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44 
Antiviral Drugs for Influenza and 
Other Respiratory Virus Infections
Fred Y. Aoki

In this chapter, antiviral agents against influenza viruses and certain 
other respiratory viruses such as parainfluenza and respiratory syn­
cytial virus are reviewed (Table 44­1). The antiviral agents are pre­
sented in alphabetical order and include licensed (approved) as well  
as investigational agents. Agents that have been investigated in rhino­
virus infections but have been utilized primarily in non–respiratory 
tract infections, such as interferons and pleconaril, are discussed in 
Chapter 47.

AMANTADINE AND RIMANTADINE
Spectrum
Amantadine (1­adamantanamine hydrochloride; Symmetrel) and 
rimantadine (α­methyl­1­adamantane methylamine hydrochloride; 
Flumadine) are symmetrical tricyclic amines (Fig. 44­1A and B) that 
specifically inhibit the replication of influenza A viruses at low con­
centrations (<1 µg/mL). Influenza B and C viruses are resistant.1 
In the past, epidemic human and avian strains of influenza viruses  
have generally been susceptible to amantadine.2 However, since 2008­
2009, isolates of influenza A/H1N1 and H3N2, highly pathogenic  
avian H5N1, and A (H1N1)pdm09 are resistant to amantadine and 
rimantadine (see later discussion).3 By plaque assay, inhibitory con­
centrations of the drugs range from 0.1 to 0.4 µg/mL or less for sensi­
tive human influenza A viruses. Rimantadine is 4 to 10 times more 
active than amantadine in some assay systems. Both drugs are inhibi­
tory for virus containing the M protein from the 1918 pandemic 
strain.4

Higher concentrations (10 to 50 µg/mL) inhibit other enveloped 
viruses in vitro, including parainfluenza, influenza B, rubella, dengue, 
several arenaviruses (Junin, Lassa, Pichinde), rabies, and African swine 
fever virus, but these concentrations are not achievable clinically  
and can be cytotoxic in vitro.5 Rimantadine has pH­dependent 

trypanocidal activity at concentrations of approximately 1 µg/mL6; 
amantadine at the same concentration in combination with doxycy­
cline inhibits Coxiella burnetii.7 Amantadine may transiently inhibit 
hepatitis C virus (HCV) replication in humans.8

These agents have prophylactic and therapeutic activity in experi­
mental influenza A virus infection of animals after oral or parenteral 
dosing. Combinations of M2 inhibitors and neuraminidase inhibitors 
and ribavirin show enhanced antiviral and therapeutic effects in vitro 
or in animal models of influenza.9­12

Mechanism of Action
Amantadine and rimantadine share two concentration­dependent 
mechanisms of anti­influenza action. Low concentrations inhibit the 
ion channel function of the M2 protein of influenza A viruses, which 
affects two different stages in virus replication.13­15 The primary effect 
involves inhibition of viral uncoating or disassembly of the virion 
during endocytosis. For subtype H5 and H7 viruses, a late effect on 
hemagglutinin maturation and viral assembly is presumably mediated 
through altered pH regulation of the trans­Golgi network. Amantadine 
and rimantadine block proton permeation and prevent M2­mediated 
changes in pH. This action probably accounts for inhibition of the 
acid­mediated dissociation of the matrix protein from the ribonucleo­
protein complex within endosomes early in replication and potentia­
tion of acidic pH–induced alterations in the hemagglutinin during its 
transport late in infection.

Amantadine and rimantadine are also concentrated in the lyso­
somal fraction of mammalian cells. Drug­mediated increases in lyso­
somal pH may inhibit virus­induced membrane fusion events and 
account for the broader antiviral spectrum at higher concentrations. 
In contrast, the selective anti–influenza A virus effects are quickly  
lost after removal of the drug from the surrounding medium, which 

INFLUENZA A AND B: NEURAMINIDASE 
INHIBITORS

Oseltamivir
•	 Orally	administered	oseltamivir	is	effective	in	

prevention	and	treatment	of	uncomplicated	
influenza	in	otherwise	healthy	adults.

•	 Observational	studies	suggest	it	is	beneficial	in	
serious	illness.

•	 Toxicity	is	primarily	gastrointestinal.

Zanamivir
•	 Administration	is	through	oral	inhalation	as	a	

powder.
•	 Effectiveness	is	similar	to	that	of	oseltamivir.
•	 It	is	active	against	some	oseltamivir-resistant	

strains.
•	 Bronchospasm	may	occur	in	individuals	with	

asthma	or	chronic	obstructive	pulmonary	
disease.

INFLUENZA A: ADAMANTANES

Amantadine and Rimantadine
•	 Widespread	resistance	to	these	agents	is	

present	in	currently	circulating	influenza	A	

viruses,	and	they	should	not	be	used	unless	
sensitivity	of	isolates	is	demonstrated.

•	 Orally	administered,	they	have	shown	efficacy	
against	uncomplicated	influenza	A.

•	 Effectiveness	in	serious	illness	is	not	
established.

•	 Toxicity	with	amantadine	is	primarily	
evident	as	central	nervous	system	symptoms;	
with	rimantadine	it	is	gastrointestinal	
intolerance.

INVESTIGATIONAL AGENTS AGAINST 
INFLUENZA
•	 Peramivir:	intravenously	administrated	

neuraminidase	inhibitor
•	 Laninamivir:	orally	inhaled	neuraminidase	

inhibitor	with	prolonged	presence	in	the	
respiratory	tract

RESPIRATORY SYNCYTIAL VIRUS

Ribavirin
•	 A	guanosine	analogue,	ribavirin	has	activity	

against	a	broad	variety	of	viruses,	including	
respiratory	syncytial	virus	(RSV)	and		
influenza.

•	 It	is	approved	for	aerosol	administration	to	
children	hospitalized	with	RSV	pneumonia	or	
bronchiolitis	and	has	been	used	to	treat	viral	
respiratory	tract	infections	in	
immunosuppressed	patients.

•	 It	is	teratogenic	and	should	not	be	used	near	
potentially	pregnant	staff.

RSV604
•	 An	investigational	agent,	RSV604	inhibits	RSV	

through	interaction	with	the	nucleocapsid	
protein.

•	 It	is	well	absorbed	orally,	and	phase	II	studies	
are	underway.

PARAINFLUENZA VIRUSES

DAS181 (Fludase)
•	 DAS181	is	an	investigational	compound	with	

activity	against	parainfluenza	and	influenza	
viruses.

•	 An	orally	inhaled	sialidase,	it	reduces	virus	
binding	to	epithelial	cells.

•	 It	has	been	used	to	treat	parainfluenza	virus	
type	3	infections	in	immunosuppressed	
patients.

SHORT VIEW SUMMARY
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transmission of drug­resistant virus may occur after cessation of  
drug use.

Before 2003, a small percentage of untreated patients (<1%) had 
infection with resistant influenza A virus.18 Approximately 30% of 
drug­treated ambulatory children and adults and 80% of hospitalized 
children or immunocompromised patients shed resistant virus.19­21 
Immunocompetent individuals shedding resistant virus resolve their 
illness promptly,22 whereas immunocompromised hosts may experi­
ence prolonged illness associated with persistent virus shedding.20 
Transmission of M2 inhibitor–resistant virus, associated with failure 
of drug prophylaxis, occurs in household contacts of treated index 
cases23 and in nursing home residents.24 Resistant variants can cause 
typical influenza illness. It is prudent to avoid contact between treated 
patients and susceptible high­risk contacts and to avoid use of treat­
ment (specifically of young children) and postexposure prophylaxis in 
the same household.

Globally, up to 2003, epidemic influenza A H1N1 and H3N2 strains 
were M2 inhibitor sensitive. Since 2003, the prevalence of amantadine 
resistance has increased progressively, although rates vary by virus type 
and geography.25,26 Among H3N2 isolates, amantadine resistance 
increased from 12% worldwide in 200325 to 91% by 2005 and greater 
than 95% in 2008­2009.26 In the United States prior to March 2009, 
nearly all of the A/H1N1 isolates tested were sensitive to the adaman­
tanes and, subsequently, virtually all A/H1N1 isolates have been resis­
tant up to the present, including the A (H1N1)pdm09 virus.27 Among 
nonpandemic H1N1 isolates, the prevalence of amantadine resistance 
was 4% in 2004­2005 worldwide and 16% in isolates from 2005­2006, 
with rates ranging from 2% in South Korea to 72% in China.26,28,29 The 
reason for the emergence and global spread of amantadine­resistant 
strains is unclear. Widespread inappropriate use of amantadine30 and 
acquisition of undefined advantageous mutations combined with lack 
of fitness impairment may have been contributing factors. Ribavirin 
and the neuraminidase inhibitors zanamivir and oseltamivir carboxyl­
ate are active in vitro against M2 inhibitor–resistant strains.

The triple combination of amantadine, oseltamivir, and ribavirin 
impedes the selection of drug­resistant influenza A virus in vitro at 
clinically achievable concentrations31 compared with double combina­
tions and the agents used singly in vitro.32 The same combination of 
drugs was also synergistic in vitro in inhibiting the growth of both 
amantadine­ and oseltamivir­resistant influenza A virus strains at con­
centrations that had no activity as single agents.32

Pharmacokinetics
The clinical pharmacokinetic characteristics of amantadine and riman­
tadine are shown in Table 44­2.

Amantadine
Amantadine is well absorbed after oral administration of capsule, 
tablet, or syrup forms.5 Steady­state peak plasma concentrations 
average 0.5 to 0.8 µg/mL with a 100­mg twice­daily regimen in healthy 
young adults. Older adults require only one half of the weight­adjusted 
dosage needed for young adults to achieve equivalent trough plasma 
levels of 0.3 µg/mL. Plasma protein binding of amantadine is about 
67%, and amantadine’s volume of distribution (Vd) is large (4 to 5 L/
kg). Nasal secretion and salivary levels of amantadine approximate 
those found in the serum. Cerebrospinal fluid levels are 52% to 96% 
of those in plasma, and amantadine is excreted in breast milk.

Amantadine is eliminated largely unchanged in the urine by glo­
merular filtration and probably by tubular secretion by a bicarbonate­
dependent organic cation transporter.33 The plasma elimination 
half­life (t elim1

2
) is 12 to 18 hours, ranges widely, and correlates with 

the creatinine clearance (CrCl). Because of age­related declines in renal 
function, t elim1

2
 increases twofold in older adults and even more in 

patients with impaired renal function. Dosage reductions are required 
in renal insufficiency (Table 44­3). Amantadine is inefficiently cleared 
in patients receiving hemodialysis or continuous ambulatory perito­
neal dialysis, and additional doses are not required. Monitoring of 
plasma concentrations in such patients is desirable but impractical.

Amantadine pharmacokinetics remained unaffected by concurrent 
administration of oseltamivir and ribavirin in healthy adult volunteers 
or stable immunocompromised patients.34

suggests that drug must be present in extracellular fluid early in the 
replicative cycle.

Amantadine inhibits the ion channel activity of expressed HCV p7 
protein at low concentrations,16 an effect that might account for its 
reported anti­HCV effects in vivo. Neither agent inhibits HCV enzyme 
functions or internal ribosome entry in biochemical assays.17

Resistance
Amantadine­resistant virus is readily selected by virus passage in the 
presence of drug. Resistance with more than 100­fold increases in 
inhibitory concentrations has been associated with single amino­acid 
substitutions at critical sites (positions 26, 27, 30, 31, 34) in the trans-
membrane region of the M2 protein.13 Amantadine and rimantadine 
share cross­resistance. In avian models, resistant viruses are virulent, 
genetically stable, and able to compete with wild­type virus so that 

TABLE 44-1  Antiviral Agents of Established 
Therapeutic Effectiveness for Respiratory  
Virus Infection

VIRAL 
INFECTION DRUG ROUTE

USUAL ADULT 
DOSAGE

Influenza A and 
B viruses

Oseltamivir Oral 75 mg bid for 5 daysa

Peramivir Intravenous 300 or 600 mg once

Zanamivir Inhalation 10 mg bid by inhaler for  
5 daysb

Laninamivir 
octanoate

Inhalation 40 mg oncec

Influenza A 
virus

Amantadine Oral 100 mg bid for 5 days for 
treatmentd

Rimantadine Oral 100 mg bid for 5 days for 
treatmente

Respiratory 
syncytial virus

Ribavirin Aerosol Aerosol treatment 18 hr/day 
for 3-7 daysf

aPediatric dosages: For infants 2 wk to <1 yr of age dose is 3 mg/kg twice daily. 
For children ≥1 yr of age, doses are weight adjusted: 30 mg bid for <15 kg, 
45 mg bid for 16-23 kg, 60 mg bid for 24-40 kg, and 75 mg bid for >40 kg. 
Prophylactic dosage is given once daily (one half of total daily treatment dosage). 
Not FDA approved currently for prophylaxis in children <1 yr old or treatment in 
children <2 wk old.

bFDA approved at same dosage for treatment of children ≥7 yr of age. 
Prophylactic dosage is 10 mg inhaled once daily for adults and children ≥5 yr 
of age.

cAdult dose and for children ≥10 yr of age. Pediatric dose: 20 mg once for 
children <10 yr of age.

dMaximum recommended dosage for older adults (≥65 yr) is 100 mg/day. 
Recommended pediatric dosage is 5 mg/kg/day up to a maximum of 150 mg/day 
in divided doses. For prophylaxis, the same daily dosage should be given for period 
at risk.

ePediatric dosage is 5 mg/kg up to a maximum of 150 mg/day in divided doses. 
Not approved by FDA for treatment in children <13 yr of age. For prophylaxis, 
same daily dosage should be given for period at risk.

fReservoir concentration of 20 mg/mL. Special aerosol-generating device 
(available from manufacturer) and expert respiratory therapy monitoring for 
administration are required. Higher reservoir concentration (60 mg/mL) given for 
2 hr tid is an alternative.

