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Abstract

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS- CoV- 2) has infected almost 200 million people worldwide by July 
2021 and the pandemic has been characterized by infection waves of viral lineages showing distinct fitness profiles. The 
simultaneous infection of a single individual by two distinct SARS- CoV- 2 lineages may impact COVID- 19 disease progression 
and provides a window of opportunity for viral recombination and the emergence of new lineages with differential phenotype. 
Several hundred SARS- CoV- 2 lineages are currently well phylogenetically defined, but two main factors have precluded major 
coinfection/codetection and recombination analysis thus far: (i) the low diversity of SARS- CoV- 2 lineages during the first year 
of the pandemic, which limited the identification of lineage defining mutations necessary to distinguish coinfecting/recombin-
ing viral lineages; and the (ii) limited availability of raw sequencing data where abundance and distribution of intrasample/
intrahost variability can be accessed. Here, we assembled a large sequencing dataset from Brazilian samples covering a period 
of 18 May 2020 to 30 April 2021 and probed it for unexpected patterns of high intrasample/intrahost variability. This approach 
enabled us to detect nine cases of SARS- CoV- 2 coinfection with well characterized lineage- defining mutations, representing 
0.61 % of all samples investigated. In addition, we matched these SARS- CoV- 2 coinfections with spatio- temporal epidemiologi-
cal data confirming its plausibility with the cocirculating lineages at the timeframe investigated. Our data suggests that coin-
fection with distinct SARS- CoV- 2 lineages is a rare phenomenon, although it is certainly a lower bound estimate considering 
the difficulty to detect coinfections with very similar SARS- CoV- 2 lineages and the low number of samples sequenced from the 
total number of infections.

DATA SummARy
The raw fastq data of codetection cases are deposited on  gisaid. org and are associated to the following GISAID codes: EPI_
ISL_1068258, EPI_ISL_2491769, EPI_ISL_2491781, EPI_ISL_2645599, EPI_ISL_2661789, EPI_ISL_2661931, EPI_ISL_2677092, 
EPI_ISL_2777552, EPI_ISL_3869215. Supplementary Material are available on Figshare at https://doi.org/10.6084/m9.figshare. 
19361270.v1 [1]. The workflow code used in this study is publicly available on: https://github.com/dezordi/ViralFlow.

InTRoDuCTIon
SARS- CoV- 2, the etiological agent of the COVID- 19 pandemic, has a relatively low mutation rate compared to other RNA viruses 
[2], and most viral lineages are normally defined by only a few synapomorphic SNPs (n<10) [3]. However, the pervasiveness of 
SARS- CoV- 2 infections during the COVID- 19 pandemic provided substantial opportunities for the virus to explore the fitness 
landscape through single nucleotide substitutions and/or indels, giving rise to a range of more transmissible variants of concern 
(VOCs). These lineages are characterized by an unusual pattern of lineage- defining SNPs along the genome (n>15) [4–6].
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Coinfection is defined as a single host infection by more than one pathogen or virus lineage simultaneously. Despite being a rare 
phenomenon, it may provide opportunity for genetic recombination, an event known to occur in viruses of the Coronaviridae 
family [7, 8] including SARS- CoV- 2- like viruses [9]. Recombinant viruses may, in turn, trigger the emergence of new lineages with 
enhanced biological properties, including the capacity to infect new hosts (expansion of viral host range) [10–13]. The frequency 
of coinfection and its role to promote recombination- driven SARS- CoV- 2 evolution and the emergence of SARS- CoV- 2 lineages 
is still poorly understood. The low variability found in SARS- CoV- 2 lineages and the few well- defined lineage- specific SNPs until 
the second half of 2020 probably hindered the identification of coinfection and recombination events of SARS- CoV- 2 lineages so 
far. In contrast, the emergence of VOC lineages carrying a substantial number of additional SNPs may provide enough markers to 
currently detect these events. A number of coinfection cases were reported for SARS- CoV- 2, including lineages B.1.1.28/B.1.1.33 
and B.1.1.91/B.1.1.28 [14] in Brazil, several variants of interest (VOIs) and VOCs [15], and different lineages in the UK [16, 17]. 
Moreover, putative coinfections were indirectly inferred from North America and Europe patients by detecting recombinant 
genomes [18–20].

