the level of the pulmonary trunk demonstrated a thymoma with smooth contour (white arrowhead) in a 42-year-old woman (WHO classification AB). (B)

Axial contrast-enhanced chest CT image showed a thymoma (WHO classification B1) in a 54-year-old woman. The multilobulated contour and internal calcifications

were seen, and the tumor perimeter that contacted the lung (TPCL) was measured along the margin between tumor and adjacent lung (yellow arc line). (C) Axial

contrast-enhanced chest CT image obtained at the level of the aortic arch demonstrated a thymoma (WHO classification B2) in a 49-year-old man who complained of

chest distension and chest pain. The tumor has several obtuse angles formed by adjacent lobulations (red arrowhead), and low-density cystic or necrotic areas are

indicated by stars. (D) In the same patient as (C), the acute angle (AA) formed by adjacent lobulations can be seen in the upper slices.

indices. A pool of 50 patients was randomly selected from
the cohorts, including 25 low-risk and 25 high-risk patients.
For inter-observer agreement, two radiologists independently
identified the cross-sectional images of the largest tumor area and
measured the TPCL and the smallest angle in these patients at
the same time. The intraclass correlation coefficients (ICCs) were
calculated and analyzed between measurements. To evaluate
intra-observer agreement, the TPCL and AA were all measured
twice for each patient by each radiologist within 1 month, and
the ICCs were separately calculated and analyzed.

Feature Selection and Building of the
Models
For imaging features defined by ITMIG terms and the new
quantitative indices, regularized multivariate logistic regression
with the least absolute shrinkage and selection operator (LASSO)
penalty method was applied to the training cohort to reduce
overfitting or any type of bias in feature selection (25).
The selected features were then weighted by their respective
coefficients in the regression equation formula as follows:

y = β0 +

n
∑

s=1

βiXj+ε (1)

where y is 1 for patients with high-risk thymoma and 0 for low-
risk patients, β0 is the constant term, n is the number of features
used in the model, βi (i = 0, 1, 2, . . . , n) is the model parameter

of coefficient, Xj(j = 0, 1, 2, . . . , n) is the feature, and ε is the
error term.

The LASSO criteria for selecting parameters based on
minimizing the value of the following cost equation:

N
∑

i=1



yi −

n
∑

j=1

Xijβj − β0





2

+ λ

n
∑

j=1

∣

∣βj

∣

∣ (2)

where N is the number of patients, yi is the outcome labels of
patient i, n is the number of features,Xij is the jth feature of the ith
patient, βi (i= 0, 1, 2, . . . , n) is themodel parameter of coefficient,
β0 is the constant term, and λ is the regularization parameter.

Least absolute shrinkage and selection operator method is a
shrinkage and selection method for linear regression (26). It aims
to minimize the sum of squares of residual errors (MSE) under
the condition that the sum of absolute values of a regression
coefficient that is less than a constant is deleted during variable
selection. We selected the optimal value of λ by leave-one-
out cross-validation. We considered λ optimal if it minimized
MSE and maximized the area under the receiver operating
characteristic curve (AUC) in the training cohort. To test the
robustness of the final number of features included in the model,
we repeated the feature selection procedure at one SE of the
optimal λ value (lambda 0.1se).

The model, including the new quantitative index, was
compared with a model without this new index using the
corresponding Akaike information criterion (AIC) values for
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each model and their related statistical tests to estimate model
complexity and data fitting performance. Furthermore, DeLong
tests were performed to compare all pairs of receiver operating
characteristic curve (ROC) (27).

Construction and Evaluation of the
Nomogram
We constructed a nomogram based on CT imaging features
with the new quantitative index and applied it to predict the
risk classification of thymomas. We assessed the accuracy of
the nomogram using ROC curves. We then calculated AUCs
and compared them between the training cohort and the two
validation cohorts by DeLong tests (27). We also determined
sensitivity and specificity.

We assessed the calibration of the nomogram using
calibration curves and unreliability (U) statistics. We also
conducted a decision curve analysis to evaluate the clinical utility
of the nomogram by quantifying the net benefit of its use at
different threshold probabilities in the validation datasets.

