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Abstract: In the present work, innovative composite biomaterials possessing bactericidal properties
and based on the hexahistidine-tagged organophosphorus hydrolase (His6-OPH) entrapped in
the poly(vinyl alcohol) cryogel (PVA-CG)/bacterial cellulose (BC) were developed. His6-OPH
possesses lactonase activity, with a number of N-acyl homoserine lactones being the inducers of
Gram-negative bacterial resistance. The enzyme can also be combined with various antimicrobial
agents (antibiotics and antimicrobial peptides) to improve the efficiency of their action. In this study,
such an effect was shown for composite biomaterials when His6-OPH was entrapped in PVA-CG/BC
together with β-lactam antibiotic meropenem or antimicrobial peptides temporin A and indolicidin.
The residual catalytic activity of immobilized His6-OPH was 60% or more in all the composite samples.
In addition, the presence of BC filler in the PVA-CG composite resulted in a considerable increase
in the mechanical strength and heat endurance of the polymeric carrier compared to the BC-free
cryogel matrix. Such enzyme-containing composites could be interesting in the biomedical field to
help overcome the problem of antibiotic resistance of pathogenic microorganisms.

Keywords: immobilized hexahistidine-tagged organophosphorus hydrolase; poly(vinyl alcohol)
cryogel; bacterial cellulose; β-lactam antibiotic; antimicrobial peptides; bactericidal activity

1. Introduction

It is now well recognized that the problem of antibiotic resistance of bacteria is of great
significance [1]. Such resistance can progress by the mechanism of “quorum sensing” (QS), which is
the ability of bacterial cells to interact with each other within the same population and to initiate a
shift in the biochemical status of cells that leads to resistance. Both Gram-positive and Gram-negative
(G(-)) bacteria use different signaling molecules as QS inducers. The most pathogenic G(-) bacteria are
known to prefer N-acyl homoserine lactones (AHLs) as such signaling molecules and certain AHLs
are typical for the bacterial species [2]. An efficient approach to overcome G(-) bacterial resistance is
the decomposition of AHLs via enzymatic action [3]. Therefore, lactonases that directly break down
the ester bond in the lactone ring of most AHLs are of special interest [4]. Hexahistidine-tagged
organophosphorus hydrolase (His6-OPH) has been found to be one such enzyme. It has a wide
specificity with a number of AHLs in addition to high catalytic activity toward toxic organophosphorus
compounds [5,6]. His6-OPH in noncovalent complexes with various antimicrobial agents (antibiotic
and, particularly, antimicrobial peptides) has been shown to improve the activity of each other [7–9].
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As a result, the enzyme has a wider substrate spectrum toward different AHLs in such combinations,
and its stability is increased [7–9].

From the practical standpoint, thorough immobilization of His6-OPH has its own merits [10,11] as
the final catalytically active biomaterials can be more convenient for biotechnological and biomedical
applications [12,13]. Therefore, an appropriate carrier is also important.

For this purpose, the so-called poly(vinyl alcohol) cryogel (PVA-CG) [14,15] was chosen in this work
as the carrier’s matrix for His6-OPH immobilization. Such hydrophilic macroporous gels are known
to be formed as a result of cryogenic processing of concentrated PVA solutions via their consecutive
freezing, exposing in a frozen state, and thawing [16]. Nontoxicity and biocompatibility, in combination
with excellent mechanical, diffusion, and thermophysical properties, make PVA-CG attractive matrices
for use in medicine, biotechnology, and bioengineering [13,17–19]. The physicochemical properties
of these cryogels can be controlled by varying the concentration of the initial polymer solution,
changing the regime of low-temperature exposure and thawing, and introducing various soluble and
insoluble modifiers. In particular, nontoxic cellulose-based disperse fillers improve the gel strength
considerably [20] and are of interest for the development of biomedical materials. Among such insoluble
modifiers are micro- and nanofibers of bacterial cellulose (BC) [21,22]. For instance, the mechanical
properties of PVA-CG/BC composites, which were studied as potential artificial cartilages, turned out
to be very similar to the rheological characteristics of native articular cartilages [18,23].