Note: Please consult text and manufacturer’s product prescribing information for 
dosage adjustments in renal or hepatic insufficiency and in other circumstances.

FIGURE  44-1 Chemical structures of amantadine hydrochloride 
(A) and rimantadine hydrochloride (B). 

NH2 HCl

NH2 HCl

H C CH3

Amantadine RimantadineA B
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of 3 mg/kg each day, peak serum levels range from 0.1 to 0.6 µg/mL. 
No important age­related changes in pharmacokinetics have been 
found in healthy older adults or in children. However, steady­state 
plasma concentrations in older nursing home residents receiving 
100 mg twice daily average more than twofold higher (mean, 1.2 µg/
mL) than concentrations observed in healthy adults, which indicates 
the need for lower dosages in these patients. Plasma protein binding is 
about 40%. Rimantadine has a very large Vd (~12 L/kg), and concentra­
tions in nasal mucus average 50% higher than those in plasma.

In contrast to amantadine, rimantadine undergoes extensive 
metabolism by hydroxylation, conjugation, and glucuronidation before 
renal excretion.5 The plasma t elim1

2
 of rimantadine averages 24 to 36 

hours. No clinically important differences in pharmacokinetics are 
found in patients with chronic liver disease without significant hepa­
tocellular dysfunction. In hemodialysis patients with severe renal 
failure, the clearance of rimantadine is decreased by 40% and the t elim1

2
 

is about 55% longer. Reducing dosages by one half (e.g., to 100 mg/
day) is recommended for marked hepatic or renal insufficiency (CrCl 
<10 mL/min). Hemodialysis removes only a small amount of riman­
tadine, so supplemental doses are not required.

Interactions
The risks for central nervous system (CNS) adverse effects with  
amantadine and possibly with rimantadine are increased by concomi­
tant ingestion of antihistamines, antidepressants, anticholinergic 
drugs, and other drugs affecting CNS function. Concurrent use of 
trimethoprim­sulfamethoxazole or triamterene­hydrochlorothiazide 
has been associated with CNS toxicity resulting from decreased renal 
clearance of amantadine. Cimetidine is associated with 15% to 20% 
increases, and aspirin or acetaminophen is associated with 10% 
decreases in plasma rimantadine concentrations, but such changes are 
unlikely to be significant. Neither adverse clinical nor adverse pharma­
cokinetic effects are observed when amantadine and oseltamivir are 
co­administered.35

Concurrent administration of recommended doses of amantadine, 
oseltamivir, and ribavirin for 10 days was well tolerated.34

Toxicity
Amantadine or rimantadine given in treatment courses of 5 days is 
generally well tolerated in young healthy adults.36 Longer periods 
of administration, such as 6 weeks for seasonal prophylaxis in  
young adults,36 and administration to fragile, elderly nursing home 
residents, such as octogenarians, for 10 days for outbreak control are 
associated with a significant frequency of adverse reactions and drug 
withdrawals.37

A case­control study demonstrated that in children younger than 
12 months of age, amantadine and rimantadine were well tolerated, as 
was oseltamivir.38 No evidence of adverse maternal or neonatal out­
comes were observed after antepartum influenza treatment with ada­
mantane antiviral agents.39

The most common side effects related to amantadine ingestion are 
minor, dose­related gastrointestinal and CNS complaints, including 
nervousness, lightheadedness, difficulty concentrating, confusion, 
insomnia, and loss of appetite or nausea.40 Complaints typically develop 
within the first week of administration, often resolve despite continued 
ingestion, and are reversible on drug discontinuation. CNS side effects 
occur in 5% to 33% of amantadine recipients at dosages of 200 mg/day 
but are significantly less frequent with rimantadine. When used for 
influenza prophylaxis in ambulatory adults, dosages of 200 mg/day are 
associated with excess withdrawals in 6% to 11% of recipients because 
of drug side effects. Dosages of 100 mg/day are better tolerated and 
may be protective against influenza illness. Amantadine dosage reduc­
tions are required in older adults (100 mg/day), but 20% to 40% of 
nursing home residents experience significant adverse effects on this 
lower dosage despite some adjustment for renal insufficiency.41­43 Con­
sequently, further dosage reductions based on CrCl are warranted in 
this population.44

In the setting of renal insufficiency or high dosages, serious neuro­
toxic reactions, including delirium, hostility, hallucinations, tremor, 
myoclonus, seizures, or coma; cardiac arrhythmias; and death can 
occur in association with elevated amantadine plasma concentrations 

Rimantadine
Rimantadine is well but slowly absorbed, with the time to peak plasma 
concentration averaging 2 to 6 hours. Absorption does not seem to be 
decreased by food. With multiple doses of 100 mg twice daily, the 
steady­state peak and trough plasma concentrations in healthy adults 
are 0.4 to 0.5 µg/mL and 0.2 to 0.4 µg/mL. In infants receiving dosages 

TABLE 44-2  Clinical Pharmacokinetic 
Characteristics of Amantadine and Rimantadine 
in Healthy Adults

CHARACTERISTIC
AMANTADINE RIMANTADINE

Young Elderly Young Elderly
Relative oral 

bioavailability (%)
62-93 53-100 75-93 NA

Vd (L/kg) at 200 mg/day 6.1 ± 2.1 3.6 ± 1.1 18.4 ± 9.6 11.5 ± 2.9

Plasma protein binding 
(%)

67 NA 40 NA

Clearance (mL/min/kg)

 Plasma or total 5 ± 2.1 2 ± 0.9 6.1 ± 1.9 4.7 ± 2

 Renal 6.4 ± 3.7 2 ± 1.1 1.2 ± 0.4 NA

 Nonrenal 0 0 6.4 ± 1.4 NA

Urinary excretion of 
unchanged drug (%)

62-93 53-100 8.3-43 NA

Plasma half-life (hr) 14.8 ± 6.2 26.1 ± 9.7 29.1 ± 9.7 36.5 ± 14.5

Therapeutic range  
(ng/mL)

 Cmax

  200 mg/day 475 ± 110 — 416 ± 108 447 ± 108

  100 mg/day — 362 ± 158 — —

 Ctrough

  200 mg/day 302 ± 80 — 300 ± 75 310 ± 87

  100 mg/day — 301 ± 75 — —

NA, not available.
Adapted from Hayden FG, Aoki FY. Amantadine, rimantadine, and related 

agents. In: Yu VL, Edwards D, McKinnon S, et al, eds. Antimicrobial Therapy and 
Vaccines. 2nd ed. Pittsburgh: E Sun Technologies; 2002:714.

TABLE 44-3  Amantadine Dosage Regimens for 
Prophylaxis and Alterations in Renal Failure

CONDITION SUGGESTED DOSAGE
No Renal Insufficiency
Children 1-9 yr 5 mg/kg/day in two divided doses, ≤150 mg/day

Ages 10-64 yr 100 mg twice daily

Ages ≥65 yr 100 mg once daily*

Creatinine Clearance (mL/min/1.73 m2)†

≥80 100 mg (1.4 mg/kg) twice daily

79-35 100 mg once daily

34-25 100 mg every 2 days

24-15 100 mg every 3 days

<15 100 mg every 7 days

Older Adults and Creatinine Clearance (mL/min/1.73 m2)‡

≥80 100 mg daily

60-79 100 mg and 50 mg on alternate days

40-59 100 mg every 2 days

30-39 100 mg twice weekly

20-29 50 mg twice weekly

10-19 100 mg and 50 mg on alternate weeks

*Use weight-adjusted dosing for smaller patients (<50 kg). Dosages of 1.4 mg/kg/
day have been suggested.5

†Based on adult dosage of 200 mg/day. Proportionate reductions should be 
made for older adults receiving lower dosages and for children.

‡This dosing schedule for older adults with renal insufficiency is taken from the 
Canadian guidelines and has been found to be reasonably well tolerated.44

Modified from Wu MJ, Ing TS, Soung LS, et al. Amantadine hydrochloride 
pharmacokinetics in patients with impaired renal function. Clin Nephrol. 
1982;17:19-23.
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Amantadine and rimantadine are also effective therapies for un­
complicated adamantane­susceptible influenza A illness in healthy 
adults,5,22 but it is uncertain whether treatment reduces the risk for 
complications in high­risk patients or is useful in patients with estab­
lished pulmonary complications. Early treatment in ambulatory adults 
(200 mg/day for 5 days) reduces the duration of fever and systemic 
complaints by 1 to 2 days, decreases virus shedding, and shortens time 
to resumption of usual activities.22 In illness caused by H3N2­subtype 
influenza viruses, certain abnormalities of peripheral airways function, 
but not of airway hyperreactivity, resolve more quickly in amantadine­
treated patients. Amantadine or rimantadine treatment in adults with 
leukemia or stem cell transplantation may reduce the risk for pneumo­
nia,55 but more recent data suggest that in stem cell transplant recipi­
ents, early neuraminidase inhibitor therapy may be preferred to 
adamantanes, because it may prevent progression to pneumonia and 
decrease viral shedding, thereby possibly preventing both influenza­
related death in index patients and nosocomial transmission to others.56 
In children, rimantadine treatment is associated with lower symptom 
burden, fever, and viral titers during the first 2 days of treatment com­
pared with acetaminophen administration, but rimantadine­treated 
children have more prolonged shedding of virus. Treatment generally 
does not seem to affect humoral immune responses to infection, but 
may blunt secretory antibody levels.57

Intermittent aerosol administration of amantadine or rimantadine 
seems to be therapeutically useful in uncomplicated influenza. No 
injectable formulation of either drug is available in the United States.

Other Viruses
Amantadine has been used in multiple trials for treatment of chronic 
hepatitis C with inconsistent evidence for increases in sustained viral 
response (SVR). In treatment­naïve patients, the addition of amanta­
dine (200 mg daily in single or divided doses) to interferon58,59 or 
to interferon plus ribavirin60 may modestly increase biochemical 
responses and the likelihood of SVR. In re­treatment of interferon 
nonresponders, the combination of interferon plus amantadine is inef­
fective61 but the addition of amantadine to the combination of inter­
feron plus ribavirin may be associated with SVR in 10% to 25%.62 
Amantadine plus combined pegylated interferon and ribavirin may 
increase SVR modestly in treatment­experienced patients compared 
with pegylated interferon plus ribavirin.63 Reports of possible activity 
in bornavirus infections and associated neuropsychiatric symptoms 
require confirmation.

DAS181 (FLUDASE)
DAS181 is an investigational antiviral agent with activity against influ­
enza A and B viruses and parainfluenza viruses types 1­3.64­69 It has a 
novel mechanism of action in that it is a sialidase from Actinomyces 
viscosus (Fig. 44­2) linked to a respiratory epithelium­anchoring 
domain.70 It cleaves the terminal sialic acid residues on the surface of 
human respiratory cells, thus reducing the binding of respiratory 
viruses, which use those as receptors. Desialylation is rapid and results 
in an antiviral effect, which lasts for at least 2 days.64 The effective 
concentration (EC) for 50% of all isolates (EC50) against influenza A 
and B viruses ranges from 0.04 to 0.9 µM.65 DAS181 is active against 
influenza viruses that are resistant to neuraminidase inhibitors.71 Low­
level resistance to DAS181 can be induced, but resistant variants appear 
to be reduced in fitness.72

DAS181 is administered by oral inhalation and appears to be gener­
ally well tolerated. A phase II placebo­controlled study was recently 
conducted in 177 subjects with influenza A and B virus infections.73 
DAS181 was administered either as a single 10­mg dose or as a daily 
10­mg dose for 3 days. Compared with placebo recipients, DAS181 
recipients had a statistically significant decrease in virus load deter­
mined by polymerase chain reaction (PCR) assay between days 1 and 
3 and days 1 and 5. However, there were no differences in resolution 
of clinical illness among the groups. Administration of DAS181 
appeared to be generally well tolerated, although transient elevations 
in alkaline phosphatase level were reported.73

DAS181 has also been utilized to treat parainfluenza virus type 3 
infections in lung transplant and stem cell transplant patients.74,75 These 
case reports described clinical improvement, increased pulmonary 

(1 to 5 µg/mL).45 Neurotoxic reactions may be transiently reversed by 
physostigmine administration, and lidocaine has been used to treat 
ventricular arrhythmias. Long­term amantadine ingestion has been 
associated with livedo reticularis, peripheral edema, orthostatic hypo­
tension, and, rarely, congestive heart failure, vision loss, or urinary 
retention. Peripheral edema and livedo reticularis may improve if 
treatment is switched from amantadine to rimantadine.46 Patients with 
preexisting seizure disorders have an increased frequency of major 
motor seizures during amantadine use, and dosage reductions are 
advised. Psychiatric side effects in patients with Parkinson’s disease  
and psychotic exacerbations in patients with schizophrenia may occur 
with addition of amantadine. Rash and leukopenia have been described 
rarely.