Statistical Analysis
Statistical analysis was conducted using SPSS (version 23.0; IBM,
Armonk, NY, United States), R (version 3.5.0; R Foundation,
Vienna, Austria), STATA (version 15.0; StataCorp, College
Station TX, United States), and MATLAB (version 2013a;
Mathworks, Natick, MA, United States). A two-sided p < 0.05
was used as a threshold for statistical significance.

RESULTS

Clinical Information and Imaging Features
The clinical characteristics of the patients are summarized
in Supplementary Table 1. We found that imaging features,
namely, size_max, contour, density, calcification, and the new
index, AA, were significantly associated with risk classification
in the training cohort (p < 0.05). Only AA was significantly
associated with risk classification in the internal validation
cohort (p < 0.05). The inter-group statistical results of
features, such as density, calcification, and pleural effusion,
approached statistical difference. Size_max, density, and AAwere
significantly associated with risk classification in the external
validation training cohort (p < 0.05); contour and calcification
trended toward significance.

Evaluation of the Consistency of the
Measurement of the New Quantitative
Indices
We found that the measurement of both TPCL and AA presented
good inter- and intra-observer agreements. The ICCs were 0.9 for
TPCL and 0.85 for AA between the two radiologists. For intra-
observer agreement, the ICCs were 0.93 for TPCL and 0.88 for
AA in one radiologist, and 0.92 for TPCL and 0.89 for AA in
the other.

Feature Selection and Model Development
From all the imaging features, 23 (with AA) were reduced
to three potential predictors based on data from the 120

patients of the training cohort (8:1 ratio; Figures 3A,B). These
three features were retained with non-zero coefficients in
the LASSO logistic regression model with a minimum λ of
0.1052 and then used in the regression equation to build
the first model. The result demonstrated that TPCL was
ineligible for the risk classification of thymoma (11:1 ratio;
Figure 3). Without considering the AA factor, 22 features
were reduced to two predictors with a minimum λ of
0.1155 based on data from the training cohort. These two
features were used in the regression equation to build the
second model (Supplementary Table 2). We found significant
differences between the two models for both AIC and AUC
(Supplementary Table 3; Figure 4).

Construction and Evaluation of an
Individualized Nomogram
We used the first model with the smaller AIC to construct
an individualized imaging nomogram incorporating three
independent predictors: contour, density, and AA (Figure 5).
The classification accuracies were 77.5, 73.47, and 70% in the
training, internal validation, and external validation cohorts,
respectively. The sensitivities were 74.19, 60.87, and 70.97%, and
the specificities were 81.03, 84.62, and 68.97% in the training,
internal validation, and external validation cohorts, respectively
(Supplementary Table 4; Figure 4).

Validation of Individualized Nomogram
We found that calibrations for the probability of risk
classification of thymomas were good in the three cohorts
(training, p = 0.062; internal validation, p = 0.267; external
validation, p = 0.14). The C-index of the nomogram for the
prediction of lymph node status was 0.811 (95% CI, 0.731
to 0.889), 0.766 (95% CI, 0.63 to 0.902), and 0.765 (95% CI,
0.644 to 0.886) in the training, internal validation, and external
validation cohorts, respectively (Supplementary Table 2;
Supplementary Figure 1).

Clinical Use
We present the decision curve analysis for the first and
second models in Figure 6. The decision curve showed
that if the threshold probability in the clinical decision is
higher than 18%, using the radiomics nomogram to predict
risk classification performs better than either the treat-all-
patients or the treat-none schemes. Within this range, the
net benefit was comparable between the two models with
several overlaps.