In this study, we assessed amplicon sequencing reads of 2263 SARS- CoV- 2 samples from Brazilian patients generated by the 
Fiocruz Genomic Surveillance Network. We identified nine coinfection cases through the identification of an unusual pattern of 
intrahost single nucleotide variant (iSNV) sites and phylogenetic reconstruction of alternative SARS- CoV- 2 genomes generated 
from well supported major and minor allele frequency nucleotide variants. Moreover, epidemiological trends of circulating 
lineages in each Brazilian state supported that the SARS- CoV- 2 VOIs and VOC lineages found in these coinfected samples were 
also cocirculating at the time of sampling, thus providing further plausibility for our findings.

mETHoDS
SARS-CoV-2 sequences and ethical aspects
The sequencing data was obtained from the genomic survey of SARS- CoV- 2 positives samples sequenced by FIOCRUZ’s Genomic 
Surveillance Network between 18 May 2020 and 30 April 2021. SARS- CoV- 2 genomes were amplified and sequenced using 

Impact Statement

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS- CoV- 2) is the etiological agent of the global pandemic that in approxi-
mately 2 years has caused a large public health emergency leading to the death of more than 5 million people worldwide. 
Despite the vast literature about the SARS- CoV- 2 genomics, there is still a knowledge gap regarding the intrahost nucleotide 
diversity during SARS- CoV- 2 infection and detection of coinfection and recombination of different viral lineages. Our results, 
based on the largest dataset of raw sequenced reads assembled so far from Brazil, shows nine coinfection events from patients 
of different Brazilian regions. Knowledge of these events allows a more detailed understanding of how we can identify them, its 
impact on disease progression, the likelihood of new recombining lineage emergence and early detection of circulating lineages 
before official reports.
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previously described Illumina protocols [21–23] (Table S1, available in the online version of this article). The frequency of lineages 
obtained from Brazilian states was evaluated using data recovered from GISAID ( gisaird. org) on 23 July 2021.

Genome assembly and intrahost variant analysis
The genomic analysis were performed with ViralFlow v.0.0.5 [24], through the following steps: removal of duplicated reads, 
adapters and read extremities with less than 20 of phred score quality with the fastp tool [25]; reference genome assembly using 
BWA [26] to map reads against the SARS- CoV- 2 Wuhan reference genome (NC_045512.2); the consensus genomes generation 
with samtools mpileup [27] and iVar [28], using a threshold quality score of 30 and calling SNPs and indels present as major 
allele frequencies. After the consensus generation, the bam- readcount tool [29] retrieve the proportion of each base (A, C, T, G) 
present in each position of the bam file and an in house python script ( intrahost. py) identifies iSNV sites following the specific 
rules: the minor variant (MinV) should represent at least 5 % of total position depth and should appear in both sense and 
antisense reads (at least 5 % in each sense) with a depth of at least 100 reads. Two consensus genomes were generated as output 
based on the major and minor allele frequency of each iSNV site: the major variant (MajV) with the nucleotide present in major 
allele frequency in each genomic position, and the MinV with the nucleotide present in the lower allele frequency at that same 
positions. The consensus genomes were automatically analysed with PangoLineage v1.1.23 with pangoLEARN updated at 28 May 
2021 [30] and to Nextclade [31] tools. Only genomes with more than 95 % coverage breadth and 100 reads of average coverage 
depth (Table S2) were considered.

If the MajV and MinV genomes were assigned to the same viral lineage, we may assume that the variability observed likely resulted 
from: (I) de novo generation of intrahost variants that emerged during viral replication; or (II) coinfection with two viruses of 
the same lineage. Conversely, if MajV and MinV genomes were assigned to different lineages, the intrahost variability observed 
is more likely derived from a codetection event. All samples in which alternative genomes where assigned to different pango 
lineages were manually curated with Interactive Genomic Viewer [32], indels related to intrahost variants into specific genomes 
that change the coding frame were discarded. Additional evidence of codetection was searched on the raw sequence reads: (I) 
if the proportion of reads supporting lineage- specific defining SNPs are similar it suggests codetection while if the proportion 
is drastically different the variability is likely derived from de novo intrahost variability; (II) if SNPs and/or intrahost variants 
are restricted to some specific SARS- CoV- 2 genomic region it likely indicates a recombination event. Otherwise, if iSNV sites 
are distributed along the entire SARS- CoV- 2 genome it is likely to be derived from the codetection of different SARS- CoV- 2 
genomes in the same sample.

