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Animal models of cardiac hypertrophy and insuf-
ficiency have been reviewed by Hasenfuss (1988),
Muders and Elsner (2000), Vanoli et al. (2004),
Patten and Hall-Porter (2009), Dubi and Arbel
(2010), Gomes et al. (2013), and Szymanski
et al. (2012).
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Cardiac Hypertrophy and Insufficiency
in Rats

Aortic Banding in Rats

Purpose and Rationale
Blood flow restriction of the aorta in rats induces
not only hypertension but also cardiac hypertrophy
within several weeks. Angiotensin-converting
enzyme inhibitors, even at subantihypertensive
doses, but not other antihypertensive drugs, inhibit

cardiac hypertrophy (Linz et al. 1991, 1992a, 1996;
Schölkens et al. 1991; Gohlke et al. 1992;
Bruckschlegel et al. 1995; Ogawa et al. 1998).

Procedure
Male Sprague Dawley rats weighing 270–280 g
are fasted 12 h before surgery. Anesthesia is
induced by i.p. injection of 200 mg/kg hexobar-
bital. The abdomen is shaved, moistened with
a disinfectant, and opened by a cut parallel to
the linea alba. The intestine is moistened with
saline and placed in a plastic cover to prevent
desiccation. The aorta is prepared free from
connective tissue above the left renal artery and
underlaid with a silk thread. Then, a cannula
no. 1 (0.9 � 40 mm) is placed longitudinally to
the aorta and both aorta and cannula are tied.
The cannula is removed, leaving the aortic
lumen determined by the diameter of the
cannula. The intestine is placed back into the
abdominal cavity with the application of
5.0 mg rolitetracycline (Reverin). In sham-
operated controls, no banding is performed.
The skin is closed by clipping.

The animals are treated once daily over a
period of 6 weeks with doses of the ACE inhib-
itor or other antihypertensive drugs found previ-
ously effective to lower blood pressure in rats. At
the end of the experiment, blood pressure is
measured under hexobarbital anesthesia
(200 mg/kg i.p.) via indwelling catheters in the
left carotid artery. Blood pressure measurement
in conscious rats with the conventional tail-cuff
method is not possible due to the large pressure
difference across the ligature. Therefore, only
one measurement at the end of the study is pos-
sible. The hearts are removed, rinsed in saline
until free of blood, and gently blotted to dryness.
Total cardiac mass is determined by weighing on
an electronic balance to the nearest 0.1 mg. The
atria and all adjacent tissues are trimmed off, and
the weight of the left ventricle including the
septum as well as the remaining cardiac tissue
representing the right ventricle is determined
separately. Weights are calculated per 100 g
body weight.

288 M. Gralinski et al.



Evaluation
The total cardiac mass and weight of left and right
ventricle of treated rats are compared with oper-
ated controls and sham-operated controls.

Modifications of the Method
Uetmasu et al. (1989) described a simple method
for producing graded aortic insufficiencies in rats
and subsequent development of cardiac hypertro-
phy. Selective perforation of the right cup of the
aortic valve or in combination with that of the left
valve cup was performed using a plastic rod
inserted from the right common carotid artery.
Hypertrophy of the heart, but no hypertension or
cardiac insufficiency, was observed.

Similar methods were used by Yamazaki
et al. (1989) to study the alterations of cardiac
adrenoceptors and calcium channels subsequent
to aortic insufficiency, by Umemura et al. (1992)
to study baroreflex and β-adrenoceptor function,
and by Ishiye et al. (1995) to study the effects of
an angiotensin II antagonist on the development
of cardiac hypertrophy due to volume overload.

Hyperplastic growth response of vascular
smooth muscle cells in the thoracic aorta was
found following induction of acute hypertension
in rats by aortic coarctation by Owens and Reidy
(1985). Changes in cardiac gene expression dur-
ing compensated hypertrophy and the transition to
cardiac decompensation in rats with aortic
banding were studied by Feldman et al. (1993).
Muders et al. (1995) produced aortic stenosis in
rats by placing a silver clip (inner diameter 0.6
mm) on the ascending aorta. Schunkert
et al. (1995) studied alteration of growth
responses in established cardiac pressure-
overload hypertrophy in rats with aortic banding.

Prevention of cardiac hypertrophy after
aortic banding by ACE inhibitors probably
mediated by bradykinin could be shown (Linz
et al. 1989, 1992a, b, 1993, 1994; Linz and
Schölkens 1992; Schölkens et al. 1991; Weinberg
et al. 1994).

Weinberg et al. (1997) studied the effect of
angiotensin AT1 receptor inhibition on hypertro-
phic remodeling and ACE expression in rats with

pressure-overload hypertrophy due to ascending
aortic stenosis. Molina et al. (2009) described a
novel experimental model of pressure-overload
hypertrophy in young Sprague Dawley rats
(200–250) created by placing a small titanium
clip (internal diameter – 0.6 mm) in the aorta
proximal to the right brachiocephalic artery. A
decrease of 25 % in FS was observed 24–28
weeks after aortic constriction. Increased expres-
sion of β-myosin heavy chain, atrial natriuretic
peptide, interleukin-1, interleukin-6, and TNF-α
was also reported.
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Chronic Heart Failure in Rats

Purpose and Rationale
Rat models of heart failure were reviewed by
Muders and Elsner (2000). Chronic heart failure
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can be induced in rats by occlusion of coronary
arteries. One of the first reports was by Selye
et al. (1960). More recent reports are by
Pfeffer et al. (1979), Hodsman et al. (1988),
Van Veldhuisen et al. (1994, 1995), Kajstura et al.
(1994), Gómez et al. (1997), Liu et al. (1997a, b),
and Jadavo et al. (2005).

Itter et al. (2004) described a model of chronic
heart failure (CHF) in spontaneously
hypertensive rats.

Procedure

Study Design
Adult male 4-month-old SHR/NHsd and
WKY/NHsd rats (Harlan Sprague Dawley,
Winkelmann, Germany) weighing 250–300 g
were used. Cardiovascular failure was induced
by permanent (8 weeks) occlusion of the left cor-
onary artery 2 mm distal to the origin from the
aorta resulting in a large infarction of the free left
ventricular wall.

Eight weeks after surgery, parameters indicat-
ing CHF were measured. Cardiac hypertrophy,
function, and geometric properties were deter-
mined by the “working heart” mode and in vivo
determinations by MRI and heart weight.
Hydroxyproline/proline ratio was measured as
an indicator of heart fibrosis.

Surgery
The rats were anesthetized with a mixture of keta-
mine/xylazine (35/2 mg/kg) i.p. The left ventro-
lateral thorax was shaved and prepared to create a
disinfected surgical access area. When a stable
anesthesia was achieved, the animals were placed
on a small animal operation table, intubated, and
ventilated with room air using a small animal
ventilator (KTR-4, Hugo Sachs Elektronik,
March-Hugstetten, Germany). The level of anes-
thesia was deemed as adequate following loss of
the pedal withdrawal reflex and absence of the
palpebral reflex. The tidal volume was adjusted
at 3–5 ml and the ventilation rate was 40 breaths/
min. Left thoracotomy was performed via the
third intercostal space. The heart was exposed
and the pericardium opened. The left main coro-
nary artery was ligated with Perma-Hand silk 4–0

USP (Ethicon, Norderstedt, Germany) near its
origin at the aorta (2 mm distal to the edge of the
left atrium). Ligation resulted in infarction of the
free left ventricular wall. Ligation was deemed
successful when the anterior wall of the left ven-
tricle turned pale. At this point, the lungs were
hyperinflated by increasing the positive
end-expiratory pressure, and the chest was closed.
The rats were placed on a heating pad. They were
continuously monitored until they start moving in
their cages. To avoid ventricular arrhythmias,
lidocaine (2 mg/kg i.m.) was given before surgery.
The sham procedure consisted of opening the
pericardium and placing a superficial suture in
the epicardium of the LV. To prevent acute lung
edema, the rats received furosemide 2 mg/kg
twice daily for 3 days via the drinking water.

Measurements at the End of the Study
Before killing the animals 8 weeks after MI, non-
invasive sequential nuclear magnetic resonance
(NMR) measurements of heart geometric proper-
ties were done. Thereafter the animals were anes-
thetized with pentobarbitone (180 mg/kg i.p.) and
subsequently heparinized (heparin sodium
500 IU/100 g body weight i.p.). Once stable anes-
thesia was achieved (stage III 3, reflexes absent),
the animals were connected to an artificial respi-
rator via a PE tube inserted into the trachea and
ventilated with room air. The right carotid artery
was cannulated with a polyethylene catheter to
monitor mean blood pressure, systolic blood pres-
sure, diastolic blood pressure, and heart rate over a
stable time course of 10 min.

