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ABSTRACT

Peptides are extensively used to characterize func-
tional or (linear) structural aspects of receptor–
ligand interactions in biological systems, e.g. SH2,
SH3, PDZ peptide-recognition domains, the MHC
membrane receptors and enzymes such as kinases
and phosphatases. NNAlign is a method for the
identification of such linear motifs in biological se-
quences. The algorithm aligns the amino acid or
nucleotide sequences provided as training set, and
generates a model of the sequence motif detected
in the data. The webserver allows setting up cross-
validation experiments to estimate the performance
of the model, as well as evaluations on indepen-
dent data. Many features of the training sequences
can be encoded as input, and the network architec-
ture is highly customizable. The results returned by
the server include a graphical representation of the
motif identified by the method, performance values
and a downloadable model that can be applied to
scan protein sequences for occurrence of the mo-
tif. While its performance for the characterization of
peptide–MHC interactions is widely documented, we
extended NNAlign to be applicable to other receptor–
ligand systems as well. Version 2.0 supports align-
ments with insertions and deletions, encoding of re-
ceptor pseudo-sequences, and custom alphabets for
the training sequences. The server is available at
http://www.cbs.dtu.dk/services/NNAlign-2.0.

INTRODUCTION

Sequence motifs are conserved, information-rich patterns in
protein or nucleotide data. The specificity of sequence mo-
tifs governs a large number of signalling processes inside the
living cell, including the active sites of enzymes, the binding
preferences of membrane receptors (e.g. the MHC system)
and DNA-binding proteins (e.g. transcription factors), as
well as widespread modular peptide-binding domains like

the SH2 and SH3 domains. Several computational meth-
ods have been developed to capture the sequence motifs at
the base of these processes. The popular MEME suite (1)
hosts a collection of tools for sequence motif analysis, en-
abling the discovery of ungapped (MEME (2)) and gapped
(GLAM2 (3)) motifs, as well as the detection of motif occur-
rences in a database (FIMO (4)). Other approaches to motif
discovery include Gibbs sampling (5–7), Bayesian inference
(8) and PWM optimization (9).

NNAlign, based on artificial neural networks (ANNs),
was first developed in 2009 for the prediction of peptide–
MHC class II binding affinity (10,11). Compared to most
other approaches, ANNs can be trained on quantitative
target data, and are therefore ideally suited to construct
sequence-to-affinity models like the peptide–MHC system.
Another advantage of ANNs is their ability to capture
higher-order correlations, which can prove important to
model positional correlations in receptor–ligand interac-
tions. For these reasons, NNAlign has become the engine of
some of the most successful tools for the prediction of pep-
tide binding to MHC molecules, including NetMHC (12),
NetMHCpan (13), NetMHCII and NetMHCIIpan (14),
which have been shown to be the state-of-the-art by several
independent benchmarks (see, e.g. (15–17)). However, the
application of NNAlign is not limited to the MHC system,
and we have employed it for example to generate models of
protease cleavage (18).

Some of the recent improvements in NNAlign included
the introduction of insertions and deletions (indels) in the
sequence alignment, the encoding of the receptor pseudo-
sequence, and the possibility to customize the alphabet of
the training data. Indels remove the restriction of a bind-
ing core of fixed length, and in the context of the MHC
class I system has allowed training models on peptides of all
length with significantly improved performance (12,13). En-
coding a receptor pseudo-sequence, i.e. the residues of the
molecule in direct contact with the bound peptide, as input
to a model has enabled the creation of ‘pan-specific’ pre-
dictors, with the ability to infer the binding specificities of
uncharacterized receptors by similarity to known ones. This
has proven extremely important for example in expanding
the allele coverage of peptide–MHC class I and II affin-
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ity predictions (19,20). Finally, making the sequence alpha-
bet customizable opens up numerous new opportunities be-
yond peptide data described by the standard 20-letter amino
acids. They include the study of post-translation modifica-
tions (PTMs), as well as the identification of sequence mo-
tifs in DNA or RNA data sets. Published methods devel-
oped using NNAlign with these recent additions are listed in
Table 1. These tools are all state-of-the-art, and have been
generated in a fully automated manner using the flexibility
of the parameter space of the NNAlign method.

