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Abstract

Background: Mounting evidence suggests several diseases and biological processes
target transcription termination to misregulate gene expression. Disruption of
transcription termination leads to readthrough transcription past the 3′ end of genes,
which can result in novel transcripts, changes in epigenetic states and altered 3D
genome structure.

Results: We developed Automatic Readthrough Transcription Detection (ARTDeco), a
tool to detect and analyze multiple features of readthrough transcription from RNA-
seq and other next-generation sequencing (NGS) assays that profile transcriptional
activity. ARTDeco robustly quantifies the global severity of readthrough phenotypes,
and reliably identifies individual genes that fail to terminate (readthrough genes), are
aberrantly transcribed due to upstream termination failure (read-in genes), and novel
transcripts created as a result of readthrough (downstream of gene or DoG
transcripts). We used ARTDeco to characterize readthrough transcription observed
during influenza A virus (IAV) infection, validating its specificity and sensitivity by
comparing its performance in samples infected with a mutant virus that fails to block
transcription termination. We verify ARTDeco’s ability to detect readthrough as well
as identify read-in genes from different experimental assays across multiple
experimental systems with known defects in transcriptional termination, and show
how these results can be leveraged to improve the interpretation of gene expression
and downstream analysis. Applying ARTDeco to a gene expression data set from IAV-
infected monocytes from different donors, we find strong evidence that read-in
gene-associated expression quantitative trait loci (eQTLs) likely regulate genes
upstream of read-in genes. This indicates that taking readthrough transcription into
account is important for the interpretation of eQTLs in systems where transcription
termination is blocked.

Conclusions: ARTDeco aids researchers investigating readthrough transcription in a
variety of systems and contexts.

Keywords: Readthrough transcription, Transcription termination, Transcriptomics,
Gene expression, Next-generation sequencing analysis
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Background
Transcription termination is a fundamental step in gene expression regulation. For

most genes, transcription termination is triggered when RNA polymerase II (RNAPII)

transcribes a polyadenylation site (PAS) that activates the cleavage and polyadenylation

(CPA) complex associated with the C-terminal domain (CTD) of RNAPII [13]. There

are two popular models for how CPA recruitment induces transcription termination. In

the allosteric model, recruitment of CPA is accompanied by a conformational change

in elongating RNAPII, causing dissociation from the DNA and release of the nascent

pre-mRNA [36]. In the torpedo model, polyA-dependent cleavage of pre-mRNA by

CPA leaves an uncapped nascent RNA emanating from elongating RNAPII. The exo-

nuclease XRN2 degrades the unprotected nascent transcript until it catches up to tran-

scribing RNAPII, causing its release from the DNA [12, 34]. Alternative transcription

termination mechanisms have been described for histone genes, snRNAs, and tran-

scripts generated by RNAPI and RNAPIII [11, 21, 25].

Recent studies have demonstrated that cellular stress can disrupt normal transcrip-

tion termination, leading to aberrant transcription of intergenic regions downstream of

canonical termination sites (termed readthrough transcription or downstream of gene

[DoG] transcription) through an unknown mechanism (pictured in Fig. 1a). These

stresses include heat shock, osmotic stress, hypoxia, influenza A virus (IAV) infection,

herpes simplex virus 1 (HSV-1) infection, senescence, and cancer [3, 4, 6, 9, 10, 18, 26,

31, 32]. In addition to exerting cellular stress, IAV expresses the viral non-structural

protein 1 (NS1), which by itself can induce readthrough transcription, presumably by

inactivating the poly(A) signal-recognition molecule cleavage and polyadenylation spe-

cificity factor (CPSF) 30 [19]. This causes inhibition of CPA activity at poly(A) signal-

dependent genes and leads to widespread readthrough transcription [3, 9, 19].

Analyzing gene expression data from samples exhibiting evidence for readthrough

transcription poses several challenges: without proper termination, both splicing and

polyadenylation of the pre-mRNA may be impaired [37]. Size-selected RNA-sequencing

(North-seq) experiments indicate that readthrough/DoG RNAs are long (> 13.5 kb) and

not exported from the nucleus [9]. Similarly, HSV-1 infection leads to decreased signal

for readthrough transcripts in cytoplasmic RNA relative to both total and nuclear RNA

[10]. Ribosome profiling in HSV-1-infected cells indicates that readthrough RNAs are

not bound by ribosomes and thus not translated [26]. The observation that readthrough

transcription impedes protein expression is important because RNA profiling methods

are often used as proxies for gene expression in biomedical research. RNA-seq or

microarray profiling in systems with readthrough transcription are therefore likely to

provide incorrect estimates of protein levels.

Readthrough transcription can also impact the measurement of gene expression in

genes located downstream of sites where transcription termination is inhibited. As ab-

errant transcription proceeds into downstream genes, RNA templated from these re-

gions may be misinterpreted as evidence for expression of these downstream genes (e.g.

FAP in Fig. 1b) [9, 26]. Following Rutkowski et al., we will term these loci “read-in”

genes. The regulation of read-in genes is easily misinterpreted because the RNAs pro-

duced at these loci are unlikely to be exported or translated, and their promoters and

other regulatory elements do not regulate their transcript levels. Given that most func-

tional analyses and systems-level studies rely on RNA levels as their primary approach
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to molecular profiling, this represents a potential source of error when analyzing sys-

tems with widespread readthrough transcription. Without correcting for read-in genes,

these analyses suffer from the inclusion of aberrantly transcribed read-in genes when

studying the molecular pathways and regulatory mechanisms underlying transcriptional

responses.

In addition to generating non-canonical and novel transcripts, readthrough transcrip-

tion can alter the epigenomic state of the genome [4, 9, 10]. In the case of heat shock,

osmotic stress, and HSV-1 infection, it has been found that regions exhibiting tran-

scriptional readthrough have increased chromatin accessibility [10, 32]. Strikingly, in

IAV infection, transcriptional readthrough causes dynamic changes in 3D genome

structure. This phenomenon occurs as elongating RNAPII displaces cohesin, the ring-

like complex that spatially constrains the strands of DNA at the base of chromatin

loops [9]. In addition, IAV-induced readthrough can result in widespread changes in

histone modifications and transcription factor (TF) binding site occupancy [9].

Given the extensive impact that defects in transcription termination and readthrough

transcription can have, computational tools are needed to identify and characterize

their phenotypes from next-generation sequencing (NGS) profiling data. Although sev-

eral studies have analyzed readthrough transcription, they have primarily used custom

or ad hoc approaches [10, 26, 31, 32, 35]. Presently, there are two published methods

Fig. 1 ARTDeco evaluates different aspects of readthrough transcription. a Schematic diagram of
typical transcription termination (top) and readthrough transcription (bottom). b Total RNA-seq, RNA
polymerase II ChIP-seq, and H3K27ac ChIP-seq data at IFIH1 locus. Normalized read coverage ranges
are indicated on the right and signals exceeding these levels may be clipped (e.g. RNA-seq coverage
on the exons of IFIH1). IFIH1 represents a primary induction gene while FAP, GCG, and DPP4 represent
read-in genes. c Schematic depicting the regions used to quantify read-in levels, readthrough levels,
and DoG transcript discovery for each gene
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designed to analyze readthrough transcription: DoGFinder, a tool that discovers and

quantifies intergenic transcripts downstream of genes (DoG transcripts) [10, 26, 31, 32,

35], and DogCatcher, a tool that discovers and quantifies DoGs, Antisense Downstream

of Gene (ADoG), Previous of Gene Transcripts (PoGs), and Antisense Previous of Gene

(APoG) transcripts in addition to being able to perform differential expression analysis

on these transcripts [17]. Both tools provide a useful characterization of readthrough

transcription and can aid in the discovery of systems exhibiting transcription termin-

ation defects. However, their functionality is limited to searching for aberrant tran-

scripts in intergenic regions.

Here we present Automatic Readthrough Transcription Detection (ARTDeco), a

framework for the quantification and characterization of readthrough transcription.