A transverse laparotomy and a right
anterolateral thoracotomy were performed, and
the heart was rapidly removed for the evaluation
of its function in the working heart mode. There-
after the heart weight, and the left and right ven-
tricular weights were determined. For infarct size
determination, the left ventricle was sectioned
transversely into four slices from the apex to the
base. The infarct size was determined by
planimetry and expressed as a percentage of LV
mass. Lung weight and further lung histology
sections were evaluated. Hydroxyproline/proline
ratio was determined in paraffin-embedded slices
of the left ventricle.
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Magnetic Resonance Imaging
The animals were monitored by MRI at day 7 and
day 42 post-MI. The rats were anesthetized with a
mixture of 1 % halothane and 30/70 N2O/oxygen
with a specially manufactured rat mask. The fully
anesthetized rats (phase III) were placed on a
cradle made of Plexiglas in a supine position.
Respiration and ECG were monitored continu-
ously. MRI experiments were performed
according to Rudin et al. (1991). The images
were acquired by a spin-echo sequence SE
(500/20), the field of view was 50 mm, and the
image resolution was 256 � 256 pixels with a
dimension of 0.2 � 0.2 mm. Four adjacent trans-
verse slices were recorded; slice thickness was
1.5 mm. Before the acquisition of data, a coronary
pilot scan was measured for adequate positioning
of the transverse slices. MRI data acquisition was
gated to the cardiac cycle by a Physiograd SM
785 MR monitoring system (Bruker, Karlsruhe,
Germany). Two sets of transverse images were
acquired, one at end-systole and another at
end-diastole. End-diastole was defined as the
image obtained 8 ms after the onset of the R
wave of the ECG, corresponding to the largest
cavity area. End-systole was defined as the
image with the smallest LV cavity area. The
image analysis was done using Bruker software
(Karlsruhe, Germany). The parameters of left ven-
tricular end-diastolic volume (LVEDV), left ven-
tricular end-systolic volume (LVESV), septum
size, infarct size, ejection fraction (EF), left ven-
tricular chamber diameter (r), and circumference
were measured. EF was estimated in percentage
terms by the subtraction of LVESV from LVEDV.
After the procedure, the rats were ventilated with
oxygen, the mask was replaced, and they were
brought back into their cages. They were moni-
tored until they started moving in the cage.

Blood Pressure/Heart Rate
The animals were anesthetized with pentobarbi-
tone (180 mg/kg i.p.) and subsequently heparin-
ized (heparin sodium 500 IU/100 g body weight
i.p.). Once stable anesthesia was achieved, the
animals were connected to an artificial respirator
via a PE tube inserted into the trachea and
ventilated with room air. The right carotid artery

was cannulated with a polyethylene catheter. The
catheter was connected to a PLUGSYS measur-
ing system (Hugo Sachs Elektronik, March-
Hugstetten, Germany) to monitor mean blood
pressure, systolic blood pressure, diastolic
blood pressure, and heart rate over a stable time
course of 10 min.

Working Heart
For the final investigations, the heart of the anes-
thetized rat was rapidly removed and immersed in
physiological buffer chilled to 4 �C. The aorta was
dissected free and mounted onto a cannula (inter-
nal diameter: 1.4 mm) attached to a perfusion
apparatus. The hearts were perfused according to
the method of Langendorff with an oxygenated
(95 % O2/5 % CO2) noncirculating
Krebs–Henseleit solution of the following com-
positions (mM): NaCl, 118; KCl, 4.7; CaCl2,
2.52; MgSO4, 1.64; NaHCO3, 24.88; KH2PO4,
1.18; glucose, 5.55; and Na-pyruvate, 2.0 at a
perfusion pressure of 60 mmHg. Any connective
tissue, thymus, or lung was carefully removed.
A catheter placed into the pulmonary artery
drained the coronary effluent perfusate that was
collected for the determination of coronary flow
and venous pO2 measurements. The left atrium
was cannulated via an incision of the left auricle.
All pulmonary veins were ligated close to the
surface of the atria. When a tight seal with no
leaks had been established and after a 15-min
equilibration period, the hearts were switched
into the working mode, using a filling pressure
(preload) of 12 mmHg in WKY/NHsd and
18 mmHg in SH rats. The afterload pressure was
60 mmHg in WKY/NHsd and 80 mmHg in SH
rats. After validation of the basis parameters, the
afterload pressure was enhanced in a cumulative
manner from an additional 20–140 mmHg. There-
after, the isovolumetric maxima were determined
by enhancing the preload pressure in steps of 5–30
mmHg. Flow and pressure signals for computa-
tion were obtained from the PLUGSYS measur-
ing system. Computation of data was performed
with a sampling rate of 500 Hz, averaged every
2 s, using the software Aquire Plus V1.21f
(PO-NE-MAH, Hugo Sachs Elektronik, March-
Hugstetten, Germany).
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Determination of Infarct Size
After the evaluation of the external heart work, the
total heart weight and the left and right ventricular
weights were determined. The left ventricle was
then sectioned transversely into four slices from
the apex to the base. Eight pictures were taken of
each rat heart, two from each slice. Total infarct
size was determined by planimetry of the
projected and magnified slices.

The area of infarcted tissue as well as the intact
myocardium of each slice were added together
and averaged. The infarcted fraction of the left
ventricle was calculated from these measurements
and expressed as a percentage of the LVmass. The
left ventricular perimeter, diameter, infarct scar
length, as well as wall thickness and infarct wall
thinning were determined as well. According to
Pfeffer et al. (1985) and Pfeffer and Pfeffer
(1987), rats with infarct sizes <20 % and >40 %
were excluded from the study.

Lung Histological Determination
After lung weight determination, the organ was
immersed in 4 % formalin (pH 7.0–7.5; 0.1 M).
The lung was cut into small pieces, dehydrated,
and embedded in paraffin. Hematoxylin and eosin
(HE) sections were evaluated by light microscopy.

Hydroxyproline/Proline Ratio
After embedding, the rest of the fixed left ventric-
ular tissue was freeze-dried. Proline and hydroxy-
proline was then analyzed according to the
method of López de León and Rojkind (1985)
and the ratio of both were calculated.

Evaluation
The data are given as mean � SEM. Statistics
were performed using the SAS system statistics
package (SAS Institute, Cary, N.C., USA) with a
sequential rejection t-test.

Modifications of the Method
Jain et al. (2000) studied the effects of angiotensin
II receptor blockade after coronary ligation and
exercise training on treadmill in rats.

Medvedev and Gorodetskaya (1993) induced
heart failure in rats by microembolization of cor-
onary vessels with 15-μm plastic microspheres.

Katona et al. (2004) found that selective sen-
sory denervation by capsaicin aggravates
adriamycin-induced cardiomyopathy in rats.

A simple and rapid method of developing high
output heart failure and cardiac hypertrophy in
rats by producing aortocaval shunts was
described by Garcia and Diebold (1990). Rats
weighing 180–200 g were anesthetized with
30 mg/kg i.p. pentobarbitone. The vena cava and
the abdominal aorta were exposed by opening the
abdominal cavity via a midline incision. The aorta
was punctured at the union of the segment
two-thirds caudal to the renal artery and
one-third cephalic to the aortic bifurcation with
an 18-gauge disposable needle. The needle was
advanced into the aorta, perforating its adjacent
wall and penetrating in the vena cava. A bulldog
vascular clamp was placed across the aorta caudal
to the left renal artery. Once the aorta was
clamped, the needle was fully withdrawn, and a
drop of cyanoacrylate glue was used to seal the
aorta-punctured point. The clamp was removed
30 s later. The patency of the shunt was verified
visually by swelling vena cava and the mixing of
arterial and venous blood. The peritoneal cavity
was closed with silk thread stitches and the skin
with metallic clips. Rats with aortocaval shunts
developed cardiac hypertrophy with significantly
higher absolute and relative heart weights.

Other studies with aortocaval shunts in rats
were published by Flaim et al. (1979) and Liu
et al. (1991).

Isoyama et al. (1988) studied myocardial
hypertrophy after creating aortic insufficiency
in rats.

Terlink et al. (1998) studied ventricular dys-
function in rats with diffuse isoproterenol-induced
myocardial necrosis.