BC is a fibrous biopolymer obtained from the culture broth of various bacterial strains, among
which acetic acid bacteria are the most productive microorganisms capable of BC biosynthesis in
various nutrient media [21]. In contrast to plant cellulose, BC does not contain hemicellulose and
lignin admixtures and therefore does not require separation and purification from them. BC has high
water capacity and is a biodegradable, biocompatible, and nontoxic biopolymer with unique physical
and mechanical properties, such as high mechanical strength, elasticity, permeability for liquids and
gases, etc. The structure and properties of BC depend on cultivation conditions and can be modified
by aerating and mixing of the nutrient medium and by changing its composition, pH, temperature,
etc. [24]. When BC is incorporated in various polymeric matrices, they impart new set of properties
to the composites, thus allowing such innovative materials to be applied in various areas [25,26],
including pharmaceutics and biomedicine [22]. It has previously been shown that BC can also be
used to immobilize various enzymes [27–30]. However, studies on the effect of BC production and
cultivation conditions on the properties of immobilized enzymes are rather limited [27].

The driving force of the current work was to combine the properties of the above-described three
components—namely, the catalytic abilities of His6-OPH hydrolyzing AHLs, macroporosity of PVA-CG
matrix, and enzyme-adsorbing properties of BC—into new bioactive composite materials. In other
words, the aim of the study was to form an immobilized biocatalyst possessing good operational
characteristics and exhibiting certain antimicrobial and catalytic properties. Yet another task was to
evaluate the bactericidal characteristics of similar composites prepared with additives of β-lactam
antibiotic or antimicrobial peptides, both forming noncovalent complexes with His6-OPH [7–9].
The development of such composite biomaterials with bactericidal properties can be considered
an important task in view of the rapid increase in the number of antibiotic-resistant pathogenic
microorganisms and a significant decrease in the effectiveness of action of the known and commonly
used antibiotics.

2. Results

2.1. Preparation of Composite Biomaterials

BC samples (Figure 1a) possessing different characteristics were prepared by cultivation of
Komagataeibacter xylinum B-12429 cells with fructose, glycerol, Jerusalem artichoke hydrolyzate, or beet
molasses as the main carbon source (Table 1). BC samples produced with beet molasses or Jerusalem
artichoke hydrolyzate had a greater thickness, higher tensile strength, and lower porosity. The carbon
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sources insignificantly influenced the degree of BC crystallinity. These results are consistent with
the data of other researchers [31], who pointed out that BC fibers produced with the hydrolyzate
of soybean whey had a 2-fold greater tensile strength compared to BC fibers formed in a standard
glucose-containing medium.
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Figure 1. The appearance of a bacterial cellulose (BC) mat biosynthesized by immobilized K. xylinum
cells in fructose-containing medium (a) before and (b) after cutting into pieces, which were further used
to immobilize the enzyme. (c) The general view of poly(vinyl alcohol) cryogel (PVA-CG)/BC composites.
SEM images of (d) BC, (e) PVA-CG, and (f) PVA-CG/BC/hexahistidine-tagged organophosphorus
hydrolase (His6-OPH) composites. Individual nanofibers of BC, marked by red triangles, are seen
within the initial material and its composite.

Table 1. Characteristics of BC samples synthesized by K. xylinum B-12429 cells in the medium with
different main carbon sources.

Characteristic
Main Carbon Source

Glycerol Fructose Jerusalem Artichoke Hydrolyzate Beet Molasses

Humidity (%) 98.0 ± 0.2 98.2 ± 0.2 97.3 ± 0.1 97.2 ± 0.1
Thickness (µm) 45 ± 3 40 ± 5 70 ± 2 75 ± 3

Tensile strength (MPa) 50 ± 10 45 ± 10 80 ± 15 85 ± 15
Porosity (%) 83 ± 2 85 ± 2 78 ± 2 75 ± 2

Crystallinity (%) 76 ± 1 77 ± 1 79 ± 1 77 ± 1

Both PVA-CG and PVA-CG/BC composite had rubber-like nonfilled macroporous structures
(Figure 1c,f), whose physicomechanical and thermal properties mainly depended on the initial PVA
concentration and on the entrapped filler amount in the case of composites (Table 2).

A strengthening effect caused by the BC entrapment in the bulk of PVA-CG was evident. A 1.1 wt %
of such filler increased the modulus of elasticity of the material by 4-fold, and the fusion temperature
grew by ~12 ◦C compared to the nonfilled PVA-CG. Such properties of immobilized enzyme carrier
are promising due to its possible application in biotechnological processes under real conditions, e.g.,
in reactors with intense stirring and at elevated temperatures.