ARTDeco expands on the functionality of existing approaches by implementing three

separate strategies to quantify readthrough transcription by evaluating (1) the fraction

of transcription starting upstream and continuing into a gene (‘read-in level’), (2) the

fraction of transcription that continues past the end of genes (‘readthrough level’), and

(3) detection of novel DoG transcripts created as a result of readthrough transcription

(pictured schematically in Fig. 1c). We assess the performance of ARTDeco on previ-

ously generated data for IAV infection and heat shock treatment. We also demonstrate

how ARTDeco can be used to quantitatively assess readthrough transcription across

large donor datasets and show that eQTLs for read-in genes likely control their up-

stream gene’s transcription levels. We conclude that our tool is capable of quantifying

key features of readthrough transcription to improve the analysis and interpretation of

NGS experiments performed on samples with defects in transcription termination.

Implementation

ARTDeco is written in Python 3.6. It has the following software dependencies: BEDOPS

[20], bx-python, DESeq 2[15], HOMER [8], NetworkX [7], NumPy [23], Pandas [16],

rpy2, RSeQC [33], and Samtools [14]. Code is available at https://github.com/sjroth/

ARTDeco.

ARTDeco analysis framework

ARTDeco requires aligned BAM files, a GTF file of gene annotations, and a chromo-

some sizes file. Optionally, a metadata file detailing the experimental design and a com-

parison file detailing the comparisons to be carried out during differential expression

analysis can be supplied. The program will quantify expression at genic and intergenic

regions (detailed below) and return summary statistics for readthrough transcription

and DoG transcripts as well as read-in and readthrough ratios for each gene.

ARTDeco preprocessing

The input gene annotation (GTF file) is preprocessed into BED files representing the

key genomic regions interrogated by ARTDeco. For each gene, all separate isoforms are

condensed into a single region starting from the most upstream transcription start site

[TSS] to most downstream transcription termination site [TTS]) to avoid misidentify-

ing alternative isoforms as readthrough transcripts. Intergenic regions for detecting

read-in and readthrough transcription relative to each gene are then selected as
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outlined schematically in Fig. 1c and Supplementary Fig. 1b. Genes were excluded from

consideration if their annotation fell within another gene. Read-in quantification re-

gions are placed a fixed distance (as defined by the user; 1 kb by default) upstream of

the most upstream TSS for each gene to avoid variation in TSS location relative to an-

notations. Readthrough quantification regions are placed a fixed distance (as defined by

the user; 10 kb by default) downstream of each gene to avoid detection of transcription

that normally occurs in the region immediately 3′ of the poly(A) signal-dependent

cleavage site. The default length of each read-in/readthrough detection region is set to

15 kb (can be user-defined). If another gene is present in the locus, the length of the

read-in/readthrough regions are truncated such that they extend a maximum of one-

third of the distance to the next gene to avoid detecting signal originating from the

other gene. Thus, the length of the read-in and readthrough regions can be expressed

as min (maxLength,1/3*geneDist) where maxLength is the maximum length of a read-

in/readthrough region (15 kb by default) and geneDist is the distance to the upstream

or downstream gene. The minimum length of both read-in and readthrough regions

can be user-defined and is 100 bp by default. If genes are overlapping or too close in

proximity, the readthrough/read-in region is removed and not reported for that gene. If

one gene falls within the gene body of another gene (as is the case with many small

RNAs), that gene is removed from consideration by ARTDeco. Inclusion of these genes

leads to issues in interpretation and potential errors due to annotation rather than bio-

logical phenomena. Both read-in and readthrough regions are placed into BED files for

downstream processing.

ARTDeco expression quantification

ARTDeco quantifies gene expression (both raw counts and FPKM) using HOMER’s

analyzeRepeats.pl and the user-supplied GTF file as well as expression at intergenic re-

gions using HOMER’s annotatePeaks.pl [8]. Expression is quantified across the whole

gene body for each transcript in the GTF file and the most highly (maximum)

expressed isoform (in FPKM) is stored for downstream processing of read-in and read-

through levels.

ARTDeco read-in and readthrough level quantification

For each gene, the expression in both raw counts and FPKM for both the maximum

isoform of the gene and the intergenic region of interest are grouped together. Then,

the log2 ratio of length-normalized counts is computed between the isoform and the

read-in/readthrough region (outlined in Fig. 1c and Supplementary Fig. 1b). These ra-

tios define the read-in and readthrough levels for each gene. ARTDeco then infers

read-in genes based upon a user-defined threshold for read-in level (0 by default) as

well as a user-defined expression threshold level (0.25 FPKM by default) to exclude

genes with minimal expression. ARTDeco summarizes the basic statistics of read-in

and readthrough levels for the most expressed genes (top 1000 by default).

ARTDeco gene expression deconvolution

ARTDeco can correct deconvolute the contribution of upstream readthrough transcrip-

tion to total gene expression by using the upstream read-in expression. In order to do
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this, it subtracts the length-normalized raw expression in the read-in region from the

length-normalized raw gene body expression. If the read-in region has higher expres-

sion than the gene body, the gene body expression is set to 0.

Combining read-in levels with differential expression information

Expression information can be combined with differential expression analysis as per-

formed by DESeq 2[15] to discriminate genes that are directly induced (termed “pri-

mary induction”) from those induced as a consequence of read-in transcription from

upstream genes (termed “read-in”). This can be useful for enhancing the specificity of

the analysis if the experimental condition is expected to impact transcription termin-

ation. DESeq2 is carried out on all transcripts in the GTF file as quantified by ART-

Deco and this information is combined with read-in ratios for each gene. Genes are

thresholded based upon log2 fold change (default is 2), adjusted p-value (Benjamini-

Hochberg correction as performed by DESeq2; default is 0.05), and expression in

FPKM (default is 0.25) and categorized as a primary induction or read-in gene based

upon read-in levels (default is 0).

ARTDeco DoG detection

ARTDeco uses a rolling window approach beginning at the TTS of each gene as de-

fined by our condensed gene annotation. Over each window of the user-specified

length (500 bp by default), transcription levels are quantified and the FPKM of the win-

dow must meet a user-specified threshold to be considered part of a DoG (0.15 FPKM

by default). A DoG can be extended beyond a downstream gene’s TSS if that gene is la-

beled a read-in gene. After DoGs are discovered for each experiment, their expression

is obtained (raw and FPKM). Then, they are combined into a single annotation by tak-

ing the union wherein the longest DoG annotation is kept for shared DoGs across ex-

periments. The expression of the unified set of DoGs and their differential expression

(if applicable) is also reported (raw and FPKM).

Results
ARTDeco processes NGS data (e.g., RNA-seq) to characterize the features of read-

through transcription genome-wide. This includes the identification of genes that ex-

hibit transcription downstream of their 3′ ends (readthrough genes), genes that are

transcribed as a result of readthrough transcription from upstream genes (read-in

genes), as well as detection of novel DoG transcripts created as a result of readthrough

transcription. The basic workflow of ARTDeco is detailed in Supplementary Fig. 1a.

ARTDeco can work with custom gene annotations and custom genomes. ARTDeco de-

tects read-through events by comparing the levels of transcription in genic and inter-

genic regions for all genes, evaluating signal both upstream and downstream of genes

to distinguish readthrough and read-in events. The intervals used to calculate inter-

genic transcription levels exclude regions immediately upstream of the transcription

start site (TSS, > 1 kb) and downstream of the transcription termination site (TTS, > 10

kb) to avoid detection of RNA signal that arises from incorrect TSS assignment and

post-poly(A) site cleavage transcripts that may accumulate during normal termination,

respectively. Because closely spaced genes (< 10 kb distance between gene ends) limit
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the ability to infer intergenic expression levels, these genes are excluded from the analysis.

The log2 transcript signal ratio of the read-in or readthrough regions versus the gene body

expression can be used as a quantification of the degree of readthrough upstream (read-in

level) or downstream (readthrough level) of a gene, respectively (Fig. 1c, Supplementary

Fig. 1b). In studies where a specific experimental condition is suspected to induce tran-

scription readthrough, ARTDeco can combine its analysis strategy with differential ex-

pression analysis to discriminate between genes that are likely regulated by primary

induction (i.e. promoter activation) versus read-in genes among all induced genes. ART-

Deco also detects unannotated DoG transcripts using a rolling window approach with a

minimal FPKM threshold beginning at the TTS of each gene, similar to DoGFinder [35].