Studies (Inoko et al. 1994; Klotz et al. 2006)
have shown that Dahl-salt-sensitive rats when
placed on a high-salt diet from the 6th week of
age will develop concentric LV hypertrophy with-
out chamber dilation around the 11th week and
decompensate heart failure between the 15th and
the 20th week. Introduction of the high-salt diet at
7 or 8 weeks of age will result in diastolic heart
failure or systolic heart failure phenotypes,
respectively (Doi et al. 2000).
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Another rat model of systemic hypertension
inducing heart failure is created by clipping one
renal artery while leaving the contralateral kidney
untouched. This induces systemic hypertension
and LV concentric remodeling within 8 weeks
(Junhong et al. 2008; Rizzi et al. 2010). Extensive
LV fibrosis and diastolic dysfunction was also
reported (Junhong et al. 2008).
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Cardiac Hypertrophy and Insufficiency
in Mice

Cardiac Hypertrophy in Mice

Purpose and Rationale
Rockman et al. (1991, 1993) developed a model
of ventricular hypertrophy in the intact mouse by
use of microsurgical techniques.

Procedure
Eight-week-old adult mice weighing 18–22 g are
anesthetized by intraperitoneal injection of a mix-
ture of 100 mg/kg ketamine, 5 mg/kg xylazine,
and 2.5 mg/kg morphine. Animals are placed
under a dissecting microscope in the supine posi-
tion, and a midline cervical incision is made to
expose the trachea and carotid arteries. After
endotracheal intubation, the cannula is connected
to a volume-cycled rodent ventilator on supple-
mental oxygen with a tidal volume of 0.2 ml and a
respiratory rate of 110 per min. Both left and right
carotid arteries are cannulated with flame-
stretched PE50 tubing. Catheters are connected
to modified P50 Statham transducers.

The chest cavity is entered in the second inter-
costal space at the left upper sternal border
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through a small incision, and the thymus is gently
deflected out of the field of view to expose the
aortic arch. After the transverse aorta is isolated
between the carotid arteries, it is constricted by a
7.0 nylon suture ligature against a 27-gauge nee-
dle, the latter being promptly removed to yield a
constriction of 0.4-mm diameter and provide a
reproducible transverse aortic constriction of
65–75 %.

The hemodynamic effects of acute and chronic
constriction are followed by monitoring the pres-
sure gradient between the two carotid arteries in
anesthetized animals. Systolic and mean arterial
pressure at baseline, during total occlusion when
the ligature is tied, and early (15 min) and late
(7 days) after transverse aortic constriction are
recorded. The increase in systolic pressure pro-
vides an adequate mechanical stimulus for the
development of cardial hypertrophy.

To confirmmyocardial hypertrophy, both sham-
operated and aortic-constricted hearts are examined
7 days after operation. Hearts examined for cell size
are perfused with 4 % paraformaldehyde/1 % glu-
taraldehyde through the apex, immersed in osmium
tetroxide, dehydrated in graded alcohols, and
embedded in araldite. Tissue blocks are sectioned
at a thickness of 1 μm, mounted on slides, and
stained with toluidine blue. Cell areas are measured
by manually tracing the cell outline on an imaging
system connected to a computer.

At the end of the experiment, mice were
sacrificed in anesthesia, heart excised, and
weighed, the atria and ventricles separately frozen
in liquid nitrogen for Northern blot analysis. Total
RNA is extracted by a single-step extraction with
guanidinium thiocyanate. The RNA is size frac-
tionated by agarose gel electrophoresis, transferred
to nylon membranes by vacuum blotting, and
hybridized with the appropriate complementary
DNA probes labeled with 32P by random priming
to a specific activity of 0.95–1.2 � 106 cpm/ng.

Evaluation
Variables measured are expressed as mean � SD.
Statistical significance of differences between
sham-operated and thoracic aortic-constricted ani-
mals is assessed by Student’s t-test.

Modifications of the Method
Dom et al. (1994) studied myosin heavy chain
regulation and myocytes’ contractile depression
after LV hypertrophy in aortic-banded mice.

Okada et al. (2004) subjected mice to trans-
verse aortic constriction. Echocardiographic anal-
ysis demonstrated cardiac hypertrophy and failure
1 and 4 weeks after surgery. Cardiac expression of
endoplasmatic reticulum chaperones was signifi-
cantly increased, indicating that pressure overload
by transverse aortic constriction induced
prolonged endoplasmatic reticulum stress.

Stansfield et al. (2007) described a minimally
invasive murine model of transverse aortic con-
striction debanding, in which the band is removed
up to 4 weeks after constriction through the same
suprasternal incision. This reversible model of
pressure overload was shown as an interesting
model to study the molecular mechanisms
involved in LV reverse remodeling.
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Chronic Heart Failure in Mice

Purpose and Rationale
Several authors reported the development of
murine models of cardiac failure (Kaplan
et al. 1994; Rockman et al. 1994; Balasubramaniam
et al. 2004; Suzuki et al. 2004; Walther et al. 2004;
Wang et al. 2004; Liao et al. 2005).

Xu et al. (2004) studied cardioprotection in
mice with heart failure by dual inhibition of
angiotensin-converting enzyme (ACE) and neu-
tral endopeptidase (NEP).

Procedure
Mice with a targeted deletion of the B2 kinin
receptor gene or C57BL/6 J mice at an age of
10–12 weeks were anesthetized with 50 mg/kg
sodium pentobarbital i.p., intubated and ventilated
with room air using a positive-pressure respirator.
A left thoracotomy was performed via the fourth
intercostal space; the lungs were retracted to
expose the heart, and the pericardiumwas opened.
The left anterior descending coronary artery was
ligated with an 8–0 nylon suture near its origin
between the pulmonary outflow tract and the edge
of the left atrium. Acute myocardial ischemia was
considered successful when the anterior wall of
the left ventricle turned pale and an obvious ST
segment elevation was observed. The lungs were
inflated by increasing positive end-expiratory
pressure and the thoracotomy site was closed.
Sham-operated mice were subjected to the same
procedure except that the suture around the left
anterior coronary artery was not tied. Systolic
blood pressure was measured in conscious mice
using a noninvasive computerized tail-cuff
system. Cardiac geometry and function were eval-
uated with a Doppler echocardiographic system.

LV diastolic dimension was measured and ejec-
tion fraction was calculated from

LVAd� LVAsð Þ
LVAd

� �
� 100;

where LVAd is the LV diastolic area and LVAs is
the LV systolic area.

Four weeks after surgery, each strain was sep-
arated into one group treated with an ACE inhib-
itor, one group treated with a NEP inhibitor, one
group treated with both inhibitors, and one control
group. All drugs were administered in drinking
water for 20 weeks.

At the end of the study, all mice were anesthe-
tized with pentobarbital and the heart stopped at
diastole by intraventricular injection of 15 % KCl.
The heart, lungs, and liver were weighed to assess
hypertrophy and congestion. Infarct size was
determined by Gomori trichrome staining and
expressed as the ration of the infarcted portion to
total LV circumference.

Sections (6 μm) from each slice were double
stained with fluorescein-labeled peanut agglutinin
to delineate the myocyte cross-sectional area and
interstitial space and rhodamine-labeled Griffonia
simplicifolia lectin I to show the capillaries.
To calculate interstitial collagen fraction, the total
surface area (microscopic field), interstitial space
(collagen plus capillaries), and area occupied by
capillaries alone were measured by computer-
assisted videodensometry.

After 20 weeks of treatment, plasma renin was
measured.

Evaluation
Data were expressed as mean � SE. Mortality
rates were compared using χ2 tests. For the echo,
blood pressure, heart weight, lung weight, infarct
size, plasma renin concentration, and histology
data, paired or two-sample tests using nonpara-
metric methods were used to perform all compar-
isons of interest.

Modifications of the Method
Scheuermann-Freestone et al. (2001) established
a new mouse model of chronic volume overload
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by an aortocaval shunt. Congestive heart failure
was induced, which resulted in the development
of myocardial hypertrophy, impaired cardiac
function, and increased expression of the natri-
uretic peptides in the left ventricle.
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Transgenic Mice and Heart Failure

Purpose and Rationale
Several hundreds of papers on transgenic mice
and heart failure are published. Only a few can
be mentioned here.

Chien (1995) described cardiac muscle dis-
eases in genetically engineered mice.

Edwards et al. (1996) described severe cardio-
myopathy in transgenic mice overexpressing the
skeletal muscle myogenic regulator myf5.

Arber et al. (1997) found that MLP-deficient
mice exhibit a disruption of cardiac cytoarchi-
tectural organization, dilated cardiomyopathy,
and heart failure.

Graham et al. (1997) described a mouse model
for mitochondrial myopathy and cardiomyopathy
resulting from a deficiency in the heart/muscle
isoforms of the adenine nucleotide translocator.

Iwase et al. (1997) studied cardiomyopathy in
transgenic mice induced by overexpression of the
cardiac stimulatory G protein α-subunit.

Knollmannn et al. (2000) reported remodeling
of ionic currents in hypertrophied and failing hearts
of transgenic mice overexpressing calsequestrin.