DISCUSSION

In this study, we developed and validated a diagnostic CT-
based predictive model for individualized preoperative risk
classification in patients with thymomas. The new model
incorporates contour, density, and the new quantitative index
AA. The new model successfully stratified the histological
grading of tumors according to their risk classifications. We
established a nomogram that can facilitate the clinical evaluation
and treatment of thymomas.
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FIGURE 3 | All imaging features were selected by regularized multivariate logistic regression with the least absolute shrinkage and selection operator (LASSO) method

in the training cohort. (A) Twenty-three features (with AA) were reduced to three potential predictors to build the first model in the training cohort; the area under the

receiver operating characteristic curve (AUC) was plotted vs. log (λ). Dotted vertical lines were drawn at the optimal values using the minimum criteria and the 1

standard error of the minimum criteria (the 1-SE criteria). (B) A coefficient profile plot was produced against the log (λ) sequence. A vertical line was drawn at the value

selected by 10-fold cross-validation, where optimal λ (0.1052) resulted in 3 non-zero coefficients. (C) Twenty-two features (without AA) were reduced to two potential

predictors to build the second model in the training cohort; the area under the receiver operating characteristic (AUC) curve was plotted vs. log (λ). Dotted vertical lines

were drawn at the optimal values using the minimum criteria and the 1 standard error of the minimum criteria (the 1-SE criteria). (D) A coefficient profile plot was

produced against the log (λ) sequence. A vertical line was drawn at the value selected by 10-fold cross-validation, where optimal λ (0.1155) resulted in 2 non-zero

coefficients.

FIGURE 4 | Model development and comparison. The model with AA of multilobulated contour identified as a new independent predictor improved the identification

performance for risk classification of thymoma compared with the model without AA. (A) Comparison of the performance of the models in the training cohort. (B)

Comparison of the performance of the models in the internal validation cohort. (C) Comparison of the performance of the models in the external validation cohort.
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FIGURE 5 | Construction of an individualized imaging nomogram in the training cohort incorporated three independent predictors consisting of contour, density, and

AA.

FIGURE 6 | Decision curve analysis with the comparison of the imaging

models. The decision curve showed that if the threshold probability in the

clinical decision is more than 18%, using the imaging nomogram to predict risk

classification adds more benefit than either the treat-all-patients scheme or the

treat-none scheme. Within this range, the net benefit was comparable based

on two models with several overlaps, and the model with AA showed better.

In this study, all the patients underwent preoperative cross-
sectional spiral CT examinations using the same body position
and scanning methods. However, we should highlight that the
CT images were obtained with different types of scanners in
the two centers. This is a common limitation in multicenter
studies, and we have performed the following measures to
improve the consistency of the results. First, all the patients
underwent preoperative cross-section spiral CT examinations.
They were scanned in the same body position and samemethods,
although the CT images were obtained with different types
of scanners. All the images were reconstructed with the same
parameters and methods, thus ensuring consistent evaluation

and measurement of image quality and reducing errors in
imaging processes among the different CT scanners (28, 29).
In addition, the research focused on the imaging features and
quantified indicators based on CT from the perspective of
clinical diagnosis. Therefore, any error mainly comes from the
experience of the radiologists and measurements. We introduced
two new key quantitative indices, TPCL and AA (16–18) and
showed that they can be consistently measured. Indeed, the
results of the consistency analysis by the ICC evaluation of inter-
and intra-observer agreements showed that the consistencies of
both TPCL and AA measurements were satisfactory. The use of
standardized techniques in this study minimized errors related to
image assessment, assuring the quality of these new quantitative
indices (30).

During the construction of the first and second models in
this study, the candidate imaging features were reduced to
three or two potential predictors using the LASSO method
to obtain a subset of features with optimal stability and
accuracy (25, 26). The LASSO regression algorithm is a
regularized feature selection method with which all independent
variables are processed simultaneously based on variance
trade-off. Several previous studies have demonstrated the
advantages of using LASSO to select parameters when
constructing predictive models (25, 26, 31, 32). However,
we are not aware of any study that has used this method
for histological grading of thymomas. Tumor size, contours,
internal density, calcification, and the new index AA all
showed significant differences between low- and high-risk
thymomas in this study. However, tumor size, TPCL, and
calcification were not selected as independent risk factors
in the final regression model. These results match those of
previous studies in the field, although we should note that CT
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imaging was shown to not differentiate between histological
subtypes of thymomas in these previous studies. Of note,
Johnson et al. reported an association between CT imaging
and pathologic assessments of the tumor response after
neoadjuvant treatment (21). Tumor size and calcification
have been found to be related to type B3 thymoma in
previous studies; however, we could not replicate these
findings (33).