Global quantification of read-through

To evaluate ARTDeco’s ability to quantify transcriptional readthrough across multiple

experiments, we analyzed previously generated transcriptomic and epigenetic data from

monocyte-derived macrophages infected ex vivo with two strains of IAV as well as a

mock infection condition (example of data in Fig. 1b) [9]. The first influenza strain is

the highly pathogenic IAV (subtype H5N1) virus (Influenza A/Vietnam/1203/2004

(H5N1) HAlo) used to model severe disease with an intact NS1 protein (called IAV

here). The second strain has the same viral genetic background but is mutated to pro-

duce a truncated, non-functional NS1 protein (ΔNS1 )[9, 29]. These two strains induce

a similar antiviral transcriptional response in the cell, but only IAV infection expresses

an intact NS1 protein capable of inhibiting the CPA complex, leading to readthrough

transcription. In effect, the ΔNS1 strain allows us to examine antiviral response activa-

tion without readthrough while the mock condition has neither antiviral response nor

readthrough. This allows us to differentiate antiviral response transcription from read-

through transcription during IAV infection.

First, ARTDeco quantifies the global level of readthrough transcription in each sam-

ple, by calculating the genome-wide distributions of read-in and readthrough ratios for

the top 1000 expressed genes (Fig. 2a,b). We found that the distributions of both read-

in and readthrough ratios were shifted to higher values in the IAV samples relative to

both ΔNS1 or mock infection (Fig. 2a,b). Because transcription levels still decay after

the cleavage site even when termination is inhibited, readthrough levels, which are

measuring the signal produced by readthrough transcription at sites directly down-

stream of where termination is inhibited, often have a more pronounced signal than

read-in levels, which are measured upstream of the next gene, 83,649 bp downstream of

the TTS on average. Given that read-in transcription is likely mediated by readthrough

transcription from adjacent genes, we quantified this relationship by comparing read-in

levels for every expressed gene (> 0.25 FPKM) with the readthrough levels of their up-

stream gene, finding that these two values were significantly correlated (Fig. 2c, r =

0.55; p < 1e-151). This result is quantitatively and qualitatively consistent with the hy-

pothesized relationship between read-in levels and the readthrough levels of the up-

stream gene. In all, this confirms the ability of ARTDeco to use read-in and

readthrough levels to quantify readthrough transcription.

Because read-in levels are defined as the log2 ratio of upstream readthrough tran-

scription to genic transcription, they represent the relative contribution of readthrough
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to gene expression. Given this observation, we investigated whether read-in levels could

potentially aid in deconvoluting the relative contributions of readthrough transcription

and canonical gene activation to expression level. We examined all upregulated differ-

entially expressed genes in the IAV condition relative to the mock condition and com-

pared their expression values between IAV and ΔNS1 conditions (Supplementary

Fig. 2a). We found that the expression levels between these two datasets was largely

correlated (r = 0.72; p < 1e-87), however, many genes were expressed more highly in the

IAV condition due to read-in transcription (Supplementary Fig. 2a). We then corrected

the expression values for both conditions by the estimated fraction of reads due to

readthrough and compared their expression. We found that the correlation in gene ex-

pression was increased (r = 0.81; p < 1e-127) and that this increase was statistically sig-

nificant (p < 0.001; Fisher’s z transformation) (Supplementary Fig. 2b). This suggests

that the read-in level provides information about the relative contribution of read-

through transcription to gene expression and indicates that ARTDeco can estimate

gene expression by removing contributing upstream readthrough.

Another method of quantifying readthrough transcription is the detection of DoG

transcripts. Similar to the read-in and readthrough ratios, we performed DoG transcript

discovery on mock-, IAV-, and ΔNS1-infected samples (Supplementary Table 2). We

Fig. 2 Quantification of readthrough phenotypes in IAV-infected monocyte derived macrophages. a
Distribution of read-in levels (log2 ratio of reads in read-in region vs. gene body) for top 1000 expressed
genes. b Distribution of readthrough levels (log2 ratio of reads in downstream region vs. gene body) for
top 1000 expressed genes. c Downstream gene read-in level vs. upstream gene read-in level in the first
replicate of the IAV condition. Both downstream and upstream genes were expressed at a level > 0.25 FPKM
(r = 0.55; p < 1e-151). d Distribution of DoG lengths for DoGs discovered by ARTDeco using default settings
(minimum length of 4 kb, window size of 500 bp, and minimum read density of 0.15 FPKM)
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found more than twice as many DoGs in IAV-infected samples than the other condi-

tions, consistent with the global increase in readthrough caused by NS1-mediated dis-

ruption of transcription termination. Additionally, DoGs found in the IAV condition

were much longer than those in the ΔNS1 or mock conditions (almost twice as long on

average), which were typically less than 10 kb in length (Fig. 2d).

In order to compare ARTDeco’s ability to detect DoG transcripts to existing

methods, we independently used DoGFinder and Dogcatcher to identify DoGs in the

IAV condition using default parameters (Supplemental Methods). Despite differences

in how transcript detection is performed between the methods, all three methods ex-

hibited comparable sensitivity and detected many of the same DoGs (Supplementary

Fig. 3a,b). Notably, Dogcatcher found very few unique DoGs (Supplementary Fig. 3a,b).

This is likely because Dogcatcher screens DoGs similarly to DoGFinder (i.e., using a

minimum coverage) while maintaining genic reads like ARTDeco. Differentially de-

tected DoGs between the methods are largely explained by technical differences. DoG-

Finder and Dogcatcher screen DoGs based upon continuous coverage (presence or

absence of reads spanning a portion of the screening window). In contrast, ARTDeco

extends transcripts based upon a read density threshold measured in FPKM while keep-

ing genic reads. This leads to DoGFinder-specific transcripts in regions with low signal

but continuous coverage. Conversely, ARTDeco does not remove genic reads so some

DoGs may represent mis-annotation of the TTS or inefficient transcription termin-

ation. These methodological differences are reflected by DoGFinder-specific tran-

scripts with lower expression in FPKM (the criteria for ARTDeco) while ARTDeco-

specific transcripts have lower per-base coverage (the criteria for DoGFinder) (Supple-

mentary Fig. 3d-e).

In order to validate ARTDeco’s ability to detect DoGs, we looked for independent

evidence for transcription of DoGs by examining the levels of H3K36me3 and RNAPII

phosphorylated on serine 2 of the CTD (RNAPII S2p) at DoG loci. Both H3K36me3

and RNAPII S2p are associated with transcription elongation, and should be enriched

in readthrough regions relative to non-transcribed regions. Because ARTDeco and

DoGFinder discovered the most distinct DoGs individually and Dogcatcher discovered

very few unique DoGs (only 6; Supplementary Fig. 3b), we chose to compare DoGs

from ARTDeco and DoGFinder. We found that DoGs shared between ARTDeco and

DoGFinder had comparable occupancy of both signals while DoGs unique to DoGFin-

der had decreased signal (Supplementary Fig. 3f-g). In summary, we find that ARTDeco

has sensitivity comparable to DoGFinder and Dogcatcher and confirmed that the DoGs

identified show evidence of transcription elongation.

Identification of read-in genes

Because pre-mRNAs produced as a result of readthrough transcription are generally not

exported from the nucleus and are unlikely to be translated [9, 10, 32], differential RNA

levels in samples with readthrough transcription likely misrepresent gene expression levels

of newly transcribed genes and may confound functional analyses. Furthermore, read-

through transcription can continue far past the 3′ end of transcribed genes leading to the

increase of RNA signal at downstream “read-in” genes. This leads to the illusion that

read-in genes are regulated by the biological process being studied. One of the novel
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Fig. 3 (See legend on next page.)
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functions of ARTDeco is to identify read-in genes to infer whether a given gene is “in-

duced” by readthrough transcription (i.e. read-in) or if it is directly targeted for induction

by the cell’s regulatory machinery (referred to here as ‘primary induction’ genes).

We sought to test the ability of ARTDeco to discriminate between primary induction

and read-in genes among genes induced by IAV. In order to benchmark our method,

we curated a gold standard set of primary induction and read-in genes based on differ-

ences in induction in the wild-type IAV and ΔNS1 viruses (Supplemental Methods; Fig.