Recombination analysis
To identify putative recombination events, we compared the set of mutations present in each genome with the expected set of 
mutations of the lineage assigned by PANGO lineage. In this step, the common mutations (present in at least 75 % of genomes 
per lineage deposited on GISAID) in the 33 lineages identified in our samples are established based in the Lineage|Mutation 
Tracker available on  outbreak. info, updated on 08 November 2021. The excess or lack of mutations are then compared with the 
mutations annotated with NextClade using an in house R script (https://github.com/dezordi/SARS-CoV-2_tools/ blob/master/
compare_mutation.R). Samples with qc.overallStatus equal to ‘good’ and with ten amino acid mutations missing or in excess, were 
separated to a manual curation of lineage- specific mutations with the same information from  outbreak. info. Samples with signals 
of mutations from two different lineages (parental lineages) were then analysed for recombination following the methodology 
of previous published studies [18, 19].

Phylogenetic analysis
A reference alignment was created using mafft [33] with the 6167 genomes, which represents the genomes used in Nextstrain 
[34] global phylogeny with N content less than 5 % accessed on 24 May 2021 and Brazilian genomes obtained through a cd- hit-
 est [35] clusterization of genomes present on GISAID at 16 March 2021 with high- quality and with more than 99.8 % sequence 
identity and from the same Brazilian state. The reference alignment was edited to mask UTR regions and to maintain the indel 
regions. The 32 MajV and MinV consensus genomes were aligned to reference alignment with mafft add, and we performed a 
maximum- likelihood phylogenetic analysis with IQtree2 [36] employing the aLRT branch support evaluation method and the 
GTR+F+R5 nucleotide substitution model. The PANGO lineages were evaluated with pangolin and used to annotate the tree 
with iTOL [37].

RESuLTS AnD DISCuSSIon
Our initial analysis revealed that 1462 out of 2263 genomes had enough sequencing breadth and depth to be able to consist-
ently detect and characterize the viral genomic variability at the sequencing reads level. In total, 1150 out of 1462 SARS- 
CoV- 2 positive samples investigated showed at least one iSNV site, that is, at least one genomic position with more than 100 
reads supporting a minimum of two alternative nucleotides. Those samples showed an average coverage depth of 1817.46 

https://github.com/dezordi/SARS-CoV-2_tools/
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Fig. 1. Number of intrahost variant sites from 1150 SARS- CoV- 2 samples and phylogenetic analysis of alternative MajV and MinV consensus genomes 
recovered from the same sample. (a) Dot plot with number of iSNVs per sample; (b) maximum- likelihood phylogenetic tree. Others: R, S, U, L, D, C 
lineages. Red arrows represent samples with alternative genomes showing lineage change while black arrows indicate alternative samples with no 
lineage change.

(sd=908.59) and an average coverage breath supported by at least 100 reads of 99.66 (sd=1.10) (Table S2). In addition, we 
estimated a mean of 2.57 iSNVs per genome (Table S3). MajV and MinV consensus sequences representing the viral genome 
variability found in each sample were generated for all samples bearing well supported alternative nucleotides and then 
assessed for lineage assignment using the PANGOlineage tool.

We detected 16 instances in which MajV and MinV were assigned to distinct lineages (iSNV sites: mean=24, sd=9.75), 
including former VOIs and now known as variants for further monitoring (VFM) N.9 and P.2 as well as the VOC P.1 (Table 
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Table 1. Summary of coinfection events

Sample State City iSNVs Breadth* Depth† Lineages‡ Collection date First MajV§ lineage available on 
GISAID

First MinV§ lineage available on 
GISAID

CE- FIOCRUZ- 00657 CE Fortaleza 23 98.95 762.04 P.2/P.1 2021- 01- 20 2020- 11- 20/2020- 04- 15 2021- 01- 07/2021- 01- 07