Beggah et al. (2002) described reversible car-
diac fibrosis and heart failure induced by condi-
tional expression of an antisense mRNA of the
mineralocorticoid receptor in cardiomyocytes.

Verheule et al. (2004) found increased vulner-
ability to atrial fibrillation in transgenic mice with
selective atrial fibrosis caused by overexpression
of TGF-β1.

Duncan et al. (2005) found that chronic xan-
thine oxidase inhibition prevents myofibrillar pro-
tein oxidation and preserves cardiac function in a
transgenic mouse model of cardiomyopathy.

Hartil and Charron (2005) reviewed mouse
models where transgenic technology has been
utilized to alter expression of genes involved in
cardiac uptake and metabolism of either lipid or
carbohydrate.
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Hilfiker-Kleiner et al. (2005) reported that
STAT3 knockout mice harboring a cardiomyocyte-
restricted deletion of STAT3 showed enhanced
susceptibility to cardiac injury caused by myocar-
dial ischemia, systemic inflammation, or drug
toxicity.

Sanbe et al. (2005) studied reversal of amyloid-
induced heart disease in desmin-related
cardiomyopathy.
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Cardiac Insufficiency in Guinea Pigs

Purpose and Rationale

Congestive heart failure in man is characterized
by cardiac hypertrophy, peripheral edema, lung
and liver congestion, dyspnea, hydrothorax, and
ascites. Effective treatment is achieved by cardiac
glycosides. Based on techniques reported by
Selye et al. (1960), a method was developed to
induce congestive heart failure in guinea pigs with
symptoms very close to human pathology (Vogel
and Marx 1964; Vogel et al. 1965).

Procedure

Male guinea pigs weighing 250–400 g are used.
The fur at the ventral thorax is shaved and the
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skin disinfected. The animal is anesthetized with
ether. The skin is cut with scissors on the left side
at a length of 4 cm. The left musculus pectoralis
is cut at the costal insertion and elevated. The
forth intercostal space is opened with two
blunted forceps. The heart is pressed against the
opening with the left hand. The pericardium is
opened with a fine forceps and pulled back to the
basis of the heart. The beating heart is extruded
from the thorax wound by pressure with the left
hand on the right thorax wall. A ring-shaped
clamp covered with a thin rubber tube is placed
around the basis of the heart, keeping the
heart outside of the thorax without closing
off the blood circulation. A thread soaked with
diluted disinfectant solution is placed as a
loop around the apex of the heart and tightened
so that the apical third of both ventricles is
tied off. The degree of tightening of the loop is
essential. Complete interruption of blood supply
to the apical third resulting in necrosis has
to be avoided as well as the loop’s slipping
off. Technical skill is necessary to place the
loop around the beating heart into the
correct position. After removal of the clamp,
the heart is placed back, the incision between
the fourth and fifth costal rib closed, and the
musculus pectoralis placed over the wound.
Intrathoracal air forming a pneumothorax
is removed by pressure on both sides of
the thorax. After application of an antibiotic
emulsion, the skin wound is closed. The surgical
procedure has to be finished within a short period
of time.

The animals develop symptoms of severe con-
gestive heart failure with a death rate of 80 %
within 14 days. Lung weight and relative heart
weight are significantly increased. Exudate in the
thorax cavity and ascites amount between 3.5 and
7.5 ml with extreme values of 17.5 ml. Lung
edema and liver congestion are found histologi-
cally. Peripheral edema and preterminal dyspnea
and tachypnea are observed. When treated with
various doses (0.1–100 μg/kg) of cardiac glyco-
sides s.c. or i.m. over a period of 14 days, the
symptoms of cardiac insufficiency, e.g., volumes
of transudate as well as death rate, are dose-
dependent diminished.

Evaluation

From survival rate, ED50 values of cardiac glyco-
sides can be calculated which are in the same
dosage range as therapeutic doses in man.

Critical Assessment of the Method

The experimental model in guinea pigs reflects
very closely the symptoms of cardiac insuffi-
ciency in man, e.g., lung congestion, hydrothorax,
liver congestion, ascites, peripheral edema, and
cardiac hypertrophy. The therapeutic potency of
cardiac glycosides can be evaluated with this
method. Additional factors being known to
enhance the symptoms of congestive heart failure
in man, like salt load and diphtheria toxin, further
increase mortality and hydropic symptoms. The
method can be used for special purposes; how-
ever, it needs considerable training and technical
skill.

Modifications of the Method

Siri et al. (1989, 1991) produced left ventricular
hypertrophy in the guinea pig by gradually
increasing ventricular afterload. A mildly
constricting band was placed around the ascend-
ing aorta of very young guinea pigs (225–275 g).
With growth to 500–1,000 g, left ventricular sys-
tolic pressure increased and ventricular hypertro-
phy developed. Only some of the animals
developed dyspnea and severe ventricular
dysfunction.

Kiss et al. (1995) studied the effects on Ca2+

transport andmechanics in compensated pressure-
overload hypertrophy and congestive heart failure
in guinea pigs. The descending aorta was banded
for 4 and 8 weeks in adult guinea pigs.

Tweedle et al. (1995) assessed subrenal
banding of the abdominal aorta as a method of
inducing cardiac hypertrophy in the guinea pig.

Pfeffer et al. (1987) induced myocardial infarc-
tion in rats by ligation of the left coronary artery
and found hemodynamic benefits and prolonged
survival with long-term captopril therapy.
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Acute ischemic left ventricular failure can be
induced in anesthetized dogs by repeated injec-
tions of plastic microspheres into the left coronary
artery (see chapter “▶Coronary Drugs”, section
“Acute Ischemia by Injection of Microspheres in
Dogs”).

Huang et al. (1997) created congestive heart
failure in sheep by selective sequential
intracoronary injection of 90 μm microspheres
under 1.5 % isoflurane injection.
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Cardiomyopathic Syrian Hamster

Purpose and Rationale

Cardiomyopathy in Syrian hamsters has been
described by Bajusz et al. (1966), Bajusz and
Lossnitzer (1968), Bajusz (1969), Bajusz
et al. (1969a, b), Homburger and Bajusz (1970),
and Gertz (1972). The disease originates from an
autosomal, recessively transmissible disorder,
which leads to degenerative lesions in all striated
muscles and in particular in the myocardium. His-
topathological changes consist of myocytolytic
necrosis followed by fibrosis and calcification.
The evolution of the cardiomyopathic disease
can be characterized by five distinct phases: a
prenecrotic stage, in which no pathology is evi-
dent, a time of active myocytolysis and cellular
necrosis, a phase of fibrosis and calcium deposi-
tion, an overlapping period of reactive hypertro-
phy of the remaining viable myocytes, and a final
stage of depressed myocardial performance and
failure.

Procedure

The model of cardiomyopathy in Syrian hamsters
has been used by several authors. One has to note
that several strains of cardiomyopathic hamsters
have been used: strain Bio 53:58 by Capasso
et al. (1989, 1990) and by Chemla et al. (1992,
1993), strain BIO 14.6 by Tapp et al. (1989) and
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by Sen et al. (1990), strain CHF 146CM by van
Meel et al. (1989) and by Haleen et al. (1991),
strain BIO82.62 by ver Donck et al. (1991), strain
J-2-N by Kato et al. (1992), and strain CHF
147 by Desjardins et al. (1989) and Hanton
et al. (1993).

Various experimental protocols have been
described. Most authors use survival rate and
heart weight as end point (e.g., van Meel
et al. 1989; ver Donck et al. 1991; Hanton
et al. 1993). Generally, the experiments are started
with animals at an age of 120–200 days.

Capasso et al. (1989, 1990) studied the mechan-
ical and electrical properties of cardiomyopathic
hearts of Syrian hamsters using isolated left ven-
tricular posterior papillary muscles.

Tapp et al. (1989) tested stress-induced mortal-
ity in cardiomyopathic hamsters by five consecu-
tive daily 2-h periods of supine immobilizations at
4 �C.

Sen et al. (1990) tested the inotropic and cal-
cium kinetic effects of calcium channel agonists
and antagonists in primary cultures of isolated
cardiac myocytes.

Haleen et al. (1991) tested the effects of an
angiotensin-converting-enzyme inhibitor not
only on survival but also on left ventricular failure
in the isolated Langendorff heart by measurement
of left ventricular end-diastolic pressure, dP/
dtmax, and mean coronary flow.

Dixon et al. (1997) tested the effect of an AT1

receptor antagonist on cardiac collagen
remodeling in the cardiomyopathic Syrian
hamster.

In addition to the effects on left ventricular
papillary muscles strips, Chemla et al. (1992)
tested the effects on diaphragm contractility in
the cardiomyopathic Syrian hamster.