3b). We considered gold standard primary induction genes to be upregulated in IAV

relative to mock infection with clear signs of promoter activation in H3K27ac and

RNAPII ChIP-seq data (Supplemental Methods; Supplemental Table 1; example Sup-

plementary Fig. 4a). Similarly, we considered gold standard read-in genes to be upregu-

lated in IAV relative to both mock and ΔNS1 (log2 fold change > 2 and adjusted p-

value < 0.05 according to DESeq2) with no signs of promoter activation (Supplemental

Methods; Supplemental Table 1; example Supplementary Fig. 4a). In total, there were

163 gold standard primary induction genes and 135 gold standard read-in genes (Sup-

plemental Table 1).

ARTDeco was able to identify IAV primary induction and read-in genes with an F1

score (a measure of the accuracy of classification computed by taking the harmonic

mean of the precision and recall; Supplemental Methods) of 0.95 relative to our gold

standard. ARTDeco’s performance when inferring read-in genes was robust to different

parameters, but optimal when upregulated genes had a log2 fold change > 2, adjusted

p-value < 0.05 and read-in level > − 2 (for all genes with expression > 0.25 FPKM; num-

ber of Gold Standard [GS] Primary Induction Genes = 163, number of GS Read-In

Genes = 130, True Positives [TP] = 118, True Negative [TN] = 158, False Positive [FP] =

5, False Negative [FN] = 12) (Supplementary Fig. 4c,d). We also found that ARTDeco

was able to infer read-in genes on single experiments without differential expression in-

formation and thresholding only on read-in levels (Supplemental Methods; Supplemen-

tary Fig. 5a, optimal performance using a read-in level > − 1). Performance was

generally poorer when not including differential expression information due to an in-

crease in false positives as reflected in the false discovery rate (FDR) (0.04 with differen-

tial expression vs. 0.44 without differential expression) (Supplementary Fig. 5a; F1 =

0.67; GS Primary Induction Genes = 4188, GS Read-In Genes = 128, TP = 105, TN =

4106, FP = 82, FN = 23). One source of false positives were a result of ARTDeco

(See figure on previous page.)
Fig. 3 ARTDeco successfully discriminates between genes that are directly induced by IAV infection
(primary induction) and genes induced as a results of readthrough transcription (read-in). a Heatmap of z-
normalized expression values and ARTDeco assignments for gold standard primary induction and read-in
genes. Thresholds for assigning read-in genes were log2 fold change > 2, adjusted p-value < 0.05, and read-
in level > − 2. Leftmost column is ARTDeco assignment (blue is primary induction and red is read-in). Next
column is gold standard assignment (green is primary induction and gold is read-in). Remaining columns
are z-normalized gene expression for IAV replicate 1, IAV replicate 2, ΔNS1 replicate 1, ΔNS1 replicate2,
mock replicate 1, and mock replicate 2. b Distribution of log2 ratio of H3K27ac for IAV vs. Mock conditions
at promoters for primary induction and read-in genes. (p < 1e-20; t-test) c Distribution of log2 ratio of
H3K4me3 for IAV vs. Mock conditions at promoters for primary induction and read-in genes. (p < 1e-10; t-
test) d Distribution of RNA PolII serine-2 phosphorylation (S2p) at promoters in the IAV condition for
primary induction and read-in genes. (p < 0.001; t-test) e Distribution of RNA PolII serine-5 phosphorylation
(S5p) in the IAV condition at promoters for primary induction and read-in genes. (p < 1e-5; t-test) f
Distribution of log2 ratio of Start-seq signal for IAV vs. Mock at promoters for primary induction and read-in
genes. (p < 1e-14; t-test)
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detecting readthrough transcription in the read-in region despite no significant change

in genic expression in IAV relative to either mock or ΔNS1 and signs of promoter acti-

vation in the downstream gene (ex. MON2 in Supplementary Fig. 5b). The use of differ-

ential expression also helps filter the number of genes considered and, thus, limits

potential exposure to errors due to incorrect gene annotations. Based upon this, we

conclude that the addition of differential expression allows ARTDeco to improve speci-

ficity in experimental designs where readthrough transcription is expected to be regu-

lated in a specific condition.

After using the above parameters (log2 fold change > 2, adjusted p-value < 0.05, and

read-in level > − 2) to infer read-in genes with differential expression information, we

sought independent validation of our inference. We clustered gene expression profiles

for all gold standard genes and found that gene assignments showed expected expres-

sion patterns (i.e., true positives [read-in genes] were expressed exclusively in IAV

while true negatives [primary induction genes] were expressed in both IAV and ΔNS1

but not in mock) (Fig. 3b). Because read-in genes are transcribed as a result of up-

stream expression rather than transcription initiation, we hypothesized that promoters

of read-in genes would show decreased signs of promoter activation and transcription

initiation relative to primary induction genes. As expected, promoters of primary in-

duction genes were enriched for both H3K27ac and H3K4me3 (epigenomic signals as-

sociated with promoter activation) in IAV relative to mock while the promoters of

read-in genes were not (Fig. 3b,c). Similarly, we examined the phosphorylation state of

RNAPII at promoters. Primary induction genes showed higher RNAPII serine-5 phos-

phorylation (S5p) (a mark of transcription initiation) occupancy at promoters while

read-in genes showed higher RNAPII serine-2 phosphorylation (S2p) (a mark of tran-

scription elongation) occupancy (Fig. 3d,e). These data are consistent with the hypoth-

esis that the promoters of primary induction genes are activated by IAV while the

promoters of read-in genes are not.

In order to assess whether the promoters of primary induction genes showed more

evidence of transcription initiation than those of read-in genes, we also examined Start-

seq data at promoters in both IAV- and mock-infected THP-1 cells (a human mono-

cytic cell line) [9]. Start-seq captures newly initiating short RNAs that approximate

rates of transcription initiation at TSSs [27]. We observed increased signals of tran-

scription initiation at promoters of primary induction genes as compared to read-in

genes despite differences in cell type (Fig. 3f). This further strengthens the conclusion

that primary induction genes represent a stimulus-specific response while read-in genes

are expressed due to upstream readthrough transcription rather than promoter activa-

tion. In all, these data show that ARTDeco is able to discriminate between primary in-

duction and read-in genes in a set of differentially expressed genes.

Functional analysis of primary induction and read-in genes

Read-in genes represent over half (301/545) of all upregulated genes despite not being

directly activated by IAV infection (Fig. 4a). Given these read-in genes are not directly

targeted for activation by the host transcriptional machinery and likely not expressed as

proteins, it is possible that these genes represent biological noise and could dilute the

results of functional analyses. With this in mind, we assessed the impact of read-in
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genes on common functional analyses such as gene ontology (GO) enrichment [2].

Assessing GO enrichment separately on primary induction and read-in genes, we found

that primary induction genes were strongly enriched for GO terms consistent with viral

defense and immune response. In contrast, read-in genes showed minimal evidence for

GO term enrichment, consistent with the hypothesis that read-in genes represent tran-

scriptional noise. (Fig. 4c). We also compared these enrichments with the GO enrich-

ment for all upregulated genes, finding that inclusion of read-in genes did not identify

additional enriched GO terms and diluted the fraction of regulated genes in each of the

enriched terms relative to just analyzing the primary induction genes (Fig. 4c). Given

that GO is incomplete and has known biases such as method of investigation, curation

practices, and authorship, it is possible that read-in genes are not properly functionally

annotated [1, 30]. With this in mind, we analyzed the TF binding motifs in the pro-

moters of primary induction and read-in genes, reasoning that promoter sequences

Fig. 4 Read-in genes mainly contribute noise to downstream functional analysis of differentially regulated
genes. a Volcano plot of DESeq2 results for the maximum expressed isoform for each gene from IAV-
infected macrophages vs. Mock-infected controls. Genes were considered up- or down-regulated if they
had |log2 fold change| > 2 and adjusted p-value < 0.05 as well as FPKM > 0.25. b Heat map of GO
enrichment (−log10 p-value) for top 15 GO terms in primary induction and read-in genes. c Bar chart of
proportion of genes from each gene list in a given GO term for top 10 GO terms for primary induction
genes, read-in genes, all upregulated genes, and random 500 genes with expression > 0.25 FPKM. d HOMER
motif enrichments (q-value) for top 3 known motifs in primary induction genes
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directly activated by the infection should be enriched for binding motifs for TFs acti-

vated during viral infection. We performed motif-finding using HOMER and found that

promoters of primary induction genes were enriched for interferon-stimulated response

elements (ISRE) while promoters of read-in genes lacked significant enrichment for TF

binding motifs (Fig. 4d). Together, our findings suggest that read-in genes are not dir-

ectly activated as part of the immune response to infection and therefore should be ex-

cluded from functional or regulatory element analysis when attempting to infer

regulatory mechanisms or functional responses in systems with readthrough

transcription.