AM- FIOCRUZ- 
21142481RG

AM Manaus 31 98.9 1105.46 P.1/B.1.1.28 2021- 01- 13 2020- 12- 03/2020- 12- 03 2020- 04- 13/2020- 04- 13

RS- FIOCRUZ- 2060 RS Canoas 25 99.69 3509.92 P.2/B.1.1.28 2021- 01- 07 2021- 01- 26/2020- 08- 31 2020- 05- 21/2020- 03- 16

BA- FIOCRUZ- 4739 BA Salvador 31 99.73 5354.25 P.2/N.9 2021- 01- 08 2020- 10- 26/2020- 06- 26 2020- 12- 10/2020- 11- 12

ES- FIOCRUZ- 6993 ES Aracruz 32 99.67 2222.7 B.1.1.28/P.1 2021- 01- 09 2020- 10- 13/2020- 10- 13 2021- 04- 09/2021- 01- 22

CE- FIOCRUZ- 6559 CE Fortaleza 41 99.85 4090.76 P.1/P.2 2021- 01- 24 2021- 01- 07/2021- 01- 07 2020- 11- 20/2020- 04- 15

SC- FIOCRUZ- 10891 SC Porto Belo 28 98.72 2153.25 B.1.1.332/B.1.1.28 2021- 02- 22 2021- 02- 22/2021- 02- 22 2020- 03- 18/2020- 03- 18

BA- FIOCRUZ- 10781 BA Salvador 40 99.73 1996.63 P.2/P.1 2021- 02- 10 2020- 10- 26/2020- 06- 26 2020- 12- 27/2020- 12- 27

AM- FIOCRUZ- 
21890619RGS

AM Manaus 23 96.59 1018.89 P.1/B.1.1.28 2021- 01- 13 2020- 12- 03/2020- 12- 03 2020- 04- 13//2020- 04- 13

*Coverage breadth supported by 100 reads.
†Average coverage depth. AM: Amazonas; BA: Bahia; ES: Espírito Santo; CE: Ceará; RS: Rio Grande do Sul; SC: Santa Catarina.
‡MajV/MinV Pango lineages supported by the the phylogenetic analysis.
§Date of the first genome deposited on GISAID of each variant into the specific municipality/state, updated on 26 July 2021.

S4). To further confirm the lineage assigned by the PANGOlineage tool, we performed a phylogenetic analysis of representa-
tive lineages including both MajV and MinV genomes. Nine alternative genomes were confidently repositioned into distinct 
lineages (Fig. 1, red arrows, mean iSNVs sites 30.44, sd=6.63), while the remaining alternative genomes branched within 
the same lineage (Fig. 1, black arrows, mean iSNVs 23.06, sd=10.54). Seven out of nine putative coinfection events involve 
the VOC Gamma (P.1 lineage) (Table 1). In four cases, Gamma (lineage P.1) represented the MajV genome, while in the 
remaining three cases, it corresponded to the MinV genome. The large proportion of codetection events with P.1/Gamma 
is likely a result of the higher number of lineage- defining SNPs characteristic of this VOC that facilitate the distinction 
between coinfecting SARS- CoV- 2 lineages. As more distinct lineages, bearing many lineage- defining SNPs, coinfect the same 
host, it becomes increasingly more likely to objectively distinguish coinfections through the reconstruction of alternative 
intrasample viral genomes.

Intrahost single nucleotide variant sites identified showed several lineage defining SNPs spread across the whole SARS- 
CoV- 2 genome, and the sequencing read depth was roughly similar throughout the genome (Fig. 2a, Table S5). Considering 
the lineage defining SNPs present in lineages assigned into MajV and MinV genomes and the absence of lineage defining 
SNPs of different lineages interlaced in the same genome (Fig. 2b, Table S3), our results indicate that the coinfection cases 
detected here did not generate hybrid recombinant genomes. Moreover, the analysis of missing and extra mutations of 
all 1150 consensus genomes did not reveal any putative recombined genome (Table S6). In order to assess if codetection 
could be a result of sample contamination we reassessed sample AM- FIOCRUZ- 21142481RG from RNA extraction, library 
preparation and sequencing. We confirmed the intrahost variability for 25 out of 31 sites present in the first sequencing run 
(Table S7). Lineage assignment, phylogenetic reconstruction and the detection of SNP defining mutations confirmed the 
codetection status of that sample (Table S4) suggesting that the intrahost variability found in this sample did not result from 
laboratory contamination. However, this reassessment did not rule out contamination during sample collection and cannot 
be extrapolated to the other eight coinfection samples.