Rimantadine administration is associated with dose­related side 
effects similar to side effects observed with amantadine, although the 
risk for CNS side effects is lower with rimantadine at dosages of 
200 mg/day or 300 mg/day in ambulatory adults.5 During prophylaxis, 
excess withdrawal rates are usually less than 5%. In older nursing home 
residents, dosages of 200 mg/day are associated with higher side effect 
rates, whereas dosages of 100 mg/day seem to be better tolerated.41,47 
Rimantadine may uncommonly cause exacerbations of seizures in 
patients not receiving anticonvulsants and was associated with an 
unexplained excess mortality in one nursing home study.47

The clinical observations of dry mouth, pupillary dilation, toxic 
psychosis, and urinary retention in acute amantadine overdose suggest 
that anticholinergic activity is present in humans. Amantadine shows 
activity on the adrenergic nervous system by affecting accumulation, 
release, and reuptake of catecholamines in the CNS and in the periph­
eral nervous system. Malignant ventricular arrhythmia after amanta­
dine overdose has been described in humans.

Amantadine and rimantadine lack mutagenicity in vitro; carcino­
genicity studies have not been reported for either. Amantadine is tera­
togenic and embryotoxic in rats, and rimantadine may cause teratogenic 
effects in rabbits and maternal toxicity and embryotoxicity at high 
dosages in rodents. Both drugs are classified in pregnancy category C. 
Birth defects have been reported after amantadine exposure during 
pregnancy.48 The safety of neither amantadine nor rimantadine has 
been established in pregnancy. Because of excretion in breast milk, use 
is not recommended in nursing mothers.

Clinical Studies
Influenza A
Amantadine and rimantadine have been efficacious for the prevention 
and treatment of influenza A virus infections in young healthy 
adults.5,40,49 A systematic review of published studies in children and 
the elderly concluded that available data only demonstrate that aman­
tadine has prophylactic efficacy and a modest therapeutic effect in 
children.50 In the elderly, no data were available to support a conclu­
sion of prophylactic or therapeutic efficacy of either adamantane. The 
emergence of widespread and nearly complete amantadine resistance 
among influenza A/H3N2 isolates,26 as well as the amantadine resis­
tance of the pandemic A (H1N1)pdm09 strains, precludes the empiri­
cal use of adamantanes for management of an untyped influenza A 
outbreak. Amantadine and rimantadine, both at a dosage of 200 mg/
day in adults, are about 70% to 90% protective against clinical illness 
caused by various susceptible influenza A subtypes, including suscep­
tible pandemic strains.51 Prophylaxis is effective in preventing nosoco­
mial influenza and possibly in curtailing nosocomial outbreaks caused 
by such strains. Protection seems to be additive to that provided by 
vaccine.52

Rimantadine was less effective than zanamivir in reducing cases of 
influenza A illness in adults in a long­term care facility.53 The difference 
in protective efficacy was largely due to the emergence of rimantadine­
resistant viruses that caused rimantadine prophylactic failure; no 
zanamivir­resistant viruses were isolated. Rimantadine administration 
to school­aged children (5 mg/kg/day) decreased the risk for influenza 
A illness in recipients and possibly in their family contacts. Postexpo­
sure prophylaxis with these drugs provided inconsistent protection to 
family contacts, however, in part, depending on whether ill index chil­
dren were treated.19 Dosages of 100 mg/day seem to be protective 
against influenza A illness and are well tolerated in adults.54
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Spectrum
Laninamivir octanoate exhibits little or no influenza virus neuramini­
dase inhibitory activity in vitro.77 However, its hydrolysis product is a 
potent inhibitor of neuraminidases of N1 to N9 influenza A viruses 
plus influenza B and their replication in cell culture at nanomolar 
concentrations.78 These include seasonal and pandemic influenza A/
H1N1, highly pathogenic avian influenza (HPAI) H5N1 viruses, and 
clinical isolates of oseltamivir­resistant H1N1, H3N2, H5N1, and A 
(H1N1)pdm09. Median inhibitory concentrations in cell culture vary 
over a wide range and in general appear to be intermediate between 
those of oseltamivir carboxylate (lower) and zanamivir (higher), but 
the clinical importance of these differences is not yet known.

In preclinical studies, laninamivir octanoate reduced fever in 
ferrets, mortality in mice, and virus concentrations in lung in ferrets 
and mice and brain in mice after induced influenza with a variety of 
viruses: A/PR/8/34, HPAI H5N1, A (H1N1)pdm09, B/Malaysia/2506/ 
2004, as well as oseltamivir­resistant A H1N1 and HPAI H5N1 clinical 
isolates possessing the H274Y mutation, as reviewed by Yamashita and 
associates.78 In these studies, laninamivir octanoate was administered 
as a single intranasal dose after intranasal inoculation of virus and was 
either as or more efficacious than multiple doses of oral oseltamivir or 
intranasal zanamivir. The results of these studies in animals with exper­
imental influenza have been replicated in part in therapeutic trials of 
a single laninamivir octanoate dose in the clinic (see later).

Single doses of laninamivir octanoate are also efficacious prophy­
lactically in mice. One dose prevents mortality and reduces virus con­
centration in lungs and brain when administered as much as 7 days 
before virus challenge.79

Mechanism of Action
See subsequent discussion of mechanism of action under 
“Oseltamivir.”

The basis for the prolonged persistence of laninamivir in the respi­
ratory tract after intranasal or intratracheal administration of lanina­
mivir octanoate in animals or oral inhalation in humans is not 
completely understood. In human volunteers, bronchoalveolar lavage 
samples obtained serially over 24 hours after oral inhalation of a single 
40­mg dose of laninamivir octanoate reveal concentrations that exceed 
influenza virus neuraminidase inhibitory concentrations at all test 
times.80 In mice, intranasal administration of carbon­14 (14C)–labeled 
laninamivir octanoate demonstrates prolonged retention of laninami­
vir in lung tissues. Microautoradiography indicates that laninamivir 
octanoate is taken into airway epithelial cells, seemingly hydrolyzed to 
the antiviral molecule laninamivir by intracellular esterases, and then 
released slowly extracellularly, perhaps as a result of its hydrophobic 

function, and decreased virus loads. Additional clinical studies of 
DAS181 are being planned.

LANINAMIVIR OCTANOATE
Laninamivir octanoate (Inavir) is an investigational drug except for its 
approval in Japan. It is the prodrug of laninamivir, an inhibitor of 
influenza A and B neuraminidases.76 Laninamivir is (2R,3R,4S)­3­
acetamido­2­[CIR,2R­2,3­dihydroxy­1­methoxypropyl]­4­quanidino­
3,4­dihydro­2­H­pyram­6­carboxylic acid (Fig. 44­3D). Laninamivir 
octanoate consists of an octanoic acid ester side chain attached at the 
C3 position of laninamivir. Laninamivir octanoate, like polymeric 
zanamivir conjugates, shares the pharmacokinetic characteristic of 
persisting for a prolonged period in the respiratory tract after admin­
istration intranasally or intratracheally in animals or by oral inhalation 
in humans. These observations have presaged therapeutic effects of a 
single dose in animals with experimentally induced influenza in 
patients as well.

FIGURE 44-2 Molecular model of DAS181. The catalytic domain of 
the sialidase (AvCD) is shown in green and the protruding anchoring 
domain (AR) on the carboxyl terminus in blue. (From Malakhov M, Aschen-
brenner L, Smee D, et al. Sialidase fusion protein as a novel broad-spectrum 
inhibitor of influenza virus infection. Antimicrob Agents Chemother. 
2006;50:1470.)

FIGURE 44-3 Chemical structures of oseltamivir carboxylate (A), zanamivir (B), peramivir (C) and laninamivir (D). 
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laninamivir octanoate across the range of persons in healthy and high­
risk groups, these published data on laninamivir octanoate tolerance 
plus those from studies of orally inhaled zanamivir collectively suggest 
that orally inhaled laninamivir octanoate will likely prove to be well 
tolerated and safe in the clinic.

Postmarketing studies of laninamivir octanoate in Japan concluded 
that the safety profile of laninamivir octanoate for abnormal behavior/
delirium and syncope is similar to that of other neuraminidase inhibi­
tors.90 In Japan, it is recommended in the product labeling that teenage 
patients inhaling laninamivir octanoate should remain under constant 
parental supervision for at least 2 days to monitor for behavioral 
changes to prevent associated self­injury. To avoid syncope, patients 
should inhale laninamivir octanoate in a relaxed sitting position. In 
another postmarketing survey for laninamivir octanoate tolerance, 50 
patients of 3542 (1.4%) reported an adverse event.91 Commonly 
reported adverse events included psychiatric disorders (abnormal 
behavior), gastrointestinal symptoms, and nervous system disorders 
such as dizziness, with frequencies of 0.48%, 0.45%, and 0.17%, respec­
tively. These usually appeared on the day of laninamivir octanoate 
treatment and resolved in 3 days. These adverse reactions and their 
frequency were considered comparable to those previously observed 
during clinical trials, and thus were believed to confirm no noticeable 
problem with safety.

Clinical Studies
Limited data from controlled trials are available on the efficacy of orally 
inhaled laninamivir octanoate for influenza treatment, although three 
randomized, controlled trials on the efficacy and tolerance of lanina­
mivir octanoate and one observational study comparing it with other 
neuraminidase inhibitors have been reported. In these trials, lanina­
mivir octanoate has been administered as an orally inhaled powder 
with a proprietary device that has two containers of 10­mg dry lanina­
mivir octanoate powder. The manufacturer’s instructions recommend 
two inhalations from each 10­mg changer. For children, four inhala­
tions are necessary, whereas eight inhalations from two devices are 
required for adults. Occasionally, young children do not inhale the 
medication completely owing to technical difficulty with the device.87

Of 87 pediatric patients with influenza of less than 48 hours in 
duration, 44 were randomized to treatment with a single inhaled dose 
of laninamivir octanoate (N = 55), 20 or 40 mg, according to age, or 
inhaled zanamivir, 10 mg twice daily for 5 days (N = 41).87 Median 
times to fever resolution were 36 hours in the laninamivir octanoate 
groups and 37 hours in the zanamivir­treated group. This relatively 
small study suggested that a single dose of inhaled laninamivir octano­
ate was as efficacious as the recommended 5­day treatment with zana­
mivir. In another study, 180 children 9 years or younger with influenza 
of less than 36 hours in duration were randomized to a single oral 
inhalation of 40 (N = 61) or 20 mg (N = 61) laninamivir octanoate or 
oseltamivir 2 mg/kg (N = 62) ingested twice daily for 5 days.88 Of the 
180 children, 62% (112) were infected with influenza A H1N1 virus, 
of which all but 4 possessed the H274Y mutation, mediating oseltami­
vir resistance. Oseltamivir therapy was likely not to have been different 
from placebo. The median times to alleviation of influenza illness in 
children were significantly less (49.6 and 44.3 hours) in the 40­ and 
20­mg laninamivir groups, respectively, than in the oseltamivir­treated 
group (110.5 hours). Treatment effects on virus concentration and 
persistence in upper airway secretions were inconsistent, although on 
day 3, 10%, none, and 25% of subjects in the three groups, respectively, 
were still excreting virus. There were no clinical therapeutic or viro­
logic differences among children infected with influenza A H3N2 or B 
viruses, but the numbers of cases were small.

In a double­blind, randomized noninferiority trial, 1003 young 
healthy adults with febrile influenza for no more than 36 hours were 
randomized to receive either 40 mg or 20 mg of laninamivir octanoate 
by oral inhalation once or oseltamivir, 75 mg twice daily orally, for 5 
days.89 The primary end point was time to influenza illness alleviation. 
Unfortunately, as in the pediatric study of Sugaya and Ohashi,88 66% 
of the subjects were infected with oseltamivir­resistant influenza A 
H1N1 virus. The median times to resolution of illness in patients 
infected with this virus were 74.0, 85.8, and 77.8 hours, respectively, 
which were not different. Virus was detected by culture significantly 

poor membrane permeability.81 The cellular and molecular processes 
underlying these observations are not yet determined.

Resistance
No extensive studies have been reported on the emergence of 
laninamivir­resistant strains after laninamivir exposure in vitro or 
laninamivir octanoate treatment in animals or patients. However, in 
one study in mice infected with an A H1N1 virus, no viruses with 
reduced susceptibility to laninamivir were recovered.82

Pharmacokinetics
Epithelial lining fluid concentrations of laninamivir octanoate and 
laninamivir calculated from analysis of bronchoalveolar lavage wash­
ings after a single oral inhalation of 40 mg laninamivir octanoate were 
102.4 and 8.6 µg/mL, respectively, at 4 hours in healthy adult volun­
teers.76 The disappearance half­times in bronchoalveolar lavage fluid 
were 41 and 141 to 241 hours, respectively. The plasma t elim1

2
 values 

were 2.6 and 45.7 hours, respectively. Laninamivir concentrations in 
epithelial lining fluid exceeded the median inhibitory concentrations 
for influenza neuraminidases at all time points for 240 hours after dose 
inhalation. In other healthy adult volunteers, evaluation of the phar­
macokinetics of laninamivir octanoate and laninamivir was done after 
oral inhalation of single doses from 5 to 120 mg.83 Laninamivir octano­
ate appeared rapidly in plasma with a Cmax at 0.5 to 1.0 hour compared 
with 4.0 hours for laninamivir. Plasma t elim1

2
 values were 1.8 and 71.6 

to 80.8 hours, respectively. The plasma area under the concentration­
time curve (AUC) of laninamivir octanoate was linearly related to 
dose, while that of laninamivir increased disproproportionately. The 
mean cumulative excretion in urine over 144 hours was 2.3% to 3.6% 
and 10.7% to 14.6%, respectively.