Extension of ARTDeco to other experimental systems and NGS data types

In order to validate ARTDeco on non-IAV datasets, we reanalyzed data from heat

shock-treatment of NIH 3T3 cells [32], another stimulus known to induce transcrip-

tional readthrough (Fig. 5a). Similar to IAV data, we observed that all global signals of

readthrough were elevated (i.e., distribution of read-in/readthrough level, DoG length,

and DoG expression) (Fig. 5b-d). Next, we assigned primary induction and read-in

genes for the heat shock data. Similar to IAV, for primary induction genes we found

significant GO term and TF motif enrichment that was consistent with a heat shock re-

sponse while no significant enrichment was found for read-in genes (Fig. 5e-f). These

results demonstrate that ARTDeco can successfully identify transcriptional readthrough

and define primary and read-in gene sets in additional datasets, using the optimized de-

fault parameters determined in IAV infection.

In order to demonstrate the flexibility and general applicability of ARTDeco to differ-

ent experimental data types, we applied it to two methods that assess transcription by

measuring RNAPII engagement: RNAPII ChIP-seq and mNET-seq. RNAPII ChIP-seq

directly measures DNA binding of the RNAPII complex, while mNET-seq measures

nascent transcripts that are associated with the RNAPII complex [22]. First, we applied

ARTDeco to RNAPII ChIP-seq data from IAV, ΔNS1-, and mock-infected cells (Sup-

plementary Fig. 6a). Consistent with previous analyses, the distribution of readthrough

levels reflects a defect in termination present in IAV infected samples but not the other

two conditions, similar to the results generated using total RNA-seq, despite the differ-

ent data type (Fig. 2b, Supplementary Fig. 6a). Additionally, we found that total RNA-

seq data was robust to different downstream readthrough distances while RNAPII

ChIP-seq was not (Fig. 2a, Supplementary Fig. 6a-c). Distributions of readthrough levels

with a 5 kb distance were more similar between conditions and readthrough was there-

fore harder to detect on a global level compared to analysis using a 10 kb distance (Sup-

plementary Fig. 6a-b). Thus, ARTDeco’s default parameter of a 10 kb downstream

readthrough distance is flexible with respect to data type.

Next, we applied ARTDeco to a published data set that used mNET-seq to profile tran-

scription in response to influenza infection (IAV H1N1 WSN/33, IAV H1N1 Puerto

Rico/8/34, IAV H3N2 Udorn/72, IAV H3N2 Udorn/72: NS1Δ99, and Influenza B virus

[IBV] Florida/04/2006) as well as an siRNA construct for the CPSF complex, salt shock

treatment using KCl, and inducible expression of wild-type and mutant NS1 proteins [3].

Consistent with their reported results, we found that cells infected with influenza virus,

subjected to KCl treatment, or deficient in the CPSF complex had higher readthrough
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levels relative to cells in the mock condition, reflecting decreased transcription termin-

ation efficiency. Interestingly, we confirmed the presence of readthrough transcription in

IAV H3N2, which contains a deletion in the NS1 protein (Supplementary Fig. 6d). This is

consistent with the hypothesis of Bauer et al. [3] that cellular stress may drive part of the

readthrough phenotype in A549 and HEK293 cells. In summary, we show that ARTDeco

is compatible with multiple NGS data types with different characteristics.

Reinterpretation of eQTLs identified in data with readthrough transcription

To demonstrate how ARTDeco can improve the analysis of large-scale datasets that ex-

hibit signs of readthrough transcription, we used ARTDeco to reanalyze RNA-seq pro-

files from primary human monocytes derived from 200 individual donors. Within the

original study, monocytes from each donor were genotyped and infected with IAV

(H1N1 strain A/USSR/90/1977) or stimulated with lipopolysaccharide (LPS),

Pam3CSK4, or R848 in vitro to elicit innate immune responses with the goal of map-

ping expression quantitative trait loci (eQTLs) [24]. We assessed the presence of read-

through transcription in these datasets by quantifying the median readthrough level of

the top 1000 expressed genes as a summary statistic for samples from each donor

in each condition. This analysis revealed that IAV-infected samples showed signifi-

cantly greater median readthrough ratios relative to the other stimuli profiled, con-

sistent with the expected inhibition of transcription termination in samples

infected with IAV (Fig. 6a).

Fig. 5 ARTDeco analysis of readthrough transcription induced by heat shock in NIH 3T3 cells. a Total RNA-
seq levels at the Hsp90aa1 locus in mouse fibroblasts for heat shock and mock conditions from Vilborg
et al. [32]. Hsp90aa1 represents the primary induction genes while 1700001K19Rik is a read-in gene defined
by ARTDeco. b Distribution of read-in levels for top 1000 expressed genes following heat shock. c
Distribution of readthrough levels for top 1000 expressed genes following heat shock. d Distribution of
DoG lengths in both mock and heat shock conditions. e Heat map of GO term enrichment (−log10 p-
value) for top 15 enriched GO terms for primary induction and read-in genes. f HOMER motif enrichment
for primary induction and read-in genes
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While analyzing IAV samples, we observed that some samples generally had

higher levels of readthrough transcription than others, prompting us to consider

whether ARTDeco could be used to quantitatively assess differences in global read-

through across samples. For example, samples from donors of European origin

(EUB) had significantly higher median readthrough ratios than samples from do-

nors of African ancestry (AFB) (Fig. 6b, p < 1e-8, t-test), suggesting readthrough

ratios may offer a quantitative estimate of the degree to which transcription ter-

mination is impacted by infection. In order to corroborate these observations, we

Fig. 6 ARTDeco analysis of donor monocytes infected with IAV reveals that eQTLs mapping to read-in
genes also frequently map to upstream genes. a Distribution of median readthrough levels for top 1000
expressed genes for all samples from Quach et al. [24]. Grouped by treatment condition. b Distribution of
median readthrough levels for top 1000 expressed genes for IAV samples from Quach et al. [24]. Grouped
by population of origin. c Scatter plot comparing median readthrough level of top 1000 expressed genes
with proportion of reads mapping to IAV NS1 gene (r2 = 0.53, p < 1e-33). d Schematic of two eQTL
assignments that are difficult to interpret when readthrough transcription is present. On the top, a SNP is
assigned as an eQTL for both the upstream gene and the read-in gene. On the bottom, a SNP located in
the upstream gene is assigned as an eQTL for the read-in gene only. The first case represents eQTLs that
may modulate the expression of the read-in gene by changing the expression of the upstream gene. e Bar
chart showing the number of eQTLs mapped by Quach et al. [24] to genes assigned as read-in and primary
induction genes. eQTLs are classified as either mapping to the upstream gene as outlined in 6B or not
mapping to the upstream gene. Enrichment was computed using Fisher exact test (p < 0.001). f Example of
an eQTL (rs2661133) mapped by Quach et al. [24] that maps to both a read-in gene (SCN1B) and the
upstream gene (GRAMD1A) in IAV-infected samples. Genome browser tracks corresponding to mRNA from
an African Belgian (AFB) and a European Belgian (EUB) from IAV-infected and non-stimulated (NS)
conditions as well as total RNA and H3K27ac for IAV infection from Heinz et al. [9]. The readthrough region
is outlined in the black box
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compared the median readthrough level from each sample to the expression of

viral NS1 RNA in each sample, finding the values to be highly correlated (Fig. 6c,

r2 = 0.53, p < 1e-33). NS1 mRNA levels are likely correlated with other aspects of

infection, including the efficiency of viral entry, viral replication rates, and antiviral

host responses, and it was noted in the original study that AFB samples showed

higher expression of immune response genes such as chemokines and cytokines

and thus were likely more resistant to infection [24]. However, given the fact that

NS1 is both necessary and sufficient to inhibit transcription termination [3, 9], the

correlation between readthrough transcription levels and NS1 expression is consist-

ent with the molecular functions of the viral protein.