The sample prepared using BC in a medium containing fructose had the highest activity (Table 3).
Therefore, this BC was further used in the PVA-CG/BC/His6-OPH composite with or without the
addition of antimicrobial agents.
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Table 2. Influence of BC content on compression modulus of elasticity (Ec) and on fusion temperature
(Tf) of PVA-CG and PVA-CG/BC composites.

BC Content (wt %) * Ec (kPa) Tf (◦C)

0 5.39 ± 0.24 72.1 ± 0.4
0.17 7.94 ± 1.7 73.2 ± 0.2
0.34 13.3 ± 1.4 73.5 ± 0.5
0.52 22.2 ± 2.6 74.7 ± 0.2
0.69 21.1 ± 1.0 76.3 ± 0.3
1.10 21.6 ± 0.6 84.0 ± 0.5

* Calculated by the dry matter amount.

Table 3. Activity of His6-OPH immobilized into different BC samples.

Carbon Source for BC Specific Activity (U·g−1 of dry BC) Residual Activity (%)

Fructose 536 ± 16 65 ± 2
Glycerol 487 ± 24 59 ± 3

Jerusalem artichoke hydrolyzate 437 ± 15 53 ± 2
Beet molasses 404 ± 8 49 ± 1

Similar values (68%−73%) of initial activity were earlier observed after covalent immobilization of
OPH on chemically modified plant cellulose microfibers [32]. However, in the case of bacterial cellulose,
the chemical modification of which is extremely difficult due to the small pore size and low availability
of polymer for modification by chemical agents, the sorption variant of enzyme immobilization is the
most appropriate.

2.2. Catalytic Activity of Composite Biomaterials

The enzyme activity of PVA-CG/His6-OPH and PVA-CG/BC/His6-OPH composites with or without
different antimicrobial agents (β-lactam antibiotic meropenem or antimicrobial peptides temporin A
and indolicidin) was determined (Figure 2).
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Figure 2. Enzymatic activity of composite biomaterials PVA-CG/His6-OPH (samples 2,6,10, and 14)
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prepared without His6-OPH were used as controls and had no measurable hydrolase activity. Initial
activity of free His6-OPH was accepted as 100%.
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Both in the presence and in the absence of antimicrobial agents, the residual enzymatic activity of
PVA-CG/His6-OPH (samples 2, 6, 10, and 14; Figure 2) was somewhat higher at zero time compared
with the PVA-CG/BC/His6-OPH composite (samples 4, 8, 12, and 16; Figure 2). However, their activity
became equal after 24 h in the presence of antimicrobial agents. The PVA-CG/BC/His6-OPH/indolicidin
composite had the highest enzymatic activity among biomaterials with antimicrobial compounds
(sample 16; Figure 2).

2.3. Antibacterial Activity of Composite Biomaterials

The antibacterial activity of composite biomaterials was evaluated with Pseudomonas sp. as the
G(-) cells (Figure 3).
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Figure 3. Concentration of Pseudomonas sp. in a suspension after 24 h exposure with PVA-CG (sample
1), PVA-CG/His6-OPH (samples 2,6,10, and 14), PVA-CG/BC (sample 3), or PVA-CG/BC/His6-OPH
(samples 4,8,12, and 16) in the absence (samples 1,2,3, and 4) or in the presence of meropenem (samples
6 and 8), temporin A (samples 10 and 12), or indolicidin (samples 14 and 16). The dashed line indicates
the cell concentration at zero time. Concentration of cells in the control without any additions after
24 h was assumed as 100%. Cultures treated by composite samples without His6-OPH but with
antimicrobial agents for 24 h had almost the same bacterial concentration as the initial level.

The constant concentration of bacterial cells during exposure may be interpreted as some
bacteriostatic effect, while the decrease in cell concentration is likely indicative of bactericide
mode of action. From this standpoint, eight samples—namely, PVA-CG/His6-OPH (sample 2),
PVA-CG/meropenem (sample 5), PVA-CG/BC/meropenem (sample 7), PVA-CG/temporin A (sample 9),
PVA-CG/BC/temporin A (sample 11), PVA-CG/indolicidin (sample 13), PVA-CG/BC/indolicidin (sample
15), and PVA-CG/BC/His6-OPH/indolicidin (sample 16)—were certainly bacteriostatic. Five samples,
namely—PVA-CG/His6-OPH/meropenem (sample 6), PVA-CG/BC/His6-OPH/meropenem (sample
8), PVA-CG/His6-OPH/temporin A (sample 10), PVA-CG/BC/His6-OPH/temporin A (sample 12),
and PVA-CG/His6-OPH/indolicidin (sample 14)—had bactericide effect and were almost equal and
undistinguishable under these experimental conditions.