With the NNAlign server, we provide an open platform
that allows users to create their own models of receptor–
ligands interactions. The server takes as input a list of pep-
tide sequences with target quantitative values (which could
represent, for example, binding affinities, or a binary classi-
fication of positive and negative instances). The server will
then construct an ensemble of artificial neural networks that
aims to capture the binding motif underlying the sequence
data. The submission page of the server offers a wide range
of options, allowing the user to process the data in sev-
eral ways and to customize many parameters of the neu-
ral network architecture. It also enables the user to eval-
uate the predictive performance of the method, by auto-
matically creating data partitions and cross-validation set-
ups. The results page returned by the server reports perfor-
mance values of the cross-validation experiments, together
with graphical representations of the sequence motifs that
were identified in the data. It also allows downloading the
neural network model created by the user, which can then be
used again (through the web server) to generate predictions
on any other additional peptide sequences. In this document
we will describe the web interface, its output, and will pro-
vide some examples of usage.

WEB INTERFACE

Submission page

Training data. The essential input to the server is a file
consisting of two columns: a list of peptides in the first col-
umn, and numerical target values in the second. Target val-
ues may be the measured binding affinity of a peptide to a
receptor, an array spot intensity, or any other quantitative
measure associated to the biological sequences. The pro-
gram was designed with quantitative peptide data in mind
(i.e. a spectrum of target numerical values) but also accepts
binary data. In all cases it is important, for effective training
of the neural networks, to include both positive and nega-
tive instances in the training data; if for a specific problem
at hand only positive instances are available, one may for
example generate artificial negatives and assign them a tar-
get value of zero. The submission page includes examples of
training data, and a button to automatically upload sample
data.

Options and parameters. Several parameters can be spec-
ified to customize the models built by NNAlign. Basic op-
tions include a textual identifier for the run, and the width
of the alignment window. The latter can be specified as an
interval of values, in which case the server will suggest the
optimal motif length as part of the output. The architecture
of the network is highly customisable (e.g. the size of the

hidden layer, the number of initial random weight configu-
rations) and allows encoding multiple aspects of the input
data. An important feature of the server is the possibility to
automatically set up cross-validation experiments, with par-
titions generated by several alternative algorithms. Cross-
validation allows estimating the predictive performance of
the models generated on your data, before it is applied on
independent sequence sets. Important new features intro-
duced in version 2.0 include insertions and deletions (in-
dels) in the sequence alignment (implemented as described
in (12)), and the option to specify custom alphabets for
the input data (demonstrated further in this document as
a case study on DNA sequences). Note that when the train-
ing data are in an alphabet different from the standard 20-
letter amino acid code, Blosum substitution scores cannot
be applied to encode the sequence data and the represen-
tation is made using sparse encoding (18). If the training
examples are associated with multiple receptors of known
sequence, the user can also specify the receptor names as
a third column in the training file, and then upload the
receptor pseudo-sequences through the dedicated option.
This mode enables the generation of ‘pan-specific’ models
(21,22). A comprehensive description of the options, includ-
ing usage guidelines, can be accessed by clicking on the ‘In-
structions’ tab of the NNAlign submission page.

Model upload. When a job is completed, the resulting
model can be saved to local disk. Models can then be up-
loaded to the main NNAlign submission page by checking
‘Upload a model’ in the top drop-down window. Models
can be applied to generate predictions on external evalua-
tion data in peptide or Fasta format (see below).

Evaluation data. The model generated on the training data
can be optionally applied on an independent evaluation
data set. The evaluation set can be either a list of peptides,
or full protein sequences in Fasta file. Fasta submissions are
converted into peptides by digesting them into overlapping
peptides of length specified with the corresponding option.

Output page

The output page details the outcome of the neural network
training both in terms of identified sequence motif and in
terms of model performance. Predictive performance is esti-
mated in cross-validation on the training set, and displayed
in terms of root mean squared error (RMSE), Pearson’s
correlation coefficient (PCC) and Spearman’s rank corre-
lation (SRC). For a visual representation of the correlation
between target and predicted values, a scatterplot is auto-
matically generated and can be accessed through a link on
the results page. The binding motif defined by the sequence
alignment is visualized directly on the results page with a
sequence logo generated with the program Seq2Logo (23),
and is also available in the form of position specific scor-
ing matrices (PSSM). Copying and pasting the log-odds
matrix into the Seq2Logo submission form allows further
customization of the motif logo, including alternative color
codes and different types of logos. The model generated by
the server run can be downloaded and saved to disk. It con-
tains all the model parameters and network weights nec-
essary to run the program and generate predictions on new
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Table 1. Published prediction methods based on NNAlign

NNAlign method MHC class Indels Pseudo-sequence PCC AUC

NetMHC-3.4 a I –– –– 0.691 0.870
NetMHC-4.0 a I X –– 0.722 0.886
NetMHCpan-2.8 b I –– X 0.709 0.882
NetMHCpan-3.0 b I X X 0.732 0.893
NetMHCII-2.2 c II –– –– 0.664 0.838
NetMHCIIpan-3.0 c II –– X 0.735 0.871

Features implemented in a given method are marked with an X. Methods with indels allow for insertions and deletions in the sequence alignment; methods
without pseudo-sequence encoding are allele-specific, methods with pseudo-sequence encoding are pan-specific. Indels and receptor pseudo-sequence
encoding are only available in NNAlign version 2.0.
aPerformance values from (12).
bPerformance values from (13).
cPerformance values from (20). The best performing method within each class is highlighted in bold.

sequences. A link for bulk download at the bottom of the re-
sults page generates a compressed folder containing all the
results, including plots, sequence logos and alignment files.