Whitmer et al. (1988) and Kuo et al. (1992)
tested sarcolemmal and sarcoplasmatic reticulum
calcium transport in the cardiomyopathic Syrian
hamster.

Nigro et al. (1997) identified the Syrian ham-
ster cardiomyopathy gene.

Tanguay et al. (1997) tested the coronary
and cardiac sensitivity to a vasoselective
benzothiazepine-like calcium antagonist in iso-
lated, perfused failing hearts of Syrian hamsters.

Bilate et al. (2003) recommended the Syrian
hamster as a model for the dilated cardiomyopa-
thy of Chagas disease. Female hamsters were
infected via the intraperitoneal route with
Trypanosoma cruzi Y strain blood
trypomastigotes. Survival was monitored, echo-
cardiography was performed after 4 and
12 months, and histopathological examinations
were carried out at the end of the study period.

Critical Assessment of the Method

Positive effects of various drugs have been found
in the cardiomyopathic hamster, such as cardiac
glycosides, inotropic compounds, beta-blockers,
calcium antagonists, and ACE inhibitors. The
specificity of the effects has to be challenged.

Modifications of the Method

The tight skin (TSK)mouse is a genetic model of
pulmonary emphysema connected with right ven-
tricular hypertrophy (Martorana et al. 1990; Gardi
et al. 1994).
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Cardiac Failure in Rabbits

Purpose and Rationale

Rabbit models of heart failure were reviewed by
Muders and Elsner (2000).

Rapid pacing was used byMasaki et al. (1994),
Porsa et al. (1994), Eble et al. (1998), Li
et al. (2003), and Rose et al. (2005); coronary
artery ligation by Pennock et al. (1997), Currie
and Smith (1999), Romanic et al. (2001), and
Miller et al. (2004); combined pressure and vol-
ume overload by Ezzaher et al. (1991),
Mohammadi et al. (1997), Dekker et al. (1998),
and Baartscheer et al. (2003a, b); aortic insuffi-
ciency and aortic constriction by Bouanani
et al. (1991) and Pogwizd et al. (1999); regurgita-
tion after damage of the mitral valve by
Gunawardena et al. (1999); and regurgitation
after aortic valve destruction by Magid
et al. (1988, 1994), Yoshikawa et al. (1993),
King et al. (1997), Liu et al. (1998), and Luchner
et al. (2001) used a rabbit model of progressive
left ventricular dysfunction to investigate differ-
ential expression of cardiac atrial natriuretic pep-
tide and brain natriuretic peptide. Ventricular
pacing-induced heart failure could be induced
with a transvenously implanted pacemaker
system.
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Procedure

Male rabbits (chinchilla bastard) underwent
implantation of a programmable cardiac pace-
maker (Medtronic Minix 8340, Minneapolis,
Mn., USA). Under anesthesia (ketamine
60mg/kg xylazine 5 mg/kg i.m.), the right internal
jugular vein was dissected and cannulated with a
single-lumen central venous catheter (Braun, Ger-
many). The catheter was then advanced into the
right ventricle under pressure guidance. A
transvenous screw-in pacemaker lead (Medtronic)
was advanced through the catheter into the ven-
tricular apex and implanted endocardially. The
pacemaker was implanted subcutaneously into
the right abdominal wall, and the pacemaker
lead was connected subcutaneously with the pace-
maker. Rapid ventricular pacing-induced heart
failure could be induced with a transvenously
implanted pacemaker system. All rabbits were
allowed to recover for at least 10 days after sur-
gery before the pacemaker was started for the
induction of heart failure. Proper pacemaker func-
tion was checked intraoperatively, at the time of
programming, and subsequently all 10 days.

Rabbits (CHF group) underwent pacing with a
stepwise increase of stimulation frequencies over
30 days. During the first 10 days, animals were
paced at 330 beats/min (bpm). This protocol
results in ELVD, as defined by significant LV
systolic dysfunction with cardiac enlargement
and decreased perfusion pressure, but no clinical
signs of heart failure. The pacing rate was then
increased to 360 bpm for 10 days and 380 bpm for
another 10 days, and ELVD evolved to CHF with
further cardiac enlargement and further decreased
perfusion pressure together with clinical signs of
fluid retention (ascites). At baseline (control),
after being paced at 330 bpm for 10 days
(ELVD) and at the end of the protocol (CHF),
conscious arterial pressure was measured
invasively via the medial ear artery and a 2-D-
guided M-mode echocardiogram was obtained.
At the end of the pacing protocol, rabbits were
killed by i.v. euthanasia and tissue was rapidly
harvested. Hearts were trimmed on ice, snap fro-
zen in liquid nitrogen, and stored at �80 �C until
further processing.

Echocardiography
A long- and short-axis echocardiogram
(HP Sonos 5500, 12 MHz probe) was performed
under light sedation (5 mg midazolam i.m.) in a
supine position from the left parasternal window.
LV end-diastolic (LVEDd) and end-systolic
(LVESd) dimensions and diastolic and systolic
thickness of the left ventricular anterior wall
(AEDth and AESth) and posterior wall (PEDth
and PESth) as well as left atrial diameter (LAd)
were determined from three repeated 2-D-guided
M-mode tracings using the ASE convention.
From those measurements, fractional shortening
(FS) was calculated as

FS ¼ LVEDd� LVESdð Þ
LVEDd

:

Analytical Methods
For analysis of cardiac natriuretic peptide expres-
sion, mRNAwas extracted from all atrial and left
ventricular samples utilizing a commercial kit
(Fasttrack, Invitrogen).

As a probe for brain natriuretic peptide (BNP), a
750-bp EcoR1/HindIII DNA restriction fragment
containing the gene for rabbit BNP was used.

Evaluation

Results of the quantitative studies were expressed
as mean � SEM. Comparisons between the con-
trol, ELVD, and CHF groups were performed by
analysis of variance (ANOVA) followed by Fish-
er’s least significant difference test. Comparison
between the atrial and LV tissues as well as
between atrial natriuretic peptide (ANP) and
BNP was performed by paired Student’s t-test.
Statistical significance was defined as P < 0.05.

Modifications of the Method

Arnolda et al. (1985) studied adriamycin cardio-
myopathy in the rabbit.

Klimtova et al. (2002) performed a compara-
tive study of chronic toxic effects of daunorubicin
and doxorubicin in rabbits.
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Alexander et al. (1993) studied electrographic
changes following coronavirus-induced myocar-
ditis and dilated cardiomyopathy in rabbits.

Sanbe et al. (2005) described a transgenic
model for human troponin I-based hypertrophic
cardiomyopathy in the rabbit.
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Cardiac Failure in Dogs

Purpose and Rationale

Several methods are described, to induce conges-
tive heart failure in dogs, such as rapid ventricular
pacing (Armstrong et al. 1986; Freeman
et al. 1987; Wilson et al. 1987; Komamura
et al. 1992, 1993; Perreault et al. 1992; Travill
et al. 1992; Cheng et al. 1993; Redfield et al. 1993;
Cory et al. 1994; Kiuchi et al. 1994; Ohno
et al. 1994; Vatner et al. 1994; Wang et al. 1994;
Williams et al. 1994; Eaton et al. 1995; Spinale
et al. 1995; Wolff et al. 1995; Zile et al. 1995;
Ravens et al. 1996; Shinbane et al. 1997;
O’Rourke et al. 1999; Winslow et al. 1999).

Luchner et al. (1996) assessed circulating,
renal, cardiac, and vascular angiotensin II in
a canine model of rapid ventricular pacing-
induced heart failure that evolves from early left
ventricular dysfunction to overt congestive heart
failure.

Procedure

Male mongrel dogs underwent implantation of a
programmable cardiac pacemaker (Medtronic).
Under pentobarbital sodium anesthesia and artifi-
cial respiration, the heart was exposed via a small
left lateral thoracotomy and pericardiotomy, and a
screw-in epicardial pacemaker lead was
implanted into the right ventricle. The pacemaker
was implanted subcutaneously into the left chest
wall and connected to the pacemaker lead. The
dogs were allowed to recover for at least 10 days
after surgery before the pacemaker was started.
During the first 10 days, dogs were paced at
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180 beats/min (bpm), resulting in early left ven-
tricular dysfunction as defined by significant sys-
tolic dysfunction with decreased cardiac output,
cardiac enlargement, and increased filling pres-
sures but maintained systemic perfusion pressure
and renal sodium excretion and no clinical signs
of heart failure. The pacing rate was then
increased weekly to 200, 210, 220, and
240 bpm, and early left ventricular dysfunction
evolved to overt congestive heart failure with avid
sodium retention and clinical signs of congestion.
At baseline (control), after dogs had been paced at
180 bpm for 10 days and at the end of the protocol
(overt CHF), urine was collected for measurement
of sodium excretion; conscious mean arterial pres-
sure was measured via a port catheter; a 2-D-
guidedM-mode echogramwas obtained; and arte-
rial blood was drawn. Cardiac filling pressures
and cardiac output were measured by the
thermodilution method at baseline and at the end
of the protocol. Arterial blood was collected in
EDTA tubes for measurement of ANP, BNP,
cGMP, PRA, aldosterone, and Ang II. After eutha-
nasia, hearts were rapidly trimmed and left ven-
tricles weighted for calculation of the index LV
weight to body weight.