After intravenous administration of 14C­laninamivir in rats, almost 
90% of the radioactivity was recovered in urine.84 In human volunteers, 
the clearance of both laninamivir octanoate and laninamivir is linearly 
related to CrCl.85 In subjects with none, mild, moderate, or severe renal 
impairment given a single orally inhaled dose of 20 mg laninamivir 
octanoate, the renal clearance of laninamivir octanoate and laninami­
vir is directly related to CrCl, whereas t elim1

2
 values are not. Geometric 

mean laninamivir octanoate clearance values declined from 26.0 mL/
min in normal control subjects to 6.5 mL/min in patients with severe 
renal impairment. However, t elim1

2
 values were 2.3 to 3.5 hours and not 

different among the four groups. Laninamivir renal clearance declined 
from 65.0 to 12.7 mL/min across the four groups, whereas t elim1

2
 was 

not different among the groups, ranging from 53.2 to 57.0 hours. The 
likely explanation is that the elimination of both laninamivir octanoate 
and laninamivir reflect slow release of these compounds from tissues 
into plasma, rather than renal elimination, a pharmacokinetic concept 
called “flip­flop.”86 These pharmacokinetic data indicate that reduction 
of laninamivir octanoate doses may be appropriate for patients with 
renal impairment for pharmacokinetic reasons, but the lack of clear 
dose­related toxicity (see later) and the minimal absorption of orally 
inhaled drugs suggest that no dose adjustment will be needed.

Toxicity
Like orally inhaled zanamivir, orally inhaled laninamivir octanoate 
powder is well tolerated. In a double­blind study in healthy adult vol­
unteers, single doses from 5 to 120 mg or multiple doses of 20 or 40 mg 
twice daily for 5 days were as well tolerated as placebo.85

In clinical trials, patients with influenza were randomized to single 
laninamivir octanoate doses of 20 or 40 mg in adults or children 10 
years old or older, 20 mg in children younger than 10 years old,  
or inhaled zanamivir as the control neuraminidase inhibitor treat­
ments. Laninamivir octanoate inhaled once was as well tolerated as 
inhaled zanamivir 20 mg twice daily for 5 days.87 In a double­blind 
trial in children 9 years of age or younger with influenza, a single  
dose of inhaled laninamivir octanoate of 20 or 40 mg was as well toler­
ated as oseltamivir at 2 mg/kg body weight twice daily for 5 days.88 In 
a phase III double­blind trial in adults 20 years of age or older with 
influenza, a single dose of inhaled laninamivir octanoate of 20 or 
40 mg was as well tolerated as oral oseltamivir at 75 mg twice daily for 
5 days.89 Notwithstanding the lack of data from large, randomized, 
placebo­controlled, double­blind trials to establish the tolerability of 
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neuraminidase cleaves terminal sialic acid residues on glycoconjugates 
and destroys the receptors recognized by viral hemagglutinin on cells, 
on newly released virions, and on respiratory tract mucins. This action 
is essential for release of virus from infected cells and for spread within 
the respiratory tract.109 Inhibition of neuraminidase action causes 
newly formed virions to adhere to the cell surface and to form viral 
aggregates. Inhibitors limit spread of virus within the respiratory tract 
and may prevent virus penetration of respiratory secretions to initiate 
replication.

Resistance
Resistant variants selected by in vitro passage with oseltamivir carbox­
ylate or zanamivir have point mutations in the viral hemagglutinin or 
neuraminidase genes.98,110 Hemagglutinin variants generally have 
mutations in or near the receptor binding site that make them less 
dependent on neuraminidase action for release from cells in vitro and 
that confer cross­resistance among neuraminidase inhibitors. Most of 
these variants retain full susceptibility in vivo.98 Neuraminidase vari­
ants contain single amino­acid substitutions in the framework or cata­
lytic residues of the active enzyme site that alter drug binding and 
cause approximately 30­fold to more than 1000­fold reduced suscepti­
bility in enzyme inhibition assays.96 Influenza A variants selected 
by oseltamivir carboxylate are subtype specific, most commonly 
Arg292Lys in N2 and H275Y in N1, without cross­resistance to zana­
mivir. The altered neuraminidases have reduced activity or stability in 
vitro, and early studies of these variants usually demonstrated decreased 
infectivity and transmissibility in animals.111

Oseltamivir therapy has been associated with recovery of viruses 
with reduced susceptibility in about 1% of immunocompetent adult 
and 18% of pediatric recipients.112,113 Generally, emergence of resistant 
variants has not been associated with clinical worsening, although 
prolonged recovery of resistant variants, sometimes in combination 
with M2 inhibitor resistance, has been observed in highly immuno­
compromised hosts.114 Transmission of oseltamivir­resistant virus has 
been documented.115,116

Although isolation of oseltamivir­resistant strains from treated 
immunocompetent patients was uncommon, in 2007­2008, oseltamivir­
resistant seasonal H1N1 virus appeared widely in immunocompetent 
individuals in Norway in the absence of antiviral pressure.117 This 
mutant virus became the transmissible, pathogenic prevalent global 
H1N1 virus strain. Similarly, during the 2009 A (H1N1)pdm09 pan­
demic, there was no linkage between prevalent use of oseltamivir in 
immunocompetent patients and the appearance of oseltamivir­resistant 
A (H1N1)pdm09 strains, which was uncommon. The prevalence of 
oseltamivir­resistance ranged from 0.6% (5/804 strains) tested in 
Ontario, Canada,118 to 1.0% in the United States119 and 1.1% (16/1488 
isolates) in Southeast Asia.120 The prevalence was 8.11% in children 
whose immunocompetence was not specified.121

On the other hand, oseltamivir­resistant isolates are not uncom­
monly recovered from immunocompromised patients being treated 
with the drug. Reports indicated that some of the A (H1N1)pdm09 
oseltamivir­resistant strains retained replicative fitness,116 transmissi­
bility,122 and pathogenicity comparable with wild­type oseltamivir 
strains in murine and ferret models of influenza infection.123 Clinical 
illness caused by oseltamivir­resistant H1N1 strains in immunocom­
petent children responded less well to oseltamivir,124 as evidenced by 
higher fever at day 4 or 5 of treatment, although some found no evi­
dence of prolonged illness in children infected with drug­resistant 
virus.125 Others reported a significantly longer time to achieve nonde­
tectable virus load in patients with oseltamivir­resistant H1N1 com­
pared with oseltamivir­sensitive strains.126

Pharmacokinetics
Oral oseltamivir is rapidly absorbed and metabolized by esterases  
in the gastrointestinal tract, liver, and blood to the active carboxylate. 
The estimated bioavailability of the carboxylate is approximately 
80%,127 and its time to maximal plasma concentrations averages 2 to 
4 hours. Dose proportionality of oseltamivir has been reported over 
the dose range from 75 to 675 mg. Only low blood levels of the pro­
drug are detectable. Rarely, possession of a constitutive variant of car­
boxylesterase 1, the enzyme that normally catalyzes the conversion of 

less often at day 3 in the laninamivir octanoate 40­mg (28%) and 20­mg 
(32%) groups than in the oseltamivir group, which might be con­
sidered analogous to a placebo­treated cohort. Among individuals 
infected with influenza A H3N2 virus, median times to illness allevia­
tion were not different between those treated with laninamivir octano­
ate 40 mg (73.5 hours) and oseltamivir (67.5 hours) but significantly 
longer in the group treated with laninamivir octanoate 20 mg (91.2 
hours). There were no differences among the groups in H3N2 virus 
concentration in upper airway secretions or persistence. The 95% con­
fidence intervals of the pooled analysis of all data were less than the 
prescribed noninferiority margin. It was concluded that a single inha­
lation of laninamivir octanoate is effective for treatment of seasonal 
influenza including that caused by oseltamivir­resistant virus in adults.

In an observational study, 211 children with febrile influenza of  
less than 48 hours due to influenza A H3N2 infection and 45 with A 
(H1N1)pdm09 infection were treated according to the recommenda­
tions of clinicians and the preference of patients or their guardians.92 
Of the 256 children, 119 were treated with oseltamivir in weight­
appropriate doses, zanamivir (124 cases), one dose of intravenous pera­
mivir (4 children),79 or a single dose of orally inhaled laninamivir 
octanoate of 40 mg for children 10 years or older or 20 mg for those 
younger than 10 years (9 children). The primary end point was dura­
tion of fever from the first dose of neuraminidase inhibitor. There were 
no differences in the duration of fever among the oseltamivir, zanami­
vir, or laninamivir octanoate groups. The median time to resolution of 
fever in the peramivir group (17.0 hours) was significantly less than in 
the other three groups.

Available data suggest that a single inhaled dose of laninamivir 
octanoate is efficacious in children with influenza of less than 48 hours, 
but efficacy in other populations, especially those with high­risk condi­
tions, remains to be evaluated, as does the impact on complications of 
influenza.

OSELTAMIVIR
Spectrum
Oseltamivir phosphate (Tamiflu) is the ethyl ester prodrug of oselta­
mivir carboxylate, a sialic acid analogue (see Fig. 44­3A) that is a 
potent, specific inhibitor of the neuraminidases of influenza A and B 
viruses.93,94 The metabolite, oseltamivir carboxylate, is approximately 
50­fold more potent than the phosphate prodrug.95 Oseltamivir car­
boxylate competitively and reversibly interacts with the active enzyme 
site to inhibit neuraminidase activity at low nanomolar concentra­
tions.96 Inhibitory concentrations for neuraminidase inhibitors in cell 
culture have a broad range (≥1000­fold), depending on the assay 
method, and may not correlate with in vivo activity.97,98 Oseltamivir 
carboxylate is active against viruses containing all nine influenza A 
neuraminidase subtypes recognized in nature, including more recent 
pathogenic avian viruses (H5N1, H7N7, H9N2), reassortant virus con­
taining neuraminidase from the 1918 pandemic strain, M2 inhibitor–
resistant strains,4,99 and the recently circulating (2009) pandemic A/
H1N1 viruses (S­OIV).27 Resistance to oseltamivir has been recently 
reported in an H7N9 isolate.100

Influenza B viruses are 10­fold to 20­fold less susceptible to oselta­
mivir carboxylate than influenza A viruses, and influenza B virus 
illness responds less well clinically and virologically to oseltamivir than 
influenza A illness.101,102,103 The carboxylate is not cytotoxic and inhibits 
neuraminidases from mammalian sources or other pathogens only at 
106­fold higher concentrations. Oral oseltamivir is active in murine 
and ferret models of influenza.94,97 A prophylactic regimen given orally 
twice daily for 10 days completely protected ferrets against morbidity 
and mortality caused by H5N1 infection and did not interfere with 
development of a protective immunity against subsequent H5N1 infec­
tion.104 Neuraminidase inhibitors combined with M2 inhibitors or 
ribavirin show enhanced antiviral activity in vitro and in animal 
models of influenza A virus infection,105 including H5N1 virus.106,107 
Amantadine combined with oseltamivir prevented the emergence of 
amantadine resistance in cell culture.108

Mechanism of Action
The neuraminidase inhibitor drugs oseltamivir, zanamivir, peramivir, 
and laninamivir share a common mechanism of action. Influenza 



P
a
rt

 I
 B

as
ic

 P
ri

n
ci

p
le

s 
in

 t
h

e 
D

ia
g

n
o

si
s 

an
d

 M
an

ag
em

en
t 

o
f 

In
fe

ct
io

u
s 

D
is

ea
se

s
538

Oseltamivir is generally well tolerated in patients of all ages, includ­
ing pregnant women and fetuses,150,151 and no serious end­organ toxic­
ity has been recognized.97,152­154 Oral administration is associated with 
nausea, epigastric distress, or emesis in 10% to 15% of adults receiving 
75 to 150 mg twice daily. These gastrointestinal complaints are usually 
mild to moderate in intensity, resolve despite continued dosing, and 
are ameliorated by administration with food. Nausea and vomiting 
(and possibly, dizziness) are dose related in adults.155 Discontinuation 
rates of 1% to 2% were observed in controlled treatment studies. The 
mechanism of nausea and vomiting is uncertain, but the risk seems to 
be lower in older adults. Long­term prophylaxis has not been associ­
ated with an increased risk for adverse events,97,156 although headache 
may occur in older recipients. Self­injury, delirium, and psychiatric 
illness have been reported in patients, primarily pediatric or adoles­
cent, with influenza treated with oseltamivir, mostly in Japan.157 Analy­
ses of neuropsychiatric reactions among patients with influenza treated 
with oseltamivir in three large U.S. administrative databases did not 
demonstrate such an association.158­160 The decline in cases in Japan 
after a regulatory recommendation to restrict oseltamivir use in chil­
dren 10 to 19 years of age has been associated with a decline in 
oseltamivir­related cases but a corresponding rise in cases associated 
with zanamivir, the inhaled, minimally systemically bioavailable neur­
aminidase inhibitor. The latter fact raises further doubts about a causal 
association between oseltamivir therapy and neuropsychiatric and 
behavioral adverse reactions in patients with influenza.161 Erythema­
tous rashes and rare instances of severe eruptions or Stevens­Johnson 
syndrome, hepatic inflammation, hemorrhagic colitis, anaphylaxis, 
and thrombocytopenia have been reported, but their relationship to 
oseltamivir is uncertain.