3. Discussion

Samples of composite materials based on BC, PVA-CG, and His6-OPH in the presence and in the
absence of various antimicrobial agents were prepared in this study, and their biocatalytic as well as
antibacterial properties were evaluated.
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The immobilization of His6-OPH on various BC samples showed that an increase in the porosity
of BC fibers produced using fructose led to an increase in the activity of the immobilized enzyme.
Obviously, widening the pores and/or increasing the surface area allowed the easiest enzyme penetration
into the carrier. Similar results were obtained when the laccase was immobilized on BC of varying
physicochemical and mechanical characteristics [27]. All of the BC types could be good carriers
for laccase; however, the highest activity of immobilized enzyme was estimated for BCs with high
porosity [27]. Most sorbents, including BC, can both adsorb and absorb biomolecules simultaneously,
and it is almost impossible to distinguish between them [33]. Nevertheless, the strength of binding
within the carrier matrix could be stronger as there is a physical barrier for absorbate elution. Such a
barrier can be additionally created, and PVA-CG is one of the best polymers for that purpose [14].

Previously, the highest activity of immobilized His6-OPH was obtained in the case of wheat straw
compared to other multiple cellulose-containing carriers [33]. The structure of the outer envelope of
such a carrier is formed by long fibers of ca. 10–20 µm diameter, while the inner hollow is pierced by
thin-walled channels up to 10–20 µm wide [34]. Synthetic PVA-CGs used in the work had the same
internal structures [14,15]. Therefore, biomaterials based on PVA-CGs were expected to mimic the
natural ones. The biggest differences between natural and (semi)synthetic carriers are the controllable
procedures of obtaining them and variable characteristics. Moreover, strengthening these PVA-CGs
by BCs with their own high sorption capacity would result in developing a promising carrier for
His6-OPH immobilization, and this is quite intriguing.

These expectations were fulfilled, and more than 60% of His6-OPH was successfully entrapped in
the PVA-CG and PVA-CG/BC composites. Interestingly, the introduction of BC into the macroporous
PVA-CG matrix influenced the enzyme immobilization efficiency (Figure 2). However, at the same
time, comparison of PVA-CG/BC/His6-OPH and BC/His6-OPH showed identical results, indicating
that the presence of PVA-CG itself had little or no effect on the sorption immobilization of His6-OPH
within BC. It seems that modification of the internal structure of PVA-CG macropores by BC (Figure 1f)
is more significant than previously assumed. This could be an interesting topic for further research.

Based on the catalytic data alone, one can conclude that the PVA-CG/BC/His6-OPH/indolicidin
composite is the best choice (Figure 2). Actually, the enzyme activity was already aligned between
the different composites at 24 h, and based on antibacterial activity measurements, there was a
strong negative influence of BC (Figure 3) in spite of the significantly improved antibacterial activity
of His6-OPH/indolicidin [8]. Indolicidin has three positively charged amino acids (arginines and
lysine) and can electrostatically interact not only with enzyme but also with BC. Unexpectedly,
its bioavailability could be decreased in this way, and this is something that should be taken into
account in future research.

Another interesting result of this work is that most samples that did not contain His6-OPH
could not lead to the death of bacterial cells and only had a bacteriostatic effect (Figure 3), whereas
samples showed a significant bactericidal effect in the presence of His6-OPH. This enzyme is able to
inhibit the QS of bacterial populations and thus effectively improve the action of antimicrobial agents.
The combination of multipurpose effectors in a single composite biomaterial could be a novel trend to
fight complicated pathological conditions.

4. Materials and Methods

4.1. Materials

The following substances and preparations were used as received: PVA with a molecular weight
of 86 kDa and a degree of deacylation of 100% (Acros Organics, Pittsburgh, PA, USA), indolicidin and
temporin A (both from AnaSpec, Fremont, CA, USA), and N-(3-oxooctanoyl)-D,L-homoserine lactone
(Sigma-Aldrich, Darmstadt, Germany). Deionized water was used to prepare all aqueous solutions.