In view of the widespread evidence for readthrough transcription in the IAV-

infected samples, we hypothesized that eQTLs that map to genes aberrantly

transcribed by readthrough transcription (i.e. read-in genes) may be regulating

transcription in upstream regions rather than directly controlling transcription acti-

vation of the eQTL-associated read-in gene (Fig. 6d). Using our list of inferred pri-

mary induction and read-in genes, we reexamined eQTLs (as inferred in the

original analysis) defined in IAV-infected conditions. We hypothesized that eQTLs

mapping to read-in genes would also map to upstream genes that serve as the

source of readthrough transcription, while eQTLs mapping to primary induction

genes would be more likely to map near or within the gene itself. We found that

9/32 (28%) of eQTLs mapping to ARTDeco-defined read-in genes also mapped to

their upstream genes, while none of the eQTLs mapping to primary induction genes also

mapped to their upstream genes (Fig. 6e, p < 1e-3, Fisher’s Exact Test, Supplementary

Table 3). For example, in the case of the read-in gene SCN1B, the SNP rs2651133 was also

assigned as eQTL to its upstream gene, GRAMD1A, in the IAV condition (Fig. 6f). This

SNP falls near a promoter-distal enhancer upstream of GRAMD1A, where it likely influ-

ences regulatory mechanisms such as TF binding or promoter-enhancer interactions to

modulate the activity of GRAMD1A. Since the promoter of SCN1B lacks epigenetic evi-

dence for activation after IAV infection (Fig. 6f, bottom), it is likely that the same eQTL

affects the expression of SCN1B by directly modulating the expression of GRAMD1A,

which then leads to readthrough transcription into the SCN1B locus. These findings

underscore the need to be careful when interpreting the functions of eQTLs in the pres-

ence of readthrough transcription.

Discussion
Here we present ARTDeco, a framework for comprehensively characterizing and quan-

tifying readthrough transcription from NGS data. ARTDeco globally quantifies the de-

gree of readthrough transcription using read-in levels, readthrough levels, and

detection of DoG transcripts. We demonstrate that the medians of the read-in and

readthrough level distributions for the top-expressed genes represent useful summary

statistics for characterizing the degree of readthrough in a given sample. These mea-

sures represent a novel advance in the detection of readthrough transcription. ART-

Deco expands upon existing methods for DoG transcript discovery by allowing the

discovered transcripts to extend into annotated gene bodies to avoid arbitrary trunca-

tion [17, 35]. This allows for a more precise quantification of readthrough as well as

more representative transcripts from large regions of transcriptional readthrough that
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extend through multiple genes (Fig. 1b). ARTDeco’s approach is robust to multiple data

types including RNA-seq, mNET-seq, and RNAPII ChIPseq (Figs. 2, 6, Supplementary

Fig. 6) making it a versatile tool for the characterization and detection of transcriptional

readthrough. Additionally, it requires less preprocessing and has a nearly 2-fold faster

runtime than DoGFinder and a nearly 5-fold faster runtime than Dogcatcher (Supple-

mental Methods; Table 1). ARTDeco’s flexibility and performance in addition to its

novel measures of readthrough transcription represent a significant advance in analyt-

ical tools for studying defects in transcription termination.

In addition to global quantification of readthrough transcription, ARTDeco provides

per-gene quantification. This provides an opportunity to study readthrough at the level

of single genes in the context of both downstream readthrough and upstream read-in.

The quantification of read-in levels can also enable the deconvolution of gene expres-

sion in systems with transcriptional readthrough. Additionally, each method of read-

through quantification enables us to pinpoint loci of interest in order to study the

effects of readthrough on the epigenome and genome structure. Many of the mecha-

nisms of how these changes occur are still unclear. For example, change in genome 3D

structure due to transcriptional readthrough has been noted in both IAV infection and

heat shock [4, 9]. Using readthrough levels and DoG transcripts, we may be able to bet-

ter characterize the specific loci that are affected. This would lend great insight into

how the mechanism of transcription induces these changes in genome 3D structure

and epigenetic regulation.

An open question is what determines the level of readthrough. Work in HSV-1 infec-

tion suggests that sequence context at the TTS is a more important determinant of

readthrough than expression level [10]. ARTDeco’s quantification of readthrough levels

could potentially lend insight to this and hint at potential mechanisms. Additionally, it

has been posited that readthrough has an effect on the expression of downstream genes

via mechanisms such as transcriptional interference [5, 28]. It remains unclear to what

degree this impacts transcriptional regulation and gene expression writ large. Quantifi-

cation of read-in level allows us to more directly measure these effects by elucidating

the relationship between upstream readthrough transcription and gene expression.

A novel function of ARTDeco is the identification of read-in genes. To our know-

ledge, it is the first software tool that is designed to characterize this phenomenon. This

is important as many functional analyses rely on gene expression levels to make inferences

(e.g., differential expression, co-expression, etc.) and read-in genes represent a potential

source of noise when employing these techniques. We demonstrated the ability to confi-

dently identify read-in genes from NGS profiling data, and showed that these genes likely

Table 1 Run time comparison for DoGFinder and ARTDeco

Task Number of Runs Average Run Time (s)

ARTDeco Full 10 1095.76

ARTDeco DoG Mode 10 982.83

Dogcatcher Preprocessing 10 1307.25

Dogcatcher (no differential expression) 10 4085.60

Dogcatcher (with differential expression) 10 4593.81

DoGFinder Preprocessing 10 982.71

DoGFinder 10 1065.85
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represent noise in functional analysis when analyzing differentially regulated genes in two

different conditions (IAV and heat shock). Our analyses underscore the advantage of

treating these genes as noise rather than a potential false signal in the data.

We showed that in a population study of transcriptional responses to IAV infection

that a significant proportion of eQTLs mapping to read-in genes also mapped to genes

upstream (Fig. 6c,d). In these cases, readthrough transcription is the probable mechan-

ism by which the eQTL influences expression for variants mapped to read-in genes.

Given the known difficulty of both mapping and interpreting the functional impact of

these SNPs, it is important to correct for transcriptional readthrough when studying

gene expression variation in populations in the context of systems with disrupted tran-

scription termination. Our findings suggest that readthrough transcription ana-

lysis should be routinely incorporated into population-scale analyses of systems that

may contain readthrough in order to better interpret eQTLs.

Conclusions
Readthrough transcription is an emergent phenotype that has been characterized in

several systems including IAV infection, HSV-1 infection, heat shock, salt stress, senes-

cence and renal carcinoma [3, 4, 6, 9, 10, 18, 26, 31, 32]. Given its relative novelty, it is

likely that more stresses cause defects in transcription termination, and this phenotype

may be more common than previously thought. The use of median readthrough level

for top expressed genes as a summary statistic greatly aids discovery of these stresses.

Further, ARTDeco can be used to analyze systems where components of the transcrip-

tion termination machinery are knocked out in order to further analyze mechanisms of

termination. In all, ARTDeco will aid future researchers by providing a systematic