Clinical Studies
Oseltamivir is efficacious for the prevention and treatment of influenza 
A and B virus infection. In the United States, it is approved for the 
prevention of influenza in patients 1 year and older and the treatment 
of acute uncomplicated influenza in patients 2 weeks of age and older 
who have been symptomatic for no more than 2 days.133

In early clinical experiments in volunteers with induced influenza 
it was demonstrated that oral oseltamivir is highly protective against 
experimental human influenza, and early treatment is associated with 
reductions in viral titers, symptoms, nasal cytokines, and middle ear 
pressure abnormalities.97 Subsequent controlled trials in patients—
mostly healthy adults and children with naturally acquired seasonal 
influenza A infection—demonstrated that early oseltamivir treatment 
of acute influenza reduces the time to illness alleviation by 1 to 11

2 days, 
fever duration, and viral titers in the upper respiratory tract.112,162­164 
Earlier treatment maximizes the speed of resolution of illness.165 Treat­
ment of children reduces the risk for otitis media and decreases overall 
antibiotic use.112 In healthy and high­risk adults, early treatment has 
been reported to decrease the risk for lower respiratory tract complica­
tions leading to antibiotic administration and to hospitalization,166 but 
this has been questioned.167 A meta­analysis of observational studies of 
high­risk patients with seasonal influenza concluded that oseltamivir 
treatment may reduce hospitalization, whereas treatment of hospital­
ized patients reduces respiratory failure, intensive care unit admission, 
and mortality.168,169 A recent meta­analysis based on a large number of 
observational data from individual cases suggested that oseltamivir 
treatment may be associated with a reduction in mortality risk.169a 
However, a Cochrane analysis did not conclude that the evidence indi­
cated that oseltamivir treatment reduced complications or hospitaliza­
tions.169b In hospitalized patients with infection with influenza A 
(H1N1)pdm09, oseltamivir provides similar benefits even if treatment 
is started more than 48 hours after clinical illness has begun.170­172

It is uncertain to what extent oseltamivir treatment may reduce 
transmission, although a review of four trials of prophylaxis suggests 
that oseltamivir may have reduced transmission.173,174

Oseltamivir is less efficacious for the treatment of influenza B than 
for influenza A virus infection in children175,176 and adults.176 An analy­
sis of 284 cumulated cases of influenza A (H5N1) infections in a global 
registry demonstrated that crude mortality was significantly less in 
those treated with oseltamivir (40%) than in those not treated (76%) 
when started up to 6 to 8 days after symptoms onset.177

oseltamivir phosphate to carboxylate, can markedly impair the hydro­
lysis of the parent compound, resulting in the potential for a compro­
mised antiviral effect after oseltamivir administration.128,129 Ingestion 
with food delays absorption slightly but does not decrease overall 
bioavailability. Oseltamivir administered via a nasogastric tube to 
patients with respiratory failure requiring mechanical ventilation was 
well absorbed and converted to oseltamivir carboxylate.130,131 In healthy 
adults, peak and trough plasma concentrations average 0.35 µg/mL 
and 0.14 µg/mL after 75­mg doses.132 In infants up to 1 year of age, 
systemic exposure (AUC0­12 hr) to the carboxylate exhibits decreasing 
variability while clearance increases.121 Recommended doses of oselta­
mivir are 3.0 mg/kg twice daily for infants from birth to 8 months of 
age and 3.5 mg/kg twice daily for those 9 to 11 months of age. In 
children older than 1 year, carboxylate exposure increases gradually 
with increasing age132 so that weight­based dosing is recommended.133 
In healthy elderly adults, overall drug exposure is about 25% greater 
than in younger adults, most likely owing to differences in renal elimi­
nation. Morbid obesity (body mass index ≥40 kg/m2) does not alter 
oseltamivir pharmacokinetics.134 The effects of pregnancy on the phar­
macokinetics of oseltamivir are unclear. One study reported no differ­
ences among women in the third trimester of pregnancy and historical 
controls,135 whereas another reported a 25% to 30% reduction in 
systemic (AUC0­12 hr) oseltamivir­carboxylate exposure in pregnant 
women compared with concurrent nonpregnant controls, perhaps 
suggesting a need for 75 mg three times a day of oseltamivir for 
treatment.136

Plasma protein binding of the prodrug (42%) and the carboxylate 
(<3%) is low.127 The Vd is moderate (23 to 26 L). In animals, lower 
respiratory tract levels are similar to or exceed the levels in blood137; 
and in humans, the carboxylate is detectable in middle ear and maxil­
lary sinus fluid at concentrations similar to those in plasma.138

Oseltamivir concentrations occur in breast milk.139 In the ex vivo 
human placenta model, oseltamivir was extensively metabolized to the 
carboxylate moiety, but transplacental passage of oseltamivir carboxyl­
ate occurred at a low rate, inferring that fetal exposure during maternal 
treatment with oseltamivir may be minimal.140 No carboxylate was 
detected in cerebrospinal fluid in one child,141 whereas Cmax values in 
cerebrospinal fluid were 2.1% and 3.5% for corresponding plasma con­
centrations for oseltamivir and oseltamivir carboxylate in eight healthy 
adults after ingestion of 150 mg of oseltamivir.142 After oral oseltamivir, 
the plasma t elim1

2
 of the carboxylate averages 6 to 10 hours in healthy 

adults. The prodrug and carboxylate are excreted primarily unchanged 
through the kidney; the carboxylate is eliminated by glomerular filtra­
tion and tubular secretion via a probenecid­sensitive anionic trans­
porter. Clearance varies linearly with CrCl, such that t elim1

2
 increases 

to 22 hours in patients with CrCl less than 30 mL/min, and dosage 
reductions are needed.127 Oseltamivir carboxylate is removed with dif­
ferent degrees of efficiency by different renal replacement therapies 
(peritoneal, hemodialysis, and continuous renal replacement thera­
pies). Doses of oseltamivir for patients with renal impairment receiving 
renal replacement therapy have been published.143

Uncomplicated influenza illness does not seem to alter the pharma­
cokinetics of oseltamivir.127 Cystic fibrosis patients appear to clear osel­
tamivir carboxylate more rapidly than patients who do not have the 
disease.144

Interactions
Probenecid reduces renal clearance of oseltamivir by about 50%.145 Few 
other clinically important drug interactions have been recognized. 
Sotalol appeared to induce a torsades de pointes cardiac arrhythmia 
during oseltamivir therapy for influenza.146 Specific studies have found 
no interactions with antacids, acetaminophen, or aspirin or known 
inhibitors of selected renal tubular secretion pathways, amoxicillin, 
cimetidine, cyclosporine, mycophenolate, tacrolimus,127,147 warfarin,148 
or rimantadine.149

Toxicity
Preclinical studies have found no evidence of mutagenic, teratogenic, 
or oncogenic effects. High­dose oseltamivir causes renal tubular min­
eralization in mice and maternal toxicity in rabbits. It is classified as 
pregnancy category C.
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possessing the H275Y mutation, intravenous peramivir is likely to be 
suboptimal and intravenous zanamivir is preferred.205

Pharmacokinetics
The absolute oral bioavailability of peramivir is 2%.206 As a result, clini­
cal development has focused on its efficacy and safety after intramus­
cular and intravenous injection. Fortunately, its long elimination 
half­life supports single­dose intravenous treatment regimens. At 
doses up to 2 mg/kg in adults, plasma t 1

2
 and AUC0­α increase in pro­

portion to dose. At higher doses of greater than 2 mg/kg being used 
in clinical trials in adults, the plasma t 1

2
 in healthy adults is approxi­

mately 20 hours, which supports single­dose treatment; apparent Vd is 
approximately 2 L/kg, and systemic clearance is 85 mL/hr/kg. The cor­
responding values for children with mean age of 9 years are 7.7 hours, 
0.3 L/kg, and 173 mL/hr/kg.207 The physiologic counterpart of this 
large Vd is unknown, because no locus of drug sequestration has been 
identified. Plasma protein binding is less than 30%. Peramivir concen­
trations in plasma are 10­fold to 50­fold higher than concurrent levels 
in nasal wash or pharyngeal gargle solutions.206 Peramivir is detectable 
at these sites 24 hours after dosing, at concentrations greater than levels 
that inhibit neuraminidases of most strains of influenza virus. The 
clinical relevance of these data is unknown.

A 300­mg dose injected intravenously once in young healthy adults 
with influenza illness of less than 48 hours’ duration is efficacious and 
well tolerated.208 Infusion of this dose over a median of 38 minutes 
produced median plasma concentrations of 18,100 ng/mL at the end 
of the infusion and 14.8 ng/mL 18 to 24 hours later. The 600­mg dose 
yielded corresponding values of 36,300 and 32.8 ng/mL. The median 
inhibitory concentration for 50% of isolates (IC50) for the neuramini­
dase of the patient viruses ranged from 1.15 nmol/L for influenza A/
H1N1, 1.36 nmol/L for influenza A/H3N2, and 2.81 nmol/L for influ­
enza B isolates.204 In pediatric patients 1 month to 15 years of age 
infected with influenza A (H1N1)pdm09, an intravenous infusion of 
10 mg/kg once daily produced comparable plasma concentrations to 
those seen in young healthy adults (see earlier): median peramivir 
plasma concentrations were 33,150 ng/mL at the end of the infusion 
and 20.7 ng/mL 18 to 24 hours later.207 The relationship of these plasma 
concentration data to efficacy is unclear. In mice, plasma AUC of pera­
mivir is the pharmacokinetic characteristic related to efficacy.209

Data on peramivir distribution into breast milk in humans are 
unavailable.206 Less than 5% of 14C­labeled peramivir administered to 
rats is recovered in breast milk. Peramivir is eliminated unchanged into 
urine by glomerular filtration, and probenecid does not affect its excre­
tion. In patients with renal insufficiency, mean t 1

2
 ranges from 24 to 

30 hours in subjects with mean CrCl of 21 to 68 mL/min. In individu­
als with dialysis­dependent renal failure, t 1

2
 averages 79 hours.

In October 2009, the U.S. Food and Drug Administration issued an 
Emergency Use Authorization (EUA) for the administration of intra­
venous peramivir for the treatment of hospitalized patients with sus­
pected or confirmed cases of influenza A (H1N1)pdm09 infection, 
because no other intravenous neuraminidase inhibitor drug was avail­
able. In adults with normal renal function, the recommended intrave­
nous dose was 600 mg/day; and in children 6 to 17 years of age it was 
10 mg/kg intravenously once daily. Doses for other age groups and 
patients with renal impairment including end­stage renal disease 
requiring different renal­replacement therapies have been suggested.210 
The EUA was terminated in 2010, and peramivir was to be available 
only through clinical trials (see “Clinical Studies,” later).

Interactions
Adverse drug­drug interactions have not been reported in subjects 
given peramivir, but the number of individuals exposed is still modest. 
No pharmacokinetic interaction of intravenous peramivir and oral 
oseltamivir or rimantadine was observed in healthy volunteers.211 
Drug­drug interactions in individuals receiving peramivir are unlikely 
because it neither induces nor inhibits important drug­metabolizing 
cytochrome P­450 enzymes.

Toxicity
Peramivir is generally nontoxic and well tolerated. Preclinical studies 
revealed no genotoxicity, reproductive toxicity, or developmental 

Oseltamivir treatment of hematopoietic stem cell transplant recipi­
ents with influenza may prevent the development of pneumonia and 
virus shedding, thereby both preventing influenza­related death in 
index patients and nosocomial transmission to others.178 Of 21 patients 
with leukemia who developed influenza and were treated with oselta­
mivir, none died, compared with 3 of 8 who were not treated.179

Prophylactic administration of once­daily oral oseltamivir (75 mg) 
is highly effective in reducing the risk for developing febrile illness 
during influenza season in unimmunized adults (efficacy 84%),180 
immunized nursing home residents (efficacy 92%),181 and transplant 
recipients (efficacy 80%).156 Prevention of influenza may reduce sec­
ondary complications in institutionalized older adults.181 Once­daily 
oseltamivir for 7 to 10 days is also effective for postexposure prophy­
laxis in household contacts, including children, and when ill index 
cases receive concurrent treatment.182,183 Oseltamivir chemoprophy­
laxis has been used to control institutional outbreaks of influenza A 
continuing despite M2 inhibitor use and of influenza B.184

PERAMIVIR
Spectrum
Peramivir ([1S,2S,3S,4R]­3­[(1S)­1­(acetylamino)­2­ethylbutyl]­4­
[(aminoiminomethyl)amino]­2­hydroxy­cyclopentanecarboxylic acid; 
Rapiacta) (see Fig. 44­3C) is an investigational agent in the United 
States but is approved in Japan, China, and South Korea. It is a potent, 
selective inhibitor of influenza A and B virus neuraminidases, includ­
ing that of all nine avian NA subtypes185 and influenza A (H1N1)
pdm09.186 It is a sialic acid analogue designed to be structurally distinct 
from oseltamivir and zanamivir such that cross­resistance to it among 
oseltamivir­resistant and zanamivir­resistant strains is not consistently 
observed.187,188 Like oseltamivir and zanamivir, peramivir inhibits 
influenza neuraminidase in enzyme assays at nanomolar concentra­
tions189 and requires micromolar concentrations to inhibit influenza 
replication in cell culture.190 It is a more potent inhibitor of influenza 
A than B viruses in vitro than is oseltamivir or zanamivir.190 The clini­
cal relevance of this difference has not yet been evaluated. Combina­
tion treatment of influenza A virus infection in cell culture and in mice 
with peramivir and ribavirin yields additive or synergistic interactions 
with no increase in toxicity.191 The antiviral effect of combinations of 
peramivir plus rimantadine in vitro is variable, ranging from additive 
to synergistic.192 In mice with experimental influenza infections, the 
combination of peramivir and rimantadine is synergistic.193 In murine 
and ferret models of influenza infection, peramivir is effective when 
administered intranasally,194 orally,195 and intramuscularly.196

Mechanism of Action
See previous discussion of mechanism of action under “Oseltamivir.”