Recombinant Escherichia coli SG13009[pREP4] cells were used to produce His6-OPH. The enzyme
was isolated and purified using Ni-NTA agarose (Sigma-Aldrich, Darmstadt, Germany) as published
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elsewhere [35]. The purified His6-OPH was characterized as described earlier [36] in protein
concentration determined by Bradford assay with Coomassie Brilliant Blue G-250 (Sigma-Aldrich,
Darmstadt, Germany). The protein purity was confirmed by sodium dodecyl sulfate polyacrylamide
gel (12%) electrophoresis using Mini-PROTEAN II cell (Bio-Rad, Hercules, CA, USA) followed by
Coomassie Brilliant Blue R-250 (Sigma-Aldrich, Darmstadt, Germany) staining.

The enzymatic activity was measured spectrophotometrically at 405 nm with an Agilent 8453
UV–visible spectroscopy system (Agilent Technology, Waldbronn, Germany) equipped with a
thermostated analytical cuvette and using 10 mM paraoxon (Sigma-Aldrich, Darmstadt, Germany)
as a substrate. The reaction was realized in a 100 mM Na-carbonate buffer (pH 10.5) with His6-OPH
concentration in a cuvette of ca. 7 × 10−9 M. One unit of enzyme activity (U) was defined as the
quantity of the enzyme necessary to hydrolyze 1 µmol of paraoxon per min at 25 ◦C. The purity of
His6-OPH preparation obtained (MW ≈ 37 kDa) was ca. 98%.

BC was produced and purified in accordance with the procedure described earlier [37].
To accumulate the bacterial biomass of Komagataeibacter xylinum B-12429 and for its immobilization in
PVA-CG, Hestrin–Schramm (HS) nutrient medium (pH 6.5) with a variable main carbon source was
used as follows (in g·L−1): carbon source, 20; yeast extract, 5; tryptone, 5; K2HPO4, 2.7; MgSO4, 0.5;
citric acid, 1.15. The process was carried out at 28 ± 1 ◦C, 180 rpm for 19 ± 1 h. Harvested bacterial
biomass was immobilized within PVA-CG using a patented method [38]; the cell concentration in the
resultant immobilized biocatalyst was 30 wt %. Fructose, glycerol, Jerusalem artichoke hydrolyzate,
or beet molasses were used as the main carbon sources. Jerusalem artichoke was hydrolyzed for
12 h at 50 ◦C and natural pH of the raw materials with constant mixing (200 rpm). Commercial
enzymes—namely, inulinases of Aspergillus niger (Sigma-Aldrich, city, Germany), exoinulinases of
Penicillium verruculosum, and β-glucosidase (Novozyme, city, Denmark)—were introduced in equal
mass ratio into the processed raw material to a final concentration of 6 mg protein per 1 g of dry
substrate. Next, the biosynthesis of BC in the media with different carbon sources was carried out
under static conditions in flasks or a plastic container for 6 days at 28 ◦C. After that, BC fibers were
washed from the culture broth with a 1 M KOH for 8 h and then with distilled water to neutral pH
values. Next, they were dried at room temperature until a constant weight. The characteristics of the
BC samples (Table 1) were evaluated according to previously described methods [37].

Complexes of His6-OPH with different antimicrobial agents were prepared as described
previously [7] with minor modifications. In brief, antimicrobial peptides at a concentration of
0.13 g·L−1 (i.e., 68.3 µM indolicidin and 96.9 µM temporin A) or meropenem at a concentration of
1 g·L−1 (5.2 mM) in a 50 mM K-phosphate buffer (pH 7.5) containing 150 mM NaCl were mixed
with 2 g·L−1 His6-OPH (28 µM) in the same buffer at 1:1 volume ratio and exposed for 30 min at
room temperature.

4.2. Preparation of Immobilized Biocatalysts

4.2.1. His6-OPH Immobilization via Absorption onto BC

To immobilize His6-OPH on different BC fibers, a diluted solution of purified enzyme with an
activity of 300 U·mL−1 was used. BC samples were cut into 1 cm × 1 cm (4 ± 0.03 mg) pieces, and an
enzyme solution (50 µL) was loaded on them (Figure 1) and exposed for 6 h at +8 ◦C. The weight of BC
samples after His6-OPH application was 15 ± 1 mg (average of 5 measurements). Thus, the volume of
enzyme solution absorbed by the BC samples was ~11 µL, which is equal to the immobilization of
825 U per 1 g of dry BC. After enzyme immobilization, BCs were washed for 10 min with a 100 mM
Na-carbonate buffer (pH 10.5), and the activity of the immobilized enzymes was measured.