characterization of readthrough transcription.
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Additional file 1 Supplementary Figure 1: (a) Basic flowchart of ARTDeco functions. Program inputs are BAM
files, a GTF file, and a chromosome sizes file as well as optional inputs for differential expression modes comprised
of a meta file and a comparisons file. Data files are preprocessed into HOMER tag directories, a condensed gene
annotation BED, and intergenic (read-in and downstream) BED files. From here, ARTDeco can compute read-in and
readthrough statistics (left branch) or detect DoGs. Read-in levels for genes are used for DoG transcript discovery
(details in Methods). (b) Schematic depicting the regions used to quantify read-in levels, readthrough levels, and
DoG transcript discovery for each gene (maxlen is 15 kb by default). Examples of each region and total RNA-seq
levels during IAV infection are depicted for the IFIH1 locus. Supplementary Figure 2: Deconvolution of gene
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expression for upregulated genes in IAV relative to mock. (a) Uncorrected expression for IAV replicate 1 and ΔNS1
replicate 1. (r = 0.72; p < 1e-77) (b) Corrected expression for IAV replicate 1 and ΔNS1 replicate 1. (r = 0.81; p < 1e-
127). Supplementary Figure 3: Assessment of Downstream of Gene (DoG) transcripts. (a) Total RNAseq and
H3K27ac ChIPseq at the IFIH1 locus and DoGs identified by ARTDeco and DoGFinder. (b) Venn diagram of all DoGs
called by ARTDeco and DoGFinder using both IAV replicates using default coverage parameters and a sliding win-
dow of 500 bp. (c) Distribution of DoG lengths for DoGs called by ARTDeco and DoGFinder. (d) Distribution of
RNA-seq FPKM values for DoGs identified by ARTDeco and DoGFinder. (e) Distribution of RNA-seq read coverage
for DoGs identified by ARTDeco and DoGFinder. (f) Log2 FPKM H3K36me3 occupancy for DoGs assigned by ART-
Deco and DoGFinder as well as random regions. (g) Log2 FPKM RNAPII s2p occupancy for DoGs assigned by ART-
Deco and DoGFinder as well as random regions. Supplementary Figure 4: Examples of primary induction and
read-in genes from IAV-infected macrophages. (a) Example of a gold standard true positive (read-in) gene
(RNF144A). Gene expression is upregulated in IAV relative to ΔNS1 and mock with low (> 0.5 FPKM) expression in
ΔNS1. Additionally, there are no RNA PolII and H3K27ac ChIP-seq peaks (as called by HOMER) at the promoter re-
gions. (b) Example of gold standard true negative (primary induction) gene (TNFSF13B). Gene expression is upregu-
lated in IAV and ΔNS1 relative to mock. Additionally, there are both RNA PolII and H3K27ac peaks (as called by
HOMER) at the promoter region indicating transcription initiation. (c) Benchmarking of ARTDeco performance for
inference of read-in genes using false positive rate (FPR), false negative rate (FNR), false discovery rate (FDR), and F1
score while varying DESeq2 log2 fold change. Values for adjusted p-value, FPKM, and read-in level are 0.05, 0.25
and 0, respectively. (d) Benchmarking for ARTDeco performance for inference of read-in genes using FPR, FNR, FDR,
and F1 score while varying read-in level. Values for log2 fold change, adjusted p-value, and FPKM are 2, 0.05, and
0.25, respectively. Supplementary Figure 5: Evaluation of read-in gene identification without using a control con-
dition. (a) Benchmarking for ARTDeco performance for inference of read-in genes without differential expression
while varying read-in level. Gene expression is > 0.25 FPKM. (b) Example of a gene (MON2) that was marked as a
read-in gene despite being initiated. There is substantial readthrough originating from the upstream gene USP15.
Supplementary Figure 6: Analysis of RNAPII ChIP-seq and mNet-seq data using ARTDeco. (a) Distribution of read-
through levels for IAV, ΔNS1, and mock for top 1000 expressed genes based on ARTDeco’s analysis of RNAPII ChIP-
seq data (instead of RNA-seq data) using the default 10 kb downstream readthrough distance. (b) Distribution of
readthrough levels for IAV, ΔNS1, and mock for top 1000 expressed genes based on ARTDeco’s analysis of RNAPII
ChIP-seq data using a 5 kb downstream readthrough distance. (c) Distribution of readthrough levels for IAV, ΔNS1,
and mock for top 1000 expressed genes based on ARTDeco’s analysis of total RNA-seq data using a 5 kb down-
stream readthrough distance. (d) Distribution of readthrough levels for mNET-seq data from Bauer et al. [3] for top
1000 expressed genes. Cell types are denoted in legend as A549 and HEK293. Treatment conditions are as follows:
IAV H1N1 WSN/33, IAV H1N1 Puerto Rico/8/34, IAV H3N2 Udorn/72, IAV H3N2 Udorn/72: NS1Δ99, Influenza B virus
[IBV] Florida/04/2006, KCl, wildtype and mutant NS1 proteins, siLUC, and siCPSF. Conditions where readthrough
was observed in the original analysis conducted by Bauer et al. [3] have distribution curves with higher opacity.

Additional file 2. Supplementary Table 1: List of primary induction and read-in genes identified in IAV-infected
macrophages.

Additional file 3. Supplementary Table 2: DoGs discovered by ARTDeco for IAV-, ΔNS1-, and mock- infected
macrophages. Genomic coordinates are relative to the hg38 version of the human genome.

Additional file 4. Supplementary Table 3: List of IAV-associated eQTLs mapped to primary induction and read-in
genes.

Additional file 5 Supplementary Methods.

Abbreviations
ARTDeco: Automatic Readthrough Transcription Detection; IAV: Influenza A virus; RNAPII: RNA polymerase II;
PAS: Polyadenylation site; CPA: Cleavage and polyadenylation complex; CPSF: Cleavage and polyadenylation specificity
factor; CTD: C-terminal domain of RNAPII; eQTL: Expression quantitative trait locus; NS1: Non-structural protein 1;
HSV: Herpes simplex virus; DoG: Downstream of Gene; TSS: Transcription start site; TTS: Transcription termination site;
FPKM: Fragments Per Kilobase of transcript per Million mapped reads; GO: Gene ontology

Acknowledgements
We would like to thank Alon Goren for guidance and helpful comments. We would also like to thank Max Chang for
troubleshooting ARTDeco implementations.

Authors’ contributions
S.J.R, S.H., and C.B. conceived the study design and supervised its completion. S.J.R. developed and tested the
ARTDeco program and performed the analysis. S.J.R. and C.B. wrote the manuscript. All authors have read and have
approved the contents of the manuscript.

Funding
This study was supported with funding from the NIH (AI135972 and GM134366, PI: Benner). The funding bodies had
no direct roles in the design or execution of the study.

Availability of data and materials
Data from Heinz et al. [9] was obtained from GEO accession GSE103477 (available at https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE103477). Data from Vilborg et al. [32] was obtained from GEO accession GSE98906
(available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE98906). Data from Bauer et al. [3] was obtained
from NCBI SRA SRP132032 (available at https://trace.ncbi.nlm.nih.gov/Traces/sra/?study=SRP132032). Data from Quach

Roth et al. BMC Bioinformatics          (2020) 21:214 Page 20 of 22

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103477
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103477
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE98906
https://trace.ncbi.nlm.nih.gov/Traces/sra/?study=SRP132032


et al. [24] was obtained from the EGA accession EGAS00001001895 (available at https://www.ebi.ac.uk/ega/studies/
EGAS00001001895).

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1Bioinformatics and Systems Biology Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA
92093-0640, USA. 2Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA
92093-0640, USA.

Received: 6 February 2020 Accepted: 18 May 2020

References
1. Altenhoff AM, Studer RA, Robinson-Rechavi M, Dessimoz C. Resolving the Ortholog conjecture: Orthologs tend to be

weakly, but significantly, more similar in function than Paralogs. PLoS Comput Biol. 2012;8(5):e1002514.
2. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, et al. Gene ontology: tool for the unification of

biology. The gene ontology Consortium. Nat Genet. 2000;25(1):25–9.
3. Bauer DLV, Tellier M, Martínez-Alonso M, Nojima T, Proudfoot NJ, Murphy S, Fodor E. Influenza Virus Mounts a Two-

Pronged Attack on Host RNA Polymerase II Transcription. Cell Rep. 2018;23(7):2119–29.e3.
4. Cardiello, Joseph F., James A. Goodrich, and Jennifer F. Kugel. 2018. “Heat shock causes a reversible increase in RNA

polymerase II occupancy downstream of mRNA genes, consistent with a global loss in transcriptional termination.” Mol
Cell Biol 38 (18). https://doi.org/10.1128/MCB.00181-18..

5. Greger IH, Proudfoot NJ. Poly(a) signals control both transcriptional termination and initiation between the tandem
GAL10 and GAL7 genes of saccharomyces Cerevisiae. EMBO J. 1998;17(16):4771–9.

6. Grosso, Ana R., Ana P. Leite, Sílvia Carvalho, Mafalda R. Matos, Filipa B. Martins, Alexandra C. Vítor, Joana M. P. Desterro,
Maria Carmo-Fonseca, and Sérgio F. de Almeida. 2015. “Pervasive transcription read-through promotes aberrant
expression of oncogenes and RNA chimeras in renal carcinoma.” eLife 4 (November). https://doi.org/10.7554/eLife.
09214..

7. Hagberg AA, Schult DA, Swart PJ. Exploring Network Structure, Dynamics, and Function Using Networkx. In: Varoquaux
G, Vaught T, Millman J, editors. Proceedings of the 7th Python in Science Conference (SciPy2008); 2008. p. 11–5.

8. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK. Simple combinations of
lineage-determining transcription factors prime Cis-regulatory elements required for macrophage and B cell identities.
Mol Cell. 2010;38(4):576–89.

9. Heinz S, Texari L, Hayes MGB, Urbanowski M, Chang MW, Givarkes N, Rialdi A, et al. Transcription Elongation Can Affect
Genome 3D Structure. Cell. 2018;174(6):1522–36.e22.

10. Hennig T, Michalski M, Rutkowski AJ, Djakovic L, Whisnant AW, Friedl M-S, Jha BA, et al. HSV-1-induced disruption of
transcription termination resembles a cellular stress response but selectively increases chromatin accessibility
downstream of genes. PLoS Pathog. 2018;14(3):e1006954.

11. Kawauchi J, Mischo H, Braglia P, Rondon A, Proudfoot NJ. Budding yeast RNA polymerases I and II employ parallel
mechanisms of transcriptional termination. Genes Dev. 2008;22(8):1082–92.

12. Kim M, Krogan NJ, Vasiljeva L, Rando OJ, Nedea E, Greenblatt JF, Buratowski S. The yeast Rat1 exonuclease promotes
transcription termination by RNA polymerase II. Nature. 2004;432(7016):517–22.

13. Licatalosi DD, Geiger G, Minet M, Schroeder S, Kate C, Bryan McNeil J, Bentley DL. Functional interaction of yeast pre-
mRNA 3′ end processing factors with RNA polymerase II. Mol Cell. 2002;9(5):1101–11.

14. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data
Processing Subgroup. The Sequence Alignment/Map Format and SAMtools. Bioinformatics. 2009;25(16):2078–9.

15. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2.
Genome Biol. 2014;15(12):550.

16. McKinney W. Data Structures for Statistical Computing in Python. In: van der Walt S J, Millman, editors. Proceedings of
the 9th Python in Science Conference; 2010. p. 51–6.

17. Melnick, Marko, Patrick Gonzales, Joseph Cabral, Mary A. Allen, Robin D. Dowell, and Christopher D. Link. 2019. “Heat
shock in C. elegans Induces Downstream of Gene Transcription and Accumulation of Double-Stranded RNA.” PLoS One.
https://doi.org/10.1371/journal.pone.0206715.

18. Muniz L, Deb MK, Aguirrebengoa M, Lazorthes S, Trouche D, Nicolas E. Control of gene expression in senescence
through transcriptional read-through of convergent protein-coding genes. Cell Rep. 2017;21(9):2433–46.

19. Nemeroff ME, Barabino SM, Li Y, Keller W, Krug RM. Influenza virus NS1 protein interacts with the cellular 30 kDa subunit
of CPSF and inhibits 3’end formation of cellular pre-mRNAs. Mol Cell. 1998;1(7):991–1000.

20. Neph S, Scott Kuehn M, Reynolds AP, Haugen E, Thurman RE, Johnson AK, Rynes E, et al. BEDOPS: high-performance
genomic feature operations. Bioinformatics. 2012;28(14):1919–20.

21. Nielsen S, Yuzenkova Y, Zenkin N. Mechanism of eukaryotic RNA polymerase III transcription termination. Science. 2013;
340(6140):1577–80.

22. Nojima T, Gomes T, Grosso ARF, Kimura H, Dye MJ, Dhir S, Carmo-Fonseca M, Proudfoot NJ. Mammalian NET-Seq reveals
genome-wide nascent transcription coupled to RNA processing. Cell. 2015;161(3):526–40.

Roth et al. BMC Bioinformatics          (2020) 21:214 Page 21 of 22

https://www.ebi.ac.uk/ega/studies/EGAS00001001895
https://www.ebi.ac.uk/ega/studies/EGAS00001001895
https://doi.org/10.1128/MCB.00181-18
http://paperpile.com/b/SgPQ4s/MOfSP
http://paperpile.com/b/SgPQ4s/gBelE
https://doi.org/10.7554/eLife.09214
https://doi.org/10.7554/eLife.09214
http://paperpile.com/b/SgPQ4s/gBelE
http://paperpile.com/b/SgPQ4s/GdgE
https://doi.org/10.1371/journal.pone.0206715


23. Oliphant TE. A Guide to NumPy; 2006.
24. Quach H, Rotival M, Pothlichet J, Loh Y-HE, Dannemann M, Zidane N, Laval G, et al. Genetic Adaptation and Neandertal

Admixture Shaped the Immune System of Human Populations. Cell. 2016;167(3):643–56.e17.
25. Richard P, Manley JL. Transcription termination by nuclear RNA polymerases. Genes Dev. 2009. https://doi.org/10.1101/

gad.1792809.
26. Rutkowski AJ, Erhard F, L’Hernault A, Bonfert T, Schilhabel M, Crump C, Rosenstiel P, et al. Widespread disruption of host

transcription termination in HSV-1 infection. Nat Commun. 2015;6(May):7126.
27. Scruggs BS, Gilchrist DA, Nechaev S, Muse GW, Burkholder A, Fargo DC, Adelman K. Bidirectional transcription arises

from two distinct hubs of transcription factor binding and active chromatin. Mol Cell. 2015;58(6):1101–12.
28. Shearwin K, Callen B, Egan J. Transcriptional interference – a crash course. Trends Genet. 2005;21(6):339–45.
29. Steel J, Lowen AC, Pena L, Angel M, Solórzano A, Albrecht R, Perez DR, García-Sastre A, Palese P. Live attenuated

influenza viruses containing NS1 truncations as vaccine candidates against H5N1 highly pathogenic avian influenza. J
Virol. 2009;83(4):1742–53.

30. Thomas PD, Wood V, Mungall CJ, Lewis SE, Blake JA, Consortium GO. On the use of gene ontology annotations to
assess functional similarity among Orthologs and Paralogs: a short report. PLoS Comput Biol. 2012;8(2):e1002386.

31. Vilborg A, Passarelli MC, Yario TA, Tycowski KT, Steitz JA. Widespread inducible transcription downstream of human
genes. Mol Cell. 2015;59(3):449–61.

32. Vilborg A, Sabath N, Wiesel Y, Nathans J, Levy-Adam F, Yario TA, Steitz JA, Shalgi R. Comparative analysis reveals
genomic features of stress-induced transcriptional Readthrough. Proc Natl Acad Sci. 2017;114(40):E8362–71.

33. Wang L, Wang S, Li W. RSeQC: quality control of RNA-Seq experiments. Bioinformatics. 2012;28(16):2184–5.
34. West S, Gromak N, Proudfoot NJ. Human 5′ --> 3′ exonuclease Xrn2 promotes transcription termination at co-

transcriptional cleavage sites. Nature. 2004;432(7016):522–5.
35. Wiesel Y, Sabath N, Shalgi R. DoGFinder: a software for the discovery and quantification of Readthrough transcripts from

RNA-Seq. BMC Genomics. 2018;19(1):597.
36. Zhang H, Rigo F, Martinson HG. Poly(a) signal-dependent transcription termination occurs through a conformational

change mechanism that does not require cleavage at the poly(a) site. Mol Cell. 2015;59(3):437–48.
37. Zhao N, Sebastiano V, Moshkina N, Mena N, Hultquist J, Jimenez-Morales D, Ma Y, et al. Influenza virus infection causes

global RNAPII termination defects. Nat Struct Mol Biol. 2018;25(9):885–93.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Roth et al. BMC Bioinformatics          (2020) 21:214 Page 22 of 22

https://doi.org/10.1101/gad.1792809
https://doi.org/10.1101/gad.1792809

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	ARTDeco analysis framework
	ARTDeco preprocessing
	ARTDeco expression quantification
	ARTDeco read-in and readthrough level quantification
	ARTDeco gene expression deconvolution
	Combining read-in levels with differential expression information
	ARTDeco DoG detection

	Results
	Global quantification of read-through
	Identification of read-in genes
	Functional analysis of primary induction and read-in genes
	Extension of ARTDeco to other experimental systems and NGS data types
	Reinterpretation of eQTLs identified in data with readthrough transcription

	Discussion
	Conclusions
	Availability and requirements
	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