Resistance
Peramivir­resistant influenza virus has been selected in vitro,187,188,197,198 
but not from peramivir­treated mice with experimental influenza 
infection,199 healthy volunteers given peramivir for prevention or treat­
ment of experimentally induced influenza A or B infection, or healthy 
treated patients.200 A peramivir­resistant virus possessing the H275Y 
mutation emerged during intravenous therapy for pandemic 2009 
influenza A/H1N1 in an immunocompromised patient.201 Peramivir­
resistant mutants generated in vitro may possess unaltered or dimin­
ished virulence and replicative capacity in mice and ferrets.202 Peramivir 
resistance associated solely with an alteration in the hemagglutinin 
gene conferred cross­resistance to oseltamivir and zanamivir and could 
cause lethal disease in mice. Infection with the resistant virus in mice 
was still amenable to peramivir therapy, however.198

Naturally occurring oseltamivir­resistant influenza viruses possess­
ing the H275Y mutation have a 100­186 to 661­fold202 reduced suscep­
tibility to peramivir, less than that of oseltamivir (982­fold). Studies 
suggest that infection due to viruses possessing the H275Y mutation 
may be successfully treated with higher dose regimens of injected 
peramivir in mice203 and high­risk patients.204 However, intravenous 
peramivir was not more effective than oseltamivir in a case report201 
and in an observational study of influenza caused by H275Y mutant 
strains.204 In 2009, the World Health Organization recommended that 
for treatment of infection due to influenza A (H1N1)pdm­09 strains 
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points among the peramivir­treated regimens or compared with 
reported patients treated with oseltamivir.215 A randomized controlled 
study of intravenously administered peramivir plus standard of care 
versus standard of care alone in patients hospitalized with influenza 
was recently terminated because of futility to show a difference between 
the peramivir and control groups.215,216

As noted earlier, intravenous peramivir is probably not effective for 
treatment of patients with oseltamivir resistance due to possession of 
the H275Y mutation; intravenous zanamivir has been recommended.

RIBAVIRIN
Spectrum
Ribavirin (1­β­d­ribofuranosyl­1,2,4­thiazole­3­carboxamide; Vira­
zole, Rebetol, Copegus) is a guanosine analogue (Fig. 44­4A) in which 
the base and the d­ribose sugar are necessary for antiviral activity. 
Ribavirin inhibits the in vitro replication of a wide range of RNA  
and DNA viruses, including myxoviruses, paramyxoviruses, arenavi­
ruses, flaviviruses, bunyaviruses, coronaviruses, togaviruses, reovi­
ruses, herpesviruses, adenoviruses, poxviruses, and retroviruses. By 
plaque assay, inhibitory concentrations range from 3 to 10 µg/mL for 
influenza, parainfluenza, and respiratory syncytial virus (RSV). High 
concentrations inhibit group C adenoviruses214 and pathogenic flavivi­
ruses,217 including West Nile virus in neural cells. Ribavirin does not 
inhibit severe acute respiratory virus (SARS) coronavirus in vitro.218

Low concentrations of ribavirin (1 to 10 µg/mL) reversibly inhibit 
macromolecular synthesis and the proliferation of rapidly dividing 
cells.219 Ribavirin decreases nucleic acid and protein synthesis, inhibits 
interferon­γ release, and increases apoptosis in human peripheral 
blood mononuclear cells in vitro,218,220 but it does not adversely affect 
polymorphonuclear leukocyte functions.221 Ribavirin has been postu­
lated to enhance cell­mediated immune responses by increasing type 
1 and suppressing type 2 cytokine responses in T cells221 and to decrease 
proinflammatory cytokine elaboration and inflammatory cell numbers. 
Inhibition of mast cell secretory responses occurs in vitro.

Aerosol administration is more effective than parenteral dosing in 
animal models of influenza and RSV infection. Parenteral ribavirin has 
antiviral and therapeutic activity in animal models of infection with 
Lassa virus, other arenaviruses, and bunyavirus (see Chapters 47, 168, 
and 169). Combinations of ribavirin with immunoglobulin in RSV 
infection and with M2 or neuraminidase inhibitors in influenza A 
infection or with neuraminidase inhibitors in influenza B infection 
show enhanced antiviral activity.12 The use of ribavirin in treatment of 
hepatitis B and C is discussed in Chapter 46.

Mechanism of Action
The antiviral mechanisms of action of ribavirin are complex and most 
likely vary for different viruses. Ribavirin causes alterations of cellular 
nucleotide pools, inhibits viral RNA synthesis, and may cause lethal 
mutagenesis of certain RNA virus genomes.221­223 Intracellular phos­
phorylation to the monophosphate, diphosphate, and triphosphate 
derivatives is mediated by host cell enzymes. In uninfected and RSV­
infected cells, the predominant derivative (>80%) is the triphosphate, 
which is rapidly lost, with an intracellular t elim1

2
 of less than 2 hours.

Ribavirin monophosphate competitively inhibits inosine mono­
phosphate dehydrogenase and interferes with the synthesis of 

toxicity.206 In multiple species of animals, the only apparent adverse 
effect is reversible nephrotoxicity, which is species (rabbit only) and 
gender (female) specific. The nephrotoxic dose is greater than 200 mg/
kg/day intravenously for 9 days.

The largest doses administered to humans, 800 mg orally200 and 
600 mg intravenously,208 have not been associated with consistent 
adverse symptoms or laboratory abnormalities compared with 
placebo.208 In placebo­controlled clinical trials of peramivir orally up 
to 800 mg/day for 4 to 5 days,200 300 mg/day intramuscularly once,212 
and 600 mg intravenously once,208 adverse symptoms were not reported 
more frequently in peramivir recipients than in placebo recipients.

In controlled, blinded trials as well as uncontrolled studies of intra­
venous peramivir, it has been generally well tolerated and safe. In a 
randomized, double­blind study comparing a single dose of peramivir 
of 300 or 600 mg and a matching placebo given intravenously to 300 
young healthy adults in an outpatient setting,208 nausea may have been 
reported more frequently in drug recipients (3.0%, 6.1%, and 1.0%, 
respectively, in the three groups). Extensive blood and urine laboratory 
tests revealed no differences among groups. In a randomized, double­
blind, double­dummy trial in young healthy adults with influenza 
treated with peramivir, 300 mg and 600 mg intravenously once, or 
oseltamivir, 75 mg orally twice daily for 5 days, the overall incidence 
of adverse effects was lowest in the 300­mg group: 14.0% compared 
with 18.1% and 20.0% in the other groups, respectively. Diarrhea 
(3.8%, 5.5%, and 5.2%), nausea (0.5%, 1.9%, and 4.4%), and a decreased 
neutrophil count (2.5%, 3.8%, and 3.6%) all tended to be lowest in the 
300­mg peramivir group.213 In a randomized, unblinded study in hos­
pitalized patients treated for influenza with intravenous peramivir at 
200 or 400 mg once daily, or oseltamivir at 75 mg orally twice daily, all 
for 5 days, the “incidence of adverse events was low and generally 
similar among treatment groups.”214

Assessment of side effects of intravenous peramivir in uncontrolled 
studies in hospitalized adults with high­risk comorbid conditions204 
also suggested that the drug was generally well tolerated. A single case 
of dilated cardiomyopathy or myocarditis in a volunteer infected with 
an influenza B challenge virus and treated with peramivir has been 
reported.200 The relationship of the cardiac disorder to the drug is 
unknown.

Clinical Studies
In a study in serosusceptible volunteers, peramivir prophylaxis with 50 
to 800 mg orally daily or placebo, initiated 24 hours before influenza 
A or B virus challenge and continued for 5 days, tended to prevent 
illness at doses of 200 mg or greater and to reduce viral shedding and 
titer in nasal washings in subjects inoculated with influenza A virus. 
No effect on preventing illness caused by influenza B virus was 
observed, although the duration of virus shedding tended to be less in 
individuals receiving 400 mg and 800 mg of peramivir.200

In early studies in patients with influenza, oral peramivir therapy 
with doses of 400 to 800 mg daily for 5 days200 and single intramuscular 
doses of 150 or 300 mg206 reduced median times to relief of symptoms, 
but the differences were not statistically significant from controls. Sub­
sequently, controlled trials with an intravenous formulation demon­
strated peramivir therapeutic efficacy and tolerance in patients with 
influenza due to susceptible virus strains. Peramivir treatment of natu­
rally acquired influenza in young adults with illness of 48 hours’ dura­
tion or less with 300 or 600 mg injected once intravenously versus 
placebo, reduced median time to relief of symptoms significantly from 
82 hours in the placebo group to 59 hours and 60 hours in the pera­
mivir 300­mg and 600­mg groups in the outpatient setting.208 Perami­
vir treatments also significantly reduced the proportion of subjects still 
excreting virus in nasal and throat secretions at day 3 from 51% in 
placebo recipients to 26% to 37% in those treated with peramivir, 600 
or 300 mg, respectively.208

In 137 hospitalized patients randomized to 5 days’ treatment with 
intravenous peramivir, 200 or 400 g/day, compared with historical 
reports with oral oseltamivir at 75 mg twice daily, the reduction in 
virus concentration in nasopharyngeal secretion was similar across the 
three treatments.211 An additional study utilizing a higher dose of pera­
mivir (300 mg twice daily or 600 mg four times a day) in 234 hospital­
ized patients also showed no differences in virologic or clinical end 

FIGURE 44-4 Chemical structure of ribavirin (A) and the nucleo-
side guanosine (B). 
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occur during short­term oral administration. Long­term use of oral 
ribavirin at dosages greater than 800 mg daily causes hemoglobin 
decreases of 2 to 4 g/dL in most recipients, usually within 4 weeks. 
When used in combination with interferon, hemoglobin levels less 
than 11 g/dL develop in 25% to 30% of patients.233 Renal impairment 
increases the risk for hemolysis. Severe anemia requires dosage reduc­
tion or cessation, although erythropoietin has been used effectively.233 
Other reported side effects include pruritus, myalgia, rash, nausea, 
depression, nervousness, and cough or respiratory symptoms.234 High­
dose intravenous ribavirin is associated with headache, hypomagnese­
mia, and hypocalcemia.235 Bolus intravenous dosing may cause rigors, 
and infusion over 10 to 15 minutes is advised.

Aerosolized ribavirin may cause conjunctival irritation, rash, bron­
chospasm, reversible deterioration in pulmonary function, and, rarely, 
acute water intoxication. No adverse hematologic effects have been 
associated with aerosolized ribavirin. The drug may precipitate on 
contact lenses, so they should not be worn during aerosol exposure. 
Ribavirin exposure may occur in health care workers working in the 
environment of aerosol­treated infants.235,236 Health care worker expo­
sure is higher during delivery by oxygen hood than by ventilator or 
vacuum­exhausted hood systems.235 Use of aerosol containment and 
scavenging systems, turning off the aerosol generator before providing 
routine care, and use of personal protective equipment have been 
recommended.236

When ribavirin is used in conjunction with mechanical ventilation, 
in­line filters, modified circuitry, and frequent monitoring are required 
to prevent plugging of ventilator valves and tubing with precipitates of 
ribavirin. The possible effects of such modifications on drug delivery 
to the lower respiratory tract are undefined.

In preclinical studies, ribavirin is mutagenic, gonadotoxic, and tera­
togenic.232 Low oral dosages have been teratogenic or embryotoxic in 
multiple species. Use of ribavirin is relatively contraindicated during 
pregnancy, and pregnant women should not directly care for patients 
receiving ribavirin aerosol. Ribavirin is categorized as pregnancy cat­
egory X, and effective means of contraception for men and women are 
recommended for at least 6 months after discontinuation of treatment 
or exposure.

Interactions
Antacids slightly decrease the oral bioavailability of ribavirin. During 
co­administration clinically, ribavirin, amantadine, and oseltamivir do 
not interact pharmacokinetically.34 Ribavirin antagonizes the anti­
HIV­1 effects of zidovudine but enhances the activity of purine dide­
oxynucleosides. Ribavirin use in patients who are coinfected with HIV 
and HCV and on antiretroviral drugs, particularly combined with 
didanosine, seems to increase the risk for mitochondrial toxicity and 
lactic acidosis. Ribavirin may inhibit the effect of warfarin.

Clinical Studies
Ribavirin aerosol is approved in the United States for treatment of RSV 
bronchiolitis and pneumonia in hospitalized children. Oral ribavirin 
in combination with various interferons is approved for treatment of 
chronic hepatitis C. The following describes only clinical studies on the 
prevention and treatment of respiratory virus infection with ribavirin. 
Treatment for infection with HCV is discussed elsewhere (see Chapters 
46, 119, and 156).