Evaluation

Results were expressed as mean � SE. Compari-
son between the control, early LV dysfunction, and
overt CHF were performed by ANOVA followed
by Fisher’s least significant difference test.

Modifications of the Method

Kleaveland et al. (1988) and Nagatsu et al. (1994)
used the technique of experimentalmitral regur-
gitation in dogs to induce left ventricular dys-
function. A 30-cm, 7-F sheath was introduced
across the aortic valve through the carotid artery.
A urologic calculus retrieval forceps was
advanced through the sheath to the mitral valve
apparatus and was used to sever chordae
tendineae. When pulmonary capillary wedge
pressure rose to 20 mmHg and forward stroke

volume was reduced to 50 % of its baseline, a
ventriculogram was performed to confirm angio-
graphically that severe mitral regurgitation had
been created.

Dell’Italia et al. (1995) and Su et al. (1999)
induced mitral regurgitation by percutaneous
chordal rupture in dogs.

Kinney et al. (1991) published a method to
induce acute, reversible tricuspid insufficiency in
anesthetized dogs. A wire spiral is advanced
through the atrioventricular canal from the right
atrium. The spiral causes regurgitation by
preventing complete apposition of the valve leaf-
lets while permitting retrograde flow to occur
through the spiral lumen. The degree of regurgi-
tation can be controlled by the use of spirals of
different size. Creation of tricuspid insufficiency
was demonstrated by onset of right atrial pressure
V waves, a ballooning of the right atrium during
ventricular systole, palpation of an atrial thrill, or
color Doppler echocardiography. The model is
reversible and allows repeated trials of various
grades of regurgitation.

Carlyle and Cohn (1983) described a
non-chirurgical model of chronic left ventricular
dysfunction. The method is accomplished by
repetitive DC shock with a guidewire introduced
percutaneously and positioned in the left ventricle
along the intraventricular septum and an external
paddle at the left ventricular apex.

McDonald et al. (1992) produced localized left
ventricular necrosis without obstruction of the
coronary blood flow in dogs by transmyocardial
direct-current shock.

Sabbah et al. (1991, 1993, 1994) and Gengo
et al. (1992) produced chronic heart failure in
dogs by multiple sequential intracoronary embo-
lizations with microspheres. The dogs
underwent three to nine intracoronary emboliza-
tions with polystyrene latex microspheres
(70–102 μm in diameter) performed 1–3 weeks
apart. Embolizations were discontinued when left
ventricular ejection fraction was less than 35 %.
Vanoli et al. (2004) used multiple coronary
microembolizations in dogs, whereby three to
nine embolizations were performed 1 week
apart. The first three embolizations consisted of
2 ml of microsphere suspension injected
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subselectively into either the left anterior
descending or left circumflex coronary artery in
an alternating fashion. Subsequent embolizations
consisted of 3–6 ml of microspheres divided
equally between the left anterior descending or
left circumflex coronary artery until LV ejection
fraction was <35 %.

Magovern et al. (1992) described a canine model
of left ventricular dysfunction caused by fiveweekly
intracoronary infusions of adriamycin.

Koide et al. (1997) described premorbid deter-
minants of left ventricular dysfunction in a model
of gradually induced pressure overload in dogs.
Mongrel dogs were studied through 8 weeks of
gradually imposed ascending aortic constriction
with the use of a novel banding technique. Dur-
ing banding, an initial gradient of 30 mmHg was
created. Before banding, at 2, 4, and 6 weeks after
banding, hemodynamics and left ventricular
mechanics were examined at cardiac catheteriza-
tion; then the pressure overload was increased by
tightening the band.

Valentine et al. (1988) and Devaux et al. (1993)
described X-linked muscular dystrophy in dogs
with cardiac insufficiency similar to Duchenne
muscular dystrophy in men and recommended
this as an animal model for cardiac insufficiency.

Bilateral renal wrapping model in adult male
dogs (20–26 kg) has been described previously
(Page 1939; Hart et al. 2001; Maniu et al. 2002);
in this model, the kidneys were wrapped with silk
without constriction of renal vessels. Increased in
systolic blood pressure and LV mass index was
observed at 5 weeks post renal wrapping. At
12 weeks post renal wrap, an increase in LVEDP
was observed. LV end-diastolic volume, ejection
fraction, stroke volume, and cardiac output were
not changed in this model. No changes in circu-
lating angiotensin II, endothelin, catecholamines,
and plasma renin activity were also noted. A mod-
ification of this method has been published by
Hayashida et al. (1997, 1998); in these studies
only the left kidney was wrapped. The dogs devel-
oped hypertension and diastolic dysfunction with
increased LV weight/body weight ratio and
LVEDP and without significant changes in frac-
tional shortening or LV diameters an increased
Ang II levels.
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Cardiac Failure in Pigs

Purpose and Rationale

Cardiac failure was studied in pigs using several
experimental procedures.
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Chow et al. (1990) recommended rapid ven-
tricular pacing in pigs as an experimental model of
congestive heart failure.

Farrar et al. (1993) studied pacing-induced
dilated cardiomyopathy in pigs. Congestive heart
failure was produced by rapid ventricular pacing
at 230 bpm for 1 week.

Spinale et al. (1990a, b, 1991, 1992) examined
the consequences of chronic supraventricular
tachycardia on various parameters of ventricular
dysfunction and subendocardial changes in pigs.

Carroll et al. (1995) investigated gene expres-
sion in a swine model of ventricular hypertrophy
during pressure overload.

Multani et al. (2001) studied long-term angio-
tensin-converting enzyme and angiotensin I
receptor inhibition in pacing-induced heart failure
in pigs. Heart failure was induced by rapid atrial
pacing (240 bpm for 3 weeks).

Kassab et al. (1993, 2000) investigated
remodeling of right ventricular branches after
hypertrophy in pigs.

Krombach et al. (1999) studied the effects of
amlodipine in congestive heart failure in pigs at
rest and after treadmill exercise.

Procedure

Left thoracotomy was performed in Yorkshire
pigs under anesthesia. Catheters connected to a
vascular access port were placed in the thoracic
aorta, the pulmonary artery, and the left atrium.
The access ports were then placed in a subcutane-
ous pocket. A 20-mm flow probe was placed
around the pulmonary artery immediately distal
to the pulmonary catheter and the electrical con-
nection exteriorized through the thoracolumbar
fascia. A shielded stimulating electrode was
sutured onto the left atrium, connected to a pro-
grammable pacemaker, and buried in a subcuta-
neous pocket. The thoracotomy was closed in
layers and the pleural space evacuated of air.
After a 14–21-day recovery, measurements were
performed under normal resting conditions and
after exercise. The pacemakers were activated to
240 bpm for a period of 21 days. During the last

3 days, one group was treated with drug, the other
served as control. At the day of the study, electro-
cardiograms were performed, and the pacemakers
deactivated. After a 30-min stabilization period,
2-D and M-mode echocardiographic studies were
used to image the left ventricle from the
parasternal approach. Left ventricular fractional
shortening was calculated as (end-diastolic
dimension – end-systolic dimension)/diastolic
dimension and was expressed as a percentage.
The access ports were entered and pressures
obtained using externally calibrated transducers.
The flow probe was connected to a digital flow-
meter. From the digitized flow signal, stroke vol-
ume was computed on a beat-to-beat basis and
averaged for a minimum of 25 ejections. Pulmo-
nary and systemic vascular resistances were com-
puted as the mean pressure divided by cardiac
output multiplied by the constant 80 to convert
to resistance units of dyne � s � cm�5. Samples
were drawn from the pulmonary artery and atrial
catheters for measurement of oxygen saturation
and hemoglobin content. The plasma samples
were assayed for renin activity, endothelin con-
centration, and catecholamine levels.

Evaluation

Results were presented as mean � SEM.
Pairwise tests of individual group means were
compared using Bonferroni probabilities.