By comparing AICs and AUCs between the two models,
we show that the new model that included AA has better
predictive performance. The AIC is a standard method for
estimating associations between model complexity and data-
fitting performance (34). In this study, we used the AIC to
examine whether the inclusion of three predictors in the first
model would counteract the performance benefits by bringing
additional complexity costs. We found that this is not the case.
In fact, the differences between the two models in the AIC
pinpointed that the benefits of including an extra predictor
outweighed the costs caused by the increased complexity. We
also compared the predictive performance of the two models
by testing for differences between their AUCs by DeLong tests.
We found that the new model with AA performed better in
the identification of risk classifications in thymomas in all the
three cohorts, but we determined that TPCL is ineligible for
risk classification of thymoma. The presentation of an AA in
tumors indicates a high-risk pathological type with high invasion
potential. Therefore, we speculate that AA, being an independent
predictor of risk category, is closely related to this pathological
category of thymomas (18).

Thymomas are heterogeneous tumors, and their
histopathology grading is associated with multiple imaging
features (8, 35–37). Choe et al. reported that the histological
features of aggressive tumors were significantly correlated
with decreased DT and increased growth (14). In addition,
Green et al. found that the presence of an AA between
lobulations in multilobulated thymomas can predict lung
invasion with satisfactory accuracy (18). Until now, there
has been no study reporting the reliable identification of
histological types of thymomas based on CT imaging features
(36). We aimed to bridge this gap by constructing and
validating a nomogram incorporating new quantitative imaging
variables. The nomogram presents a good performance in
generating individualized probabilities of the risk classification
of thymomas. The results demonstrated good generalizability
and provided a tool that can be used by both physicians and
patients to perform preoperative individualized prediction of
the risk classification of thymomas, following the current trends
toward personalized medicine.

The introduction of the model in clinical practice has
the potential to benefit both the diagnosis and treatment
of patients with thymomas. We comprehensively evaluated
the discrimination and calibration of the risk classification
predictions and demonstrate the reliability of the results of the
model. However, it is also important to consider whether the
nomogram-assisted decisions would improve clinical outcomes.
We performed a decision curve analysis to examine the
clinical consequences of the tool based on different threshold
probabilities and net benefits. We implemented this analysis by

calculating the proportion of true positives minus the proportion
of false positives weighted by the relative harm of false-
positive and false-negative results. We found that for threshold
probabilities higher than 18%, the use of the nomogram to predict
risk classification outperforms both the treat-all-patients and the
treat-none schemes. This analysis demonstrates the clinical utility
of the tool.

This study has some limitations. First, the incidence rate
of thymoma was very low. It is very precious and time-
consuming to obtain patients with complete clinical, imaging
(qualified contrast- enhanced CT), and definite pathology results.
Second, we relied on data collected retrospectively; 120 and 49
patients were used for model training and internal validation
in this study, respectively, while only 60 patients were included
for external validation. Compared with the training set and
internal validation set, the proportion of the two risk types was
relatively balanced and may support the results of this study.
Third, the CT scanners used in this study and their parameters
were different, and the diaphragm evaluation was based on
the coronal reconstruction of images. However, we suggest
that these parameters are unlikely to have strongly affected the
evaluation of parameters that can be assessed andmeasured using
CT images. Using high-dimensional data from a quantitative
analysis of tumor volume and radiomics could improve the
predictive models.

CONCLUSIONS

In conclusion, we developed and validated a newCT-basedmodel
incorporating AA that can improve predictive performance
during the risk classification of thymomas, when compared
with traditional imaging predictors. By decision curve analysis,
we demonstrated the clinical utility of the tool. AA should be
considered as a new imaging marker for the evaluation and
treatment of patients with thymomas.
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