4.2.2. His6-OPH Immobilization via Entrapment in the PVA-CG/BC Composite

BC was crushed in a mechanical mill to particles of ca. 2 mm × 2 mm and then suspended at
0.4 wt % in a 120 g·L−1 aqueous PVA solution. His6-OPH or its complex with antimicrobial agents was
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added to the resulting suspension under gentle stirring. The mixture was poured in portions of 0.9 g in
plastic moulds with an inner diameter of 10 mm and a height of 5 mm. Cryotropic processing was
performed by freezing at −20 ◦C for 12 h followed by defrosting of the samples at a heating rate of
0.03 ◦C/min with the microprocessor of an FP 45 HP programmed cryostat (Julabo, Seelbach, Germany).
The prepared cryogels were exposed in a 100 mM Na-carbonate buffer (pH 10.5) for 24 h, and their
residual enzymatic activity was determined.

4.3. Measurement of Enzyme Activity Toward AHLs

To determine the AHL-degrading activity of composites containing His6-OPH, a stock solution of
1 mM N-(3-oxooctanoyl)-D,L-homoserine lactone (C8-HSL) (Sigma-Aldrich, Darmstadt, Germany) in
DMSO was incubated with samples at pH 7.5 and 25 ◦C for 6 h. The reactions were analyzed by a
previously described method [7].

The data are presented as means of at least three independent experiments ± standard deviation
(± SD). Statistical analysis was realized using SigmaPlot (version 12.5, Systat Software Inc., San Jose,
CA, USA).

4.4. Measurement of Antibacterial Activity

Antimicrobial activities of composite biomaterials were investigated with Pseudomonas sp. 78G
as the model G(-) bacteria. Cells were grown in a Luria–Bertani broth (10 g·L−1 tryptone, 5 g·L−1

yeast extract, 10 g·L−1 NaCl) at 28 ◦C using a shaking incubator with 180 rpm for 8 h. Suspension
of Pseudomonas sp. at a concentration of 106 cells·mL−1 was incubated with 100 g·L−1 composite
biomaterials at 37 ◦C in a shaking incubator with 180 rpm for 24 h. Tubes containing bacterial cells or
media without material samples were used as controls. To evaluate the residual concentration of viable
cells, the optical density of the samples was determined at 560 nm using the Agilent 8453 UV–visible
spectroscopy system (Agilent Technology, Waldbronn, Germany).

4.5. Characterization of PVA-CG/BC Composites

To investigate mechanical characteristics, the composite biomaterials were formed in dismountable
cylindrical duralumin containers with a 15 mm internal diameter and a 10 mm height. Compression
Young’s moduli (Ec) were determined with the TA-Plus automatic texture analyzer (Lloyd Instruments
Ltd., UK) from the linear region of the stress–strain curve at an uniaxial deformation rate of 0.3 mm·min−1.
The measurements were performed up to a 30% deformation. Fusion temperature (Tf) of the composites
was measured as described earlier [20]. For this, a tightly sealed polyethylene test tube containing
the material, with a metal ball located in the lower part of its column, was placed upside down into
a water bath equipped with a stirrer. The temperature was elevated at a rate of 0.4 ± 0.1 ◦C·min−1.
The temperature at which the ball passed through the layer of the fusing gel and fell onto the tube
stopper was considered as the fusion temperature.

The elasticity modulus and fusion temperature of the composites were measured for three parallel
samples, while the samples were prepared in three to five independent experiments. The obtained
results were averaged.

To make SEM images, samples of BC, PVA-CG, and PVA-CG/BC/His6-OPH composites were
freeze-dried with FreeZone 1 Liter Benchtop Freeze Dry System (Labconco, Kansas City, MO, USA),
sectioned, sputtered by gold (by necessity), and studied with Supra 40-30-87 microscope (Carl Zeiss,
Oberkochen, Germany) at various magnifications.

5. Conclusions

Various composite biomaterials based on PVA-CG, BC, and His6-OPH were produced in the
presence of antimicrobial agents via a simple technique. Both PVA-CG and BC appeared to be important
for the final characteristics of the biomaterials, with improved physicomechanical and thermal
properties. From the catalytic and bactericidal efficiency standpoints, the most promising biomaterials
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seemed to be those combining His6-OPH with meropenem or temporin A. Such biomaterials can
be interesting for biomedical applications as well as in other areas, such as covering, insulating,
and making protective materials, including for biological usage.
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