Respiratory Syncytial Virus
Aerosolized ribavirin (18­hour exposure daily for 3 to 6 days) variably 
shortens the duration of virus shedding and may improve certain clini­
cal measures in infants hospitalized with RSV illness.238 No consistent 
reductions in need for ventilatory support or duration of hospitaliza­
tion have been documented, however. In infants receiving mechanical 
ventilation for RSV­related respiratory failure, no significant reduc­
tions in duration of ventilatory support, hospitalization, or mortality 
have been found.238,239 Intermittent, high­dose therapy (2­hour expo­
sures three times daily for 5 days) is well tolerated and may be as 
effective as prolonged exposure.240

Use of aerosolized ribavirin is limited by concerns regarding its 
efficacy, ease of administration, risk of occupational exposure, and 
cost. The American Academy of Pediatrics states that aerosol treatment 

guanosine triphosphate (GTP) and with nucleic acid synthesis. 
Decreased concentrations of competing GTP likely potentiate ribavi­
rin’s other antiviral effects. Ribavirin triphosphate inhibits influenza 
virus RNA polymerase activity and the GTP­dependent 5′­capping of 
viral mRNA. The monophosphate is incorporated inefficiently into 
viral RNA genomes, and this may lead to lethal mutagenesis and con­
tribute to antiviral activity.222 HCV RNA polymerase incorporates riba­
virin monophosphate into viral RNA, which causes mutations and 
inhibits viral RNA synthesis.224 Ribavirin diphosphates and triphos­
phates also inhibit human immunodeficiency virus (HIV) reverse tran­
scriptase activity.225

Ribavirin has immunosuppressive effects in experimental animals 
and shows therapeutic activity against transplantable virus­induced 
tumors and certain autoimmune diseases. Ribavirin increases type 1 
cytokine–mediated immune responses in vivo, an effect that may con­
tribute to its therapeutic activities,221 and seems to augment type­1 
cytokine responses ex vivo in peripheral blood mononuclear cells from 
patients with chronic hepatitis C.223

Resistance
Antiviral resistance to ribavirin has been documented only in Sindbis 
virus and HCV to date. One HCV RNA polymerase variant (F415Y) 
selected in genotype 1a–infected, ribavirin­treated patients has been 
associated with ribavirin resistance in vitro.226 No ribavirin­resistant 
RSVs have been detected during aerosol therapy of children.

Pharmacokinetics
Oral ribavirin is well absorbed, but bioavailability averages 45% to 65% 
in adults because of first­pass metabolism.227­230 Administration with 
food increases absorption and peak plasma concentrations by 70%.227 
After single oral doses of 600 mg, 1200 mg, or 2400 mg, peak plasma 
concentrations occur at 1 to 2 hours and average 1.3 µg/mL, 2.5 µg/
mL, and 3.2 µg/mL. Plasma concentrations average approximately 
24 µg/mL and 17 µg/mL after intravenous doses of 1000 mg and 
500 mg in patients with Lassa fever. During long­term administration, 
overall exposure and t elim1

2
 increase substantially.227 Steady­state plasma 

levels of about 1 to 4 µg/mL occur by about 4 weeks with weight­
adjusted dosing in chronic hepatitis C, and higher concentrations at 4 
weeks correlate with decline in hemoglobin and likelihood of sustained 
viral responses.231 Plasma protein binding is negligible, and ribavirin 
has a large Vd (>2000 L). At steady state, cerebrospinal fluid levels are 
about 70% of those in plasma.229

The disposition of ribavirin is complex, involving renal elimination 
and metabolism. After rapid initial distribution, there is a prolonged 
terminal t elim1

2
 of 37 to 79 hours.227­229 Ribavirin triphosphate concen­

trates in erythrocytes with an erythrocyte­to­plasma ratio of 40 : 1  
or greater, and erythrocyte levels gradually decrease, with an apparent 
t 1

2
 of 40 days. Renal excretion accounts for 30% to 60% of ribavirin’s 

overall clearance, but hepatic metabolism is contributory. About 5% to 
10% is recovered unchanged in the urine, and a much greater fraction 
is excreted as triazole carboxamide and carboxylic acid metabolites.227 
Plasma clearance is reduced threefold in patients with advanced renal 
impairment (CrCl ≤30 mL/min). Dosage adjustments are needed for 
renal insufficiency, and ribavirin should be used with caution in 
patients with CrCl less than 50 mL/min. Hemodialysis and hemofiltra­
tion remove small amounts of drug. Higher initial blood levels occur 
in severe hepatic dysfunction.230

With aerosol administration, systemic absorption is low (<1% of 
deposited dose). Peak plasma levels range from 0.5 to 2.2 µg/mL after 
8 hours’ exposure and from 0.8 to 3.3 µg/mL after 20 hours in pediatric 
patients. Respiratory secretion levels often exceed 1000 µg/mL and 
persist with a t 1

2
 of 1.4 to 2.5 hours. A special aerosol generator (SPAG­

2, ICN Pharmaceuticals) is needed to produce particles of proper aero­
dynamic size to reach the lower respiratory tract. The delivered dose 
is twice as high in infants (1.8 mg/kg/hr) than in adults.

Toxicity
Systemic ribavirin causes dose­related anemia because of extravascular 
hemolysis and, at higher dosages, suppression of bone marrow release 
of erythroid elements.232 Reversible increases of serum bilirubin (in 
one fourth of recipients), serum iron, and uric acid concentrations 
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nucleocapsid (N) protein, which is highly conserved.275 The drug is well 
absorbed orally, and a single dose per day is sufficient to achieve anti­
viral EC90 levels. In vitro resistance can be elicited, at an apparent low 
rate, and resistant virus appears similarly fit to wild­type RSV in terms 
of replication.275 Phase II studies of RSV604 are underway in transplant 
patients with RSV infections.

ZANAMIVIR
Spectrum
Zanamivir (4­guanidino­2,4­dideoxy­N­acetylneuraminic acid; Relen­
za) is a sialic acid analogue (see Fig. 44­3B) that is a potent and specific 
inhibitor of the neuraminidases of influenza A and B viruses.276 It 
inhibits influenza neuraminidase activity at nanomolar concentrations 
but has a higher and broader range of inhibitory concentrations in  
cell culture.277,278 Compared with oseltamivir carboxylate, zanamivir 
is more active against influenza B, and data from a comparative trial 
in children indicate that this difference is clinically important.279 Zana­
mivir is less active against neuraminidases of influenza A/N2 clinical 
isolates,280 but the clinical importance of this difference is uncertain. 
Zanamivir inhibits certain influenza A neuraminidase variants that are 
resistant to oseltamivir carboxylate.96 Combinations of zanamivir plus 
rimantadine inhibit strains of influenza A/H1N1 and H3N2 viruses 
synergistically, but some concentrations seem antagonistic when 
assessed by reductions in cell­associated virus yield.281 Zanamivir is not 
cytotoxic and is highly selective for influenza neuraminidase, inhibit­
ing neuraminidases from human282 and other mammalian sources or 
other pathogens only at 106­fold higher concentrations. Millimolar 
concentrations inhibit parainfluenza virus type 3 in cell culture, most 
likely by blocking attachment.283 Topical zanamivir in the respiratory 
tract is active in murine and ferret models of influenza.277

Resistance
Resistance to neuraminidase inhibitor drugs has developed less fre­
quently than to the adamantane compounds and less frequently to 
zanamivir than to oseltamivir.

A recent systematic review of the prevalence of neuraminidase 
inhibitor resistance among influenza viruses cultured from immuno­
competent ambulatory adults enrolled in prophylactic and therapeutic 
trials of zanamivir found no reports of zanamivir resistance.284 In 
surveys of other collections of influenza isolates, a similar absence or 
dearth of zanamivir resistance was reported: influenza A H1N1 viruses 
circulating in the 2008­2009 influenza season in the United States prior 
to emergence of the 2009 pandemic were resistant to oseltamivir but 
susceptible to zanamivir.285 Among 391 nonpandemic A/H1N1 isolates 
from Australia and Southeast Asia patients from 2006 to 2008, 2.3% 
were resistant to zanamivir286 but susceptible to oseltamivir. Zanamivir 
resistance was not demonstrated among 3359 influenza A (H1N1)­
pdm09 global isolates287 nor among 304 oseltamivir­resistant isolates 
reported by the World Health Organization to August 2010.288 Avian 
influenza A/H5N1 isolates from 2003 to 2005 were susceptible to  
zanamivir.289 Of 680 influenza B viruses isolated in China from 2010 
and 2011, one with D197N amino­acid substitution was resistant to 
zanamivir.290

Several neuraminidase mutations mediate diminished susceptibil­
ity to zanamivir: Q136K in an A (H1N1) seasonal virus (300­fold 
reduction in zanamivir susceptibility)286 and S274N291 in nonpandemic 
A/H1N1 virus and I223R (5­fold reduction)292 in an A (H1N1)pdm09 
isolate. The relationship of these virus resistance mutations and prior 
zanamivir therapy and immune competence was not consistently 
apparent. An influenza B virus with an Arg152Lys mutation resistant 
to both zanamivir and oseltamivir was recovered from an immuno­
compromised child with prolonged virus excretion despite receipt of 
nebulized zanamivir.293 The effect of these neuraminidase mutations on 
infectivity and transmissibility compared with the wild­type parental 
strains is variable, but only some mutants have been characterized in 
this regard.293­295

An observational study in pediatric patients with influenza treated 
with oseltamivir or zanamivir suggested that the lower prevalence of 
zanamivir than oseltamivir resistance is more related to the intrinsic 
properties of the drugs than to differences in the prevalence of use of 
the drugs.296

for RSV infection “is not recommended for routine use but may be 
considered for use in selected patients with documented, potentially 
life­threatening RSV infection.”241 Decreased RSV­specific serum neu­
tralizing antibody titers and diminished nasopharyngeal secretion 
RSV­specific IgE and IgA responses may occur in ribavirin­treated 
children. No long­term adverse or beneficial effects of ribavirin therapy 
have been documented in children.242

Combinations of aerosolized ribavirin and intravenous immuno­
globulin or palivizumab may be beneficial in treating RSV pneumonia 
in hematopoietic stem cell transplant recipients,243­246 whereas intrave­
nous ribavirin alone is ineffective.247 Therapy with either aerosolized248­250 
or oral251,252 ribavirin appears to prevent progression from upper to 
lower respiratory tract illness in such patients. A similar benefit of 
preemptive treatment of RSV upper respiratory tract infection in  
lung transplant recipients with oral and inhaled ribavirin has been 
reported.253,254

Other Respiratory Viruses
Intravenous and aerosolized forms of ribavirin have been used to treat 
severe influenza virus infections.255,256 Aerosolized ribavirin inconsis­
tently reduces viral titers and illness measures in adults with uncom­
plicated influenza A or B and has modest efficacy in children 
hospitalized with influenza.257 However, oral ribavirin 300 mg three 
times per day combined with amantadine and oseltamivir may possibly 
be effective for treatment of influenza A (H1N1)pdm09 disease and 
more so than oseltamivir alone.258 Oral, intravenous, and aerosolized 
ribavirin have been used in immunosuppressed patients with severe 
parainfluenza virus and adenovirus infections with inconsistent  
clinical benefits.255,259,260 Intravenous ribavirin has been used to treat 
adenovirus­associated hemorrhagic cystitis, pneumonia, and invasive 
infections in immunocompromised patients, and it may be effective 
even in severe disease.261,262 Treatment with intravenous263,264 and oral265 
ribavirin of human metapneumovirus pneumonia in immunocompro­
mised patients has been associated with resolution. Aerosolized riba­
virin has been used in treating parainfluenza virus infections in 
solid­organ transplant recipients, but seems ineffective in parainflu­
enza virus pneumonia in hematopoietic stem cell transplant recipi­
ents.259 Oral ribavirin was effective in accelerating functional graft 
recovery and reducing late bronchiolitis obliterans in 38 lung trans­
plant recipients266 and in a bone marrow transplant recipient267 with 
paramyxovirus respiratory infection. Intravenous ribavirin therapy 
was associated with successful treatment of paramyxovirus type 3 
respiratory infection in cardiac transplant recipients.268,269 Ribavirin 
has been used extensively in treating SARS coronavirus infections 
without proven antiviral effects in vitro218 or in patients270 and has been 
associated with frequent adverse effects.235 Intravenous ribavirin seems 
to be ineffective in treatment of hantavirus cardiopulmonary syn­
drome.271 However, it inhibits Andes virus in vitro, an important cause 
of this syndrome, and is effective in a hamster model of hantavirus 
cardiopulmonary syndrome caused by this virus (see Chapter 168).272

RSV604
RSV604 is an oral benzodiazepine compound (C22H17FN4O2) under 
development for treatment of RSV infections (Fig. 44­5).273,274 It inhib­
its both RSV A and B subtypes at submicromolar concentrations.  
Its antiviral activity is expressed through interaction with the RSV 

FIGURE 44-5 Chemical structure of RSV604. 
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improvement in peak expiratory flow rate than with inhaled placebo.310 
However, postmarketing reports indicate a potential risk for acute 
bronchospasm, respiratory arrest, or worsening of chronic obstructive 
pulmonary disease accompanied by pulmonary edema after zanamivir 
inhalation, particularly in patients with underlying airway disease.311 
Apparent declines in respiratory function have also been rarely 
reported in patients without recognized airway disease. Consequently, 
use in patients with underlying airway disease is not generally recom­
mended in the United States, although treatment in at­risk patients is 
used in other countries.312 If used in patients with obstructive airway 
disease, zanamivir should be administered cautiously under close 
observation and with availability of fast­acting bronchodilators.

Zanamivir inhaled as an experimental nebulized solution contain­
ing 16 mg/mL for 10 minutes four times a day for 5 days for treatment 
of serious influenza with lower respiratory tract signs in hospitalized 
patients 10 years or older was well tolerated.313 However, when the oral 
formulation containing lactose has been reformulated as a solution and 
administered into the airway during mechanical ventilation, lactose 
precipitation in the airway filters has caused obstruction,314 precluding 
the reformulation of the powder in the orally inhaled formulation into 
a solution for nebulization and inhalation.