Modifications of the Method

Zhang et al. (1996) studied functional and bioen-
ergetic consequences of postinfarction left
remodeling in a porcine model. Proximal left cor-
onary artery occlusion was used to generate a
myocardial infarction in young pigs. The animals
were then followed over several months while
remodeling of the left ventricle developed. Left
ventricular wall thickness, ejection fraction, and
wall stress were measured by MRI. Myocardial
ATP, creatine phosphate, and inorganic phosphate
levels were measured by spatially localized
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31P-NMR spectroscopy, and regional myocardial
blood flow was measured with radioactive
microspheres.

Procedure

MRI Protocols
All MRI studies were performed on the standard
Siemens Medical System VISION operating at
1.5 T. The animals were anesthetized with sodium
pentobarbital. A catheter was placed into the fem-
oral artery and advanced into the LV chamber for
LV pressure recording. Animals then were placed
on their left side in a Helmholtz coil with a diam-
eter of 18 cm, which was used to improve signal to
noise. To compute LV wall stress, the image
acquisition was triggered by the LV pressure
through the fluid-filled LV catheter. All of the
imaging sequences were synchronized to the LV
pressure trace. The electronic LV pressure signal
was recorded and fed to a comparator set to a
threshold level of 10 % of the upslope of the LV
pressure curve at the beginning of systole. The
signal from the comparator was sent to a pulse
former and then fed to the ECG port of the mag-
netic resonance system, where it was treated like
the standard electrographic input to run the pulse
sequences. Scout images were taken in the axial
plane with a single-shot, ultrafast gradient echo
sequence (McDonald et al. 1992; Wilke
et al. 1993; Geiger et al. 1995). From the axial
image, both horizontal and vertical long-axis
images were obtained. By alternating back and
forth several times, a true vertical long axis of
the left ventricle was obtained. From the long-
axis scout image, short-axis segmented cine
turboflash slices were prescribed to cover the
myocardium from apex to base. The double
oblique, short-axis turboflash images cover the
heart from apex to base with a slice thickness of
10 mm, with no interslice gap.

MRI Cine Technique
The parameters of the segmented cine sequence
were TR/TE/flip angle = 33 ms/6.1 ms/25� with
an FOV = 17.5 cm and a matrix of 87 � 128

(pixel size, 2 � 1.4 mm) and slice thickness of
7–10 mm (Atkinson and Edelman 1991). The
sequence used segmented k-space acquisition
such that three phase-encoded lines were gathered
per cardiac phase per heartbeat. Total image
acquisition required approximately 52 heartbeats
for each slice location. The temporal image reso-
lution (data acquisition window) of this sequence
was 33 ms per cardiac image. Each myocardial
level took <1.5 min to acquire, since two acqui-
sitions were used and the average heart rate of the
animals was 120 bpm. The average number of
short-axis slices needed to image the entire myo-
cardium from apex to base was 6–8. This 10-min
protocol provided high signal-to-noise cine
sequences covering the entire heart.

Spin-Echo Images
To obtain high-resolution anatomic heart images,
multislice, single-phase spin-echo images trigged
in the systolic phase were acquired to cover the
entire heart. These images permitted the precise
delineation of the extent of the scar region of the
heart. Images were taken with a slice thickness of
5 mm and a FOV of 17.5 cm, resulting in a true
spatial resolution of 2 � 1.4 mm pixel size. The
TR for this sequence equals the RR interval
(500 ms) and the echo time TE was set to 30 ms.
Total measurement time for an average of 10–14
slices was 5 min.

Image Analysis of the MRI Cine Studies
The imaging data were archived to optical disk
and copied to a SUN SPARC 10 workstation for
evaluation with the use of an automatic segmen-
tation program (ImageView, Siemens Cooperate
Research). The program is based on robust
deformable models of endocardial and epicardial
border segmentation of ventricular boundaries in
cardiac magnetic resonance images. This segmen-
tation technique has been combined with a user
interface that allows one to load, sort, visualize,
and analyze a cardiac study in <20 min. The
segmentation algorithm is based on the steepest
descent as well as dynamic programming strate-
gies integrated via multiscale analysis for mini-
mizing the energy function of the resulting
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contour. The ventricular boundaries are used to
construct a three-dimensional model for visuali-
zation and to compute hemodynamic parameters.
Automatic segmentation of endocardial and epi-
cardial boundaries was performed for calculation
of ventricular volumes, EF, LV diastolic and sys-
tolic volumes, and absolute myocardial mass from
multislice, multiphase magnetic resonance cine
images. Starting with a user-specified approxi-
mate boundary or an interior point of the ventricle
for one starting image in one slice, the algorithm
generated automatic contours corresponding to
the epicardium and the endocardium and automat-
ically propagated them to other slices in the car-
diac phase (spatial propagation) and to other
phases for a given slice location (temporal propa-
gation) of the cardiac study. The observer then
could make some manual corrections to the six
or seven pairs of contours in the first column of the
temporal-spatial matrix. Manual modifications
generally were made on the apex and base levels.

Evaluation

Mean LV wall thickness for each short-axis ring
was averaged from three measurements of the
remote zone (anterior wall and septum wall).
The thickness of the scar was averaged from
three measurements of the scar area. LVSA mea-
surement in each slice was computed by
subtracting the total area enclosed by the endocar-
dium from that enclosed by the subepicardium;
the resultant area was multiplied by the slice
thickness to obtain the volume of each slice; the
total LV mass volume was calculated by adding
up the volumes of all the short-axis slices. The
total LVSAwas obtained by dividing the total LV
wall mass volume by the mean of LV wall thick-
ness of each slice. Similarly, the LVSSA was
obtained by dividing the total scar volume,
which was the sum of the scar volume of each
short axis, by the mean of the scar thickness of
each short axis. LV mass was computed by the
total LV wall mass volume multiplied by 1.05
(specific gravity of myocardium) to calculate the

LV mass. The LV end-diastolic volume (Vd) and
end-systolic volume (Vs) of each slice were
represented by the area enclosed by the endocar-
dium. The total LV volume was computed by
adding the volumes of all slices. LVEF was cal-
culated by 100 � (V–Vs)/Vd%. Interobserver and
intraobserver errors for the calculations of LV
mass and LV volumes have been shown to be
<3 mg and 3 ml, respectively (McDonald
et al. 1994). Meridional wall stress was computed
from the LV pressure and simultaneously obtained
short-axis view of LV MRI (LV cavity diameter
and average thickness the remote LV wall) as
described by Grossman et al. (1975).

Spatially Localized31P-NMR
Spectroscopic Technique
Measurements were performed in a 40-cm-bore,
4.7-T magnet interfaced with a SISCO (Spectros-
copy Imaging Systems Corporation) console. The
LV pressure signal was used to gate NMR data
acquisition to the cardiac cycle, while respiratory
gating was achieved by triggering the ventilator to
the cardiac cycle between data acquisitions
(Robitaille et al. 1990). 31P and 1H-NMR frequen-
cies were 81 and 200.1 MHz, respectively. Spec-
tra were recorded in late diastole with a pulse
repetition time of 6–7 s. This repetition time
allowed full relaxation for ATP and Pi resonances
and �90 % relaxation for the CP resonance
(Zhang and McDonald 1995). CP resonance
intensities were corrected for this minor satura-
tion; the correction factor was determined for each
heart from two spectra recorded consecutively
without transmural differentiation, one with 15-s
repetition time to allow full relaxation and the
other with the 6–7-s repetition time used in all
the other measurements.

Radiofrequency transmission and signal detec-
tion were performed with a 25-mm-diameter sur-
face coil. The coil was cemented to a sheet of
silicone rubber 0.7 mm in thickness and �50 %
larger in diameter than the coil itself. A capillary
containing 15 μl of 3M phosphonoacetic acid was
placed at the coil center to serve as a reference.
The proton signal from water detected with the
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surface coil was used to homogenize the magnetic
field and to adjust the position of the animal in the
magnet so that the coil was at or near the magnet
and gradient isocenters. This was accomplished
with a spin-echo experiment and a readout gradi-
ent. The information gathered in this step also was
used to determine the spatial coordinates for spec-
troscopic localization. Chemical shifts were mea-
sured relative to CP, which was assigned a
chemical shift of �2.55 ppm relative to 85 %
phosphoric acid at 0 ppm.

Spatial localization across the LV wall was
performed with the RAPP-ISIS/FSW method
(Hendrich et al. 1991). Signal origin was
restricted with the use of B0 gradients and adia-
batic inversion pulses to a column coaxial with the
surface coil perpendicular to the LV wall. The
column dimensions were 17 � 17 mm. Within
this column, the signal was further localized
using the B1 gradient to five voxels centered
about 45�, 60�, 90�, 120�, and 135� spin rotation
increments. FSW localization used a nine-term
Fourier series expansion. The Fourier coefficients,
the number of free induction decays acquired for
each term in the Fourier expansion, and the mul-
tiplication factors used to construct the voxels
have been reported previously. The position of
the voxels relative to the coil was set using the
B1 magnitude at the coil center, which was exper-
imentally determined in each case by measure-
ment of the 90� pulse length for the
phosphonoacetic acid reference located in the
coil center. Each set of spatially localized
transmural spectra was acquired in 10 min. A
total of 96 scans was accumulated within each
10-min block.