EVALUATION AND EXAMPLES

Determining the binding specificity of HLA-DRB1*03:01

As an example application of the NNAlign server, we show
how one can effectively determine the binding specificity of
a HLA molecule with just a few minutes of work. We ex-
tracted a list of 2,505 binding IC50 affinity measurements
to HLA-DRB1*03:01 from the Immune Epitope Database
(IEDB) (24), rescaled between 0 and 1 using the relation-
ship 1-log(IC50)/log(50,000) (25). We upload these peptides
as training data, specify an expected peptide length for en-
coding of 15, and otherwise leave all other parameters to
default values. Within a couple of minutes the server re-
sponds with the output page, which contains all the de-
tails about the model being generated. The sequence logo
(Figure 1A) shows that the networks have identified dis-
tinct specificities at positions P1, P4 and P6, which cor-
respond to known anchor positions for many MHC class
II molecules (26). The performance measures estimated in
cross-validation are RMSE = 0.165, PCC = 0.721 and SRC
= 0.702. As part of the output, a scatterplot of the target
versus predicted values (Figure 1B) gives a visual interpre-
tation of the correlation between observations and predic-
tions. By saving the model to disk, we can subsequently re-
turn to the NNAlign submission page, and apply the model
to scan proteins or peptide data sets to identify novel poten-
tial HLA-DRB1*03:01 binding peptides.

Training a multi-receptor model of peptide–MHC binding
affinity

Next, we illustrate how the NNAlign method can be ap-
plied to train multi-receptor models. We generated a sam-
ple dataset containing binding data for multiple receptors
by extracting from the IEDB 1,500 peptide-MHC affin-
ity measurements for 8–11mer peptides associated to three
HLA class I molecules (500 data points each for HLA-
A*01:01, HLA-B*07:02, HLA-B*08:01). In order to train
a multi-receptor model, the input data must consist of three
columns: 1) the peptide sequence; 2) the target value; 3)
the name of the receptor associated to the peptide-target

pair. The ‘Load receptor pseudo-sequence’ option provides
the method with the aligned pseudo-sequences that charac-
terize the three MHC receptors; in this case, we used the
string of 34 polymorphic amino acids of the MHC directly
in contact with the peptide, as previously described for the
NetMHCpan method (21). We specified a motif length of 9
amino acids, and allowed up to two deletions and one in-
sertion. All other options were left at default value. As a
comparison, we generated a model with identical parame-
ters, but omitting the pseudo-sequence encoding.

The NNAlign model trained without the receptor se-
quence encoding returned a cross-validated performance of
PCC = 0.460 (SRC = 0.421), and learned a motif that is a
mixture of the binding preferences of the three molecules
(Figure 2A). In contrast, the multi-receptor model (PCC
= 0.739, SRC = 0.604) could successfully map the train-
ing data points to their respective pseudo-sequences, and
learned binding motifs specific to the three different recep-
tors (Figure 2B). Note that sequence logos are not auto-
matically generated by the server in multi-receptor mode,
but can be derived by submitting a large evaluation set of
natural random peptides and selecting the top 1% scor-
ing sequences for each receptor. On a larger scale, this
multi-receptor approach was used to develop methods like
NetMHCpan and NetMHCIIpan (see Table 1), where sev-
eral hundred receptors were encoded into a single neural
networks model.

Changing the alphabet: transcription factor–DNA binding
motifs

To illustrate how NNAlign can readily be applied to custom
alphabets other than the standard 20 amino acids one-letter
codes, we applied the method on a set of DNA sequences
to characterize transcription factor (TF) binding sites. The
training data for the DREAM5 TF–DNA Motif Recogni-
tion Challenge (27) consists of protein binding microarray
(PBM) probe intensity signals for 66 murine TFs, using two
different array types with ∼40 000 spots per array. Probe in-
tensities were provided only for 33 TFs from one array type
and the remaining 33 TFs from the other array type. The
goal of the competition was to predict the unknown probe
intensities for all 66 TFs.