The plausibility of the codetection events was further validated by the fact of all MajV and MinV alternative genome lineages 
identified by our study were cocirculating in their sampling location, overlapping in time and space, as well as matching with 
SARS- CoV- 2 lineage information form their respective geographical states (Fig. 3). The MajV genome corresponding to 
the predominant lineages circulating in Rio Grande do Sul, Bahia and Amazonas states were recovered in our analysis. On 
the other hand, in Santa Catarina, both lineages involved in codetection were present at lower frequency than the dominant 
lineages at the same location and period of sampling. Only one event of VOC circulation without previous notification was 
detected, the VOC Gamma was detected as a MinV genome in sample ES- FIOCRUZ- 6393 from Aracruz city, Espirito Santo 
state, collected on 9 January 2021. The earliest record on GISAID of the VOC Gamma in Aracruz municipality was on 9 April 
2021 and in Espirito Santo was on 22 January 2021 (Table 1). Of note, the genomic sequence of this specimen available on 
GISAID under EPI_ISL_2645599 code confirmed the assignment of the MajV genome to lineage B.1.1.28. These findings 
highlight that the analysis of MinV genome revealed the early spread of cryptically circulating lineages not detected by the 
analysis of MajV consensus genomes alone.

Finally, the antiviral mechanism mediated by APOBEC- like host proteins against SARS- CoV- 2 is known to induce a high 
frequency of ‘C→U transition’ in SARS- CoV- 2 genomes [38] and may affect the identification of coinfection events based 
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Fig. 2. MajV and MinV of samples with codetection of different SARS- CoV- 2 lineages. (a) Karyoploter with iSNV sites across the SARS- CoV- 2 genome. 
(b) iSNV sites with read- depth frequency supporting MajV and MinV. Defining SNPs based on data of outbreak.info update on 24 July 2021, are indicated 
with a circle. Karyoplots depicting iSNV- site sequencing depth can be accessed in File S1, and raw depth values can be accessed in Table S5.

on the analysis of SARS- CoV- 2 intrahost diversity. Our results showed a twofold difference of ‘C→U’ with respect to U→C 
or G→U mutations, a fourfold difference with respect to G→A or A→G and a 16- fold difference when compared with other 
transitions and transversions in single infection samples (File S2a), which is in line with other findings [16, 38]. By contrast, 
the frequency of intrahost changes in the nine coinfection cases showed a similar proportion between C→U and U→C (File 
S2b) mutations, suggesting that several lineage defining SNPs correspond to non- C→U mutations. Therefore, although the 
C→U bias has likely blurred the distinction of some lineage defining mutations, the remaining non- C→U lineage defining 
mutations are still sufficient to detect such events [38].
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Fig. 3. SARS- CoV- 2 lineage proportion through time in different Brazilian states with codetection cases. Data were recovered from GISAID on 23 July 
2021, raw data can be accessed in Table S8. Upper triangles coloured with the lineage of major consensus genomes and lower triangles with minor 
consensus genomes lineages.

ConCLuSIonS
In line with other studies, we showed that SARS- CoV- 2 has a low intrahost variability overall. Our in- depth analysis revealed 
at least nine codetection events, which are corroborated by epidemiological data from cocirculating lineages in different 
Brazilian states. Codetection/coinfection events occurred at a lower rate in Brazil (0.61%) compared to Europe (1–4 %) 
[16, 17]. However, this is certainly a lower bound estimate due to the limitation of detecting coinfection events with the same 
viral lineage or with low- divergent viral lineages that dominated the first year of the pandemic. The large number of genomic 
sites carrying alternative nucleotides in codetection events may generate artificial hybrid consensus genomes, therefore a 
careful inspection of consensus sequences against sequencing read polymorphisms is warranted to generate robust consensus 
sequences. Considering the large case numbers of SARS- CoV- 2 infections worldwide and that coinfection are more likely 
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