Zanamivir injected intravenously to healthy volunteers in doses 
from 50 to 600 mg twice daily for 5 days was also well tolerated.315 In 
130 hospitalized adults with influenza treated with zanamivir, 600 mg 
intravenously twice daily for 5 days, or reduced doses in those with 
renal impairment, no safety signals or clinically significant trends in 
laboratory values, vital signs, or electrocardiograms were identified 
that were considered attributable to the drug.316

Clinical Studies
Zanamivir has been administered to patients intranasally as a spray, by 
oral inhalation as a dry powder, by nasal inhalation as an aerosol from 
a nebulized solution, and by intravenous injections.

Intranasal and intravenous zanamivir are highly protective against 
experimental human influenza, and early treatment is associated with 
reductions in viral titers, symptoms, and middle ear pressure abnor­
malities.163,277,317 Orally inhaled zanamivir powder is approved in the 
United States for prevention of influenza in individuals 5 years old and 
older, and for treatment of influenza in individuals 7 years old and 
older. Zanamivir (10 mg twice daily for 5 days) inhaled early in the 
course of illness for treatment of uncomplicated influenza in previously 
healthy adults and children 5 to 12 years old shortens the times to 
illness resolution and return to usual activities by 1 to 3 days.307,318,319 
Treatment benefits seem to be greater in patients with severe symptoms 
at entry, in patients older than 50 years, and in higher­risk patients.320 
Inhaled zanamivir treatment in adults is associated with a 40% reduc­
tion in lower respiratory tract events leading to antibiotic use and a 
28% overall reduction in antibiotic prescriptions.321

Zanamivir inhaled orally is equally efficacious for treatment of 
influenza A and B infection.319,322 In individuals with influenza B illness, 
zanamivir reduces the median duration of fever by 32%, from 53 hours 
to 36 hours, compared with oseltamivir.279 In high­risk patients with 
primarily mild to moderate asthma or other chronic cardiopulmonary 
conditions, orally inhaled zanamivir treatment reduces illness duration 
and the incidence of complications leading to antibiotic use.310,323 It has 
been used to treat immunocompromised hosts with influenza A and 
B infections,324 including a child to whom an aqueous zanamivir solu­
tion (16 mg/mL) was administered by aerosol and nebulizer via an 
endotracheal tube.325 More recently, in an observational study, orally 
inhaled zanamivir was more efficacious for treatment of oseltamivir­
resistant influenza A/H1N1 than oseltamivir.326

Prophylactic administration of once­daily inhaled zanamivir 
(10 mg) prevents febrile influenza illness during influenza season (84% 
efficacy),327 or when used for postexposure prophylaxis in households 
with or without treatment of the ill index case (82% efficacy).328,329 In 
an observational study with limited numbers of patients, orally inhaled 
zanamivir and oral oseltamivir were not different for prevention of 
secondary cases during nosocomial outbreaks on pediatric wards.330 In 
nursing home residents, 2 weeks of inhaled zanamivir was superior to 
oral rimantadine in preventing influenza A infection, in part because 
of a high frequency of rimantadine resistance,331 and inhaled zanamivir 

Pharmacokinetics
The oral bioavailability of zanamivir is low (<5%). The approved for­
mulation is a dry powder containing a lactose carrier delivered by oral 
inhalation with a proprietary Diskhaler device. The proprietary inhaler 
device for delivering zanamivir is breath activated and requires a coop­
erative, trained patient. The use of the Diskhaler device is unreliable in 
young children, very infirm or elderly patients, or cognitively impaired 
patients. Although the inhaler has been used effectively in many older 
adults,297 more than half of hospitalized older adults could not correctly 
use the device after instruction.298

After inhalation of the dry powder using the Diskhaler, approxi­
mately 15% is deposited in the lower respiratory tract while the 
remainder is deposited in the oropharynx.277 Zanamivir concentrations 
in epithelial lining fluid obtained by bronchoalveolar lavage may 
approximate concentrations in alveoli. Median epithelial lining fluid 
concentrations of zanamivir 12 hours after oral inhalation of the rec­
ommended 10­mg dose by Diskhaler in healthy volunteers ranged 
from 0.3 to 0.9 µg/mL.299 In other uninfected individuals, median 
zanamivir levels in induced sputum were 1.34 µg/mL, 0.30 µg/mL, 
and 0.05 µg/mL at 6 hours, 12 hours, and 24 hours after dosing, with 
the pulmonary t elim1

2
 estimated to be 2.8 hours.300 Approximately 4% 

to 17% of an inhaled dose is absorbed systemically, and peak plasma 
levels are low, averaging 0.04 to 0.05 µg/mL.277 Because of the low 
bioavailability of zanamivir inhaled orally, dosage adjustments are not 
indicated in renal insufficiency.

After intravenous dosing, the plasma t elim1
2

 of zanamivir ranges 
from 1.6 to 2.9 hours,277,299 with about 90% eliminated unchanged in 
the urine.277 After intravenous administration of 600 mg zanamivir 
to healthy adults, the median serum Cmax is 39.4 µg/mL, AUC0­12 hr is 
86.6 µg/mL, and Ctrough is 0.6 µg/mL. The median epithelial lining fluid 
concentration 12 hours after dosing is 0.4 µg/mL, very similar to the 
value after inhalation of 10 mg (see earlier). This is 552 to 1653 times 
the in vitro IC50 for influenza A and B neuraminidases, respectively.280

The pharmacokinetics of zanamivir in 103 adults with influenza 
receiving 600 mg intravenously twice daily with dose adjustments for 
renal impairment were similar to those in previously described 
studies.301 Zanamivir renal clearance declines linearly with increasing 
renal impairment.302 The suggested dose for adults with normal renal 
function is 600 mg intravenously given twice daily. Doses for children 
and for patients with renal impairment who are or are not receiving 
replacement therapy have been published.303

Interactions
No clinically significant drug interactions have been recognized for 
inhaled zanamivir. No clinically relevant pharmacokinetic interaction 
was demonstrated between oseltamivir, 150 mg taken orally twice 
daily, and zanamivir, 600 mg administered intravenously every 12 
hours, in healthy volunteers.304 Zanamivir does not affect the immune 
response to injected inactivated influenza vaccine, but, similar to all 
antiviral medications, it has the potential to impair the immunogenic­
ity of attenuated live influenza vaccine administered concurrently. 
Zanamivir should not be administered from 48 hours before to 2 weeks 
after intranasal administration of an attenuated influenza vaccine.305

Toxicity
Preclinical studies of zanamivir found no evidence of mutagenic, tera­
togenic, or oncogenic effects. In cell culture, the inhibitory effect of 
zanamivir on influenza virus replication was not impaired by analge­
sics, antihistamines, decongestants, or antibacterial drugs.306 Zanami­
vir is classified as a pregnancy category C agent.

Orally inhaled zanamivir is generally well tolerated, and the fre­
quencies of complaints are not significantly different from those in 
placebo recipients among adults and children 5 years old or older.277,306,307 
This includes once­daily oral inhalation for prophylaxis by adults for 
16 weeks.308 Most reported symptoms in treatment studies are likely 
the result of the underlying illness. Similarly, in high­risk patients 
receiving zanamivir or placebo, no differences in adverse reactions 
have been seen in controlled trials.309 In patients with mild to moderate 
asthma or chronic obstructive pulmonary disease, orally inhaled  
zanamivir is associated with fewer bronchitis episodes, similar mea­
surements of forced expired volume in 1 second, and more rapid 
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on pharmacokinetics. The specificity of polymeric zanamivir conju­
gates for influenza A and B neuraminidase is presumed but not yet 
reported.

A zanamivir polymer can overcome zanamivir resistance. A zana­
mivir polymer bound to the neuraminidase of zanamivir­resistant 
avian influenza A viruses possessing a resistance mutation at position 
119 bound as much as 2000 times more strongly than did monomeric 
zanamivir.350

Mechanism of Action
The synthesis of polymeric conjugates of zanamivir that retain neur­
aminidase inhibitory activity is possible because of the unique position 
of the molecule when it is docked in the enzymatic pocket, with the 
7­OH group pointing out and away from the target site, making it 
accessible to linkage to different backbone molecules. Electron micro­
graphs show influenza virus clumping in the presence of dimeric zana­
mivir conjugates. The marked potency of some conjugates is postulated 
to reflect clumping caused by three types of bivalent binding: between 
two neuraminidase molecules in the tetrameric transmembrane spike 
protein (intratetramer), binding between sites on different tetramers 
on the same virion (intravirionic), and head­to­head binding between 
different neuraminidase sites on separate virions (intervirionic 
binding).343

An additional mechanism for the marked enhancement of potency 
observed by synthesis of polymer­attached zanamivir is postulated to 
be the result of interference with intracellular trafficking of endocy­
tosed virus and subsequent virus­endosome fusion.351

Resistance
Studies describing attempts to induce resistance in vitro by repeated 
passage in the presence of drug have not been reported.

Pharmacokinetics
Prolonged retention of polymeric zanamivir compared with mono­
meric zanamivir in lung tissue accounts for the enhanced antiviral 
effect of polymeric conjugates. After intratracheal instillation of the 
same single dose of a polymeric zanamivir conjugate or monomeric 
zanamivir solution to rats, lung homogenate drug concentrations of 
the polymeric compound after 48 hours and 168 hours are 35 times 
and 160 times greater than zanamivir concentrations.343 Generally, 
lung retention time is directly related to molecular weight because 
small polar molecules leave the lung by passing through tight junctions 
between cells. Prolonged retention of high­molecular­weight poly­
meric conjugates compared with monomeric zanamivir is expected. 
However, the prolonged lung retention time of some smaller conju­
gates indicates that aqueous insolubility and aggregate formation plus 
partitioning into cell membrane phospholipids may also play a role in 
the prolonged retention of zanamivir polymeric conjugates in the lung 
after inhalation.343

Interactions and Toxicity
Toxicity studies have been limited to assessments of in vitro cyto­
toxicity. For a series of dimeric conjugates, concentrations of 100 to 
1000 ng/mL caused no cytotoxicity.345

Clinical Studies
No clinical studies have been reported.

has been used to curtail transmission of amantadine­resistant influ­
enza A in nursing homes.297

Orally inhaled zanamivir has been administered in combination 
with oral oseltamivir. For postexposure prophylaxis in families, such 
combined zanamivir­oseltamivir administration was not more effica­
cious than either agent alone.332 However, a subgroup analysis suggests 
greater efficacy of the combination treatment among contacts whose 
prophylaxis was begun within 24 hours of exposure to the index case 
compared with oseltamivir or zanamivir alone. For treatment of adults 
with mainly A/H3N2 influenza, zanamivir­oseltamivir combination 
treatment was not more efficacious than zanamivir alone and was less 
efficacious than oseltamivir monotherapy.333

Zanamivir has been administered intravenously to treat patients 
seriously ill with influenza who could not receive or who had failed 
oral oseltamivir therapy. Immunocompetent334 and immunocompro­
mised335,336 patients who were infected with oseltamivir­resistant337 
and oseltamivir­susceptible336,338 influenza A/H1N1 nonpandemic 
viruses or oseltamivir­resistant pandemic virus339 or oseltamivir­
sensitive influenza A (H1N1)pdm09 virus335,340 have been successfully 
treated with intravenous zanamivir. There is a sense that intravenous 
zanamivir may be lifesaving.341 However, an apparent lack of a relation­
ship between intravenous zanamivir treatment–associated reductions 
in pandemic virus load in upper and lower respiratory tract secretions 
and mortality have prompted questions about its effectiveness in seri­
ously ill patients.342 A phase III study comparing intravenous zanamivir 
and oseltamivir in hospitalized patients is underway.

POLYMERIC ZANAMIVIR 
CONJUGATES
Polymeric zanamivir conjugates are experimental, high­molecular­
weight anti­influenza compounds comprising multiple zanamivir 
monomers connected at the 7­0 position to backbone or linker mol­
ecules of various types and lengths.343­349 These compounds are poten­
tial second­generation inhaled neuraminidase inhibitors for influenza 
chemoprophylaxis and therapy with enhanced potency and prolonged 
lung retention time compared with zanamivir. In mice, one of these 
compounds has been associated with prophylactic efficacy for 7 days 
after a single intranasal administration.

Spectrum
Polymeric zanamivir conjugates exhibit broad­spectrum anti­influenza 
activity, inhibiting human influenza A N1, N2, and B viruses and an 
avian influenza A/H5N1 virus.343 Inhibitory potency varies according 
to the length345 and type of linker molecule344 and the number of zana­
mivir derivatives, whether dimeric,343 trimeric, or tetrameric.346 The 
most potent polymeric zanamivir conjugate is a dimer with a 14­carbon 
linker, which is 10­fold less potent in a neuraminidase assay enzyme 
inhibition test (IC50, 7.86 nM vs. 0.76 nM for zanamivir) but is 500,000­
fold more potent in inhibiting influenza A/WSN/33 (H1N1) in a cyto­
pathic reduction assay (IC50, 0.0001 nM vs. 56 nM for zanamivir).343 In 
mice, this dimeric conjugate is 100 times more potent than zanamivir 
in preventing influenza virus replication in the lung for 7 days after a 
single intranasal dose of drug and 1 day after intranasal virus challenge 
(drug doses to reduce lung virus titer by 90% were 0.03 mg/kg and 
2.92 mg/kg for the dimeric conjugate and zanamivir). The prophylactic 
effect is associated with prolonged persistence of dimer conjugate in 
lung tissue after intranasal administration, as discussed in the section 
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