We generated NNAlign models on the training data of the
challenge, specifying the custom alphabet ‘ACGT’, setting
a motif length of 8 nucleotides, log-rescaling of the data



Nucleic Acids Research, 2017, Vol. 45, Web Server issue W347

Figure 1. (A) Sequence motif identified by NNAlign for the binding specificity of HLA-DRB1*03:01 showing distinct amino acid preferences at the anchor
positions P1, P4 and P6. (B) Correlation between the target and predicted log-affinities of the training data, calculated in cross-validation; in this example
PCC = 0.721 and SRC = 0.702. Both plots are automatically generated by the NNAlign server and displayed as part of the output.

Figure 2. Sequence motifs identified in a mixture of HLA class I binding data. (A) On unlabeled data, NNAlign generates a motif that is an average of the
three specificities contained in the training data. (B) If training data points are labelled with the pseudo-sequence of their receptor, the NNAlign model
can learn the different specificities contained in the data. Receptor pseudo-sequences are indicated under their respective HLA receptor name.

and using two hidden layer architectures composed of ei-
ther 15 or 50 neurons. The average PCC over the 66 TFs
for the prediction of the blind set of probe intensity was of
0.612. The best performing method in the DREAM5 chal-
lenge obtained a PCC of 0.696. Although the performance
of NNAlign in this situation is lower than that obtained
by state-of-the art algorithms specifically developed for the
task of TF identification, it is important to keep in mind that
this performance was achieved with very limited effort and
optimization of model parameters. The motifs identified by
NNAlign are in general agreement with published TF-DNA
binding preferences, for example those deposited in the CIS-
BP database (28). In Figure 3 are shown the sequence logos
generated by NNAlign for three transcription factors in the
challenge: Tfec (TF26), Foxo6 (TF3) and Mybl2 (TF45).

DISCUSSION

Modern high-throughput methods such as DNA and pep-
tide microarrays, ChIPseq, and tandem mass-spectrometry
have made it possible to study receptor–ligand interactions
with parallel measurements of thousands to hundreds of
thousands of probes in a single experiment. Many com-
putational methods have been developed to analyse this
kind of data for specific biological systems, as exemplified
by the high number of participants to competitions such
as the DREAM5 TF–DNA Motif Recognition Challenge
(27) and the Machine Learning competition in Immunology
(MLI) for peptide–MHC binding predictions (29). Meth-
ods than can be applied to different kinds of biological se-
quences, and in particular than can take advantage of the
quantitative nature of certain assays, are much more rare.
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Figure 3. Sequence motifs identified by NNAlign for the three transcription factors Tfec (A), Foxo6 (B) and Mybl2 (C), derived from the PBM data of the
DREAM5 TF–DNA Motif Recognition Challenge.

NNAlign, a motif discovery method based on neural net-
works, has a well-documented and robust performance for
peptide–MHC binding prediction. Several of the recent im-
provements to the method, including the ability to gener-
ated gapped sequence alignments and the extension of the
input sequence format to any custom alphabet, have greatly
increased the generality of the method and its applicabil-
ity to different biological systems. With the NNAlign server,
we provide an online platform that allows users to create
their own models of receptor–ligand interactions, and ap-
ply these models to detect motif occurrences in proteins or
genes.

Sequence logos (30) are a compact, intuitive representa-
tion of a sequence motif and have been widely used to depict
the nucleotide or amino acid preference of a receptor speci-
ficity. However, higher information content and a ‘sharp’
motif are not necessarily equivalent to a better represen-
tation of the preference of a receptor; it has been shown
that the best predictors in many cases have more degen-
erate motifs with lower information content compared to
methods that focus too much on the consensus sequence
(27). This is especially true for a method like NNAlign: arti-
ficial neural networks can learn non-linearity in the data,
and a linear representation such as a sequence logo will
only be an approximation of the motif(s) learned by the
networks. Although tremendously useful and intuitive, se-
quence logos should always be considered together with the
performance values of the model that produced them. In
this sense, NNAlign is unique in that it provides both a vi-
sual representation of the motif and an estimate of predicted
performance of the model, as well as a usable model that can
be applied to discover occurrences of the motif in biological
sequences.

We have here illustrated how the NNAlign method can
be readily applied to effectively and accurately charac-
terize motifs in different types of biological protein and
DNA/RNA ligand data sets. Thanks to its simple interface,
the flexibility to handle a large variety of data set types, and
its documented robust performance, we believe NNAlign
could become an important tool to guide the analysis and
interpretation of large-scale peptide data sets by users with
limited bioinformatics expertise.
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