Evaluation

Resonance intensities were quantified with the use
of integration routines provided by the SISCO
software. ATPγ resonance was used for ATP
determination. Since data were acquired with the
transmitter frequency being positioned between
the ATPγ and CP resonance, the off-resonance

effects on these peaks were negligible. The
numeric values for CP and ATP in each voxel
were expressed as ratios of CP/ATP. Pi levels
were measured as changes from baseline values
(ΔPi) with the use of integrals obtained in the
region covering the Pi resonance.
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Cardiac Failure in Sheep

Purpose and Rationale

Various methods have been used to induce cardiac
failure in sheep: pressure overload after aortic
banding (Aoyagi et al. 1993; Charles
et al. 1996), volume loading after myocardial
infarction (Charles et al. 2003), rapid ventricular
pacing (Rademaker et al. 1997, 2002, 2005;
Byrne et al. 2002; Moreno et al. 2005), coronary
microembolization (Huang et al. 2004; Monreal
et al. 2004), and thrombus-induced heart failure
(Chandrakala et al. 2013).
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Rademaker et al. (2002) studied combined
angiotensin-converting enzyme inhibition and
adrenomedullin in an ovine model of heart failure
induced by rapid ventricular pacing.

Procedure

Surgical Preparation
Coopworth ewes (38 � 47 kg) were instrumented
via a left lateral thoracotomy. Under general anes-
thesia (induced by 17 mg/kg thiopentone;
maintained with halothane/nitrous oxide), two
polyvinyl chloride catheters were inserted in the
left atrium for blood sampling and left atrial pres-
sure (LAP) determination; a Konigsberg pressure-
tip transducer was inserted in the aorta to record
mean arterial pressure (MAP); an electromagnetic
flow probe was placed around the ascending aorta
to measure cardiac output (CO); a 7-French Swan-
Ganz catheter was inserted in the pulmonary
artery for infusions; and a 7-French His bundle
electrode was stitched subepicardially to the wall
of the left ventricle for left ventricular pacing. All
leads were externalized through incisions in the
back. A bladder catheter was inserted per urethra
for urine collections.

The animals were allowed to recover for 14 days
before commencing the study protocol. During the
experiments, the animals were held in metabolic
cages, had free access to water, and ate a diet of
chaff and sheep pellets (containing 40 mmol/day
sodium and 200 mmol/day potassium). A further
40 mmol of sodium was administered orally daily
as NaCl tablets using an applicator.

Study Protocol
Heart failure was induced by 7 days of rapid left
ventricular pacing (225 bpm) (Rademaker
et al. 1997) and maintained by continuous pacing
for the duration of the study. On four separate
days with a rest day between each, the sheep
received, in random order, a vehicle control
(Haemaccel), human adrenomedullin alone
(50 ng/min per kg infusion for 3 h), an ACE
inhibitor alone (captopril: 25 mg bolus + 2

mg/h infusion for 3 h), and both agents com-
bined. Infusions were administered in a total
volume of 60 ml via the pulmonary artery cath-
eter, commencing at 10:00 h.

Mean arterial pressure, left atrial pressure, car-
diac output, and calculated total peripheral resis-
tance (CTPR = mean arterial pressure/cardiac
output) were recorded at 15-min intervals in the
1 h prior to infusion (baseline) and at 15, 30,
45, 60, 90, 120, and 180 min during both the 3-h
infusion and post-infusion periods. Hemody-
namic measurements were determined by online
computer-assisted analysis.

Blood samples were drawn from the left atrium
at 30 min and immediately pre-infusion (baseline)
and at 30, 60, 120, and 180 min during the 3-h
infusion and post-infusion periods. Samples were
taken into tubes on ice, centrifuged at 3,939 g for
10 min at 4 �C, and stored at either�20 or�80 �C
before assay for immunoreactive (ir-)
adrenomedullin, cAMP, plasma renin activity,
angiotensin II, aldosterone, atrial natriuretic pep-
tide, brain natriuretic peptide, endothelin-1, cate-
cholamines, and cortisol.

All samples from individual animals were
measured in the same assay to avoid inter-assay
variability. Plasma electrolytes and hematocrit
were measured in every sample taken. Urine vol-
ume and samples for the measurement of urine
cAMP, sodium, potassium, and creatinine excre-
tion were collected every 1 h. Creatinine clearance
was calculated as urine creatinine/plasma
creatinine.

Evaluation

Results are expressed as mean � SEM. Baseline
hemodynamic and hormone values represent the
means of the four and two measurements, respec-
tively, made in the 1 h immediately pre-infusion.
Statistical analysis was performed by repeated-
measures ANOVA. Baseline data from all treat-
ments were compared. Treatment- and time-
related differences between all four study limbs
were determined using a two-way ANOVA
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(treatment–time interactions are quoted in the
text). Statistical significance was assumed when
P < 0.05.
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Cardiac Failure in Monkeys

Purpose and Rationale

Several authors used monkeys for studies of car-
diac failure. Hollander et al. (1977) investigated
the role of hypertension in ischemic heart disease
in the cynomolgus monkey with coarctation of
the aorta. Sieber et al. (1980) studied cardiotoxic
effects of adriamycin in macaques.

Various studies were performed by the
group of Hoit and Walsh in baboons (Hoit
et al. 1995a, b, 1997a, b; Khoury et al. 1996).
Hoit et al. (1997a) studied the effects of thyroid
hormone on cardiac β-adrenergic responsiveness
in conscious baboons.

Procedure

Animal Instrumentation
Adult male baboons (Papio anubis) weighing
21–30 kg were pre-instrumented for physiological
monitoring in a lightly anesthetized, sedated state.
Animals were pre-instrumented with a
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Konigsburg micromanometer and a polyvinyl
catheter in the LV apex, miniaturized
sonomicrometer pairs (3 MHz, 6 mm) across the
LV anteroposterior minor axis, a polyvinyl cathe-
ter in the right atrium for central venous access,
and pacing wires on the right atrial appendage.
Wires and tubes were tunneled subcutaneously
into the interscapular area for later use.
Postoperative pain was reduced by the use of
Buprenex (0.01 mg/kg i.m., q 6 h), and postop-
erative antibiotic (Monocid 25 mg/kg) was
administered for 5 days to reduce the risk of
infection. Baseline hemodynamic studies
were performed after a minimum of 1 week for
postoperative recovery.

Hemodynamic Data Acquisition and Analy-
sis The micromanometers and fluid-filled cathe-
ters were calibrated with a mercury manometer.
Zero drift of the micromanometer was corrected
by matching the LV end-diastolic pressure mea-
sured simultaneously through the LV catheter.
The fluid-filled LV catheter was connected to a
pre-calibrated Statham 23-dB transducer with
zero pressure at the level of the mid-right atrium.
The transit time of ultrasound between the ultra-
sonic dimension crystals was measured with a
multichannel sonomicrometer (Triton Technol-
ogy) and converted to distance assuming a con-
stant velocity of sound in blood of 1.55 mm/ms.

The analog LV dP/dI signal was obtained
online by electronic differentiation of the high-
fidelity LV pressure signal. τ was derived from
the high-fidelity LV pressure tracing by the
method of Weiss et al. (1976), which assumes a
monoexponential decay of LV pressure to a zero
asymptote and has been shown to be directionally
equivalent to other mathematical approaches for
quantification of isovolumic pressure decay. τ is
equal to the time in milliseconds for LV pressure
to decay to 1/e; thus, decreases in τ reflect
improved isovolumic ventricular relaxation.

Fractional shortening of the LVminor axis was
calculated as (EDD–ESD)/EDD, where EDD is
the LVend-diastolic dimension and ESD is the LV
end-systolic dimension. LV end-diastole was
defined as the time in which LV dP/dtmax
increased by �150 mmHg/s for 50 ms, and LV
end-systole was defined as the time of the

maximum ratio of LV pressure to LV minor-axis
dimension. LV volumes were derived fromminor-
axis diameter (D) measurements:

LV volume ¼ π

6 Dð Þ3 :

Vcf was calculated as LV fractional shortening
divided by LVejection time; LVejection time was
defined as the time from peak-positive to peak-
negative dP/dt.

Analog signals for high-fidelity and fluid-filled
LV pressures, LV short-axis dimension, LV dP/dt,
and the ECG were recorded online on a Gould
multichannel recorder at 25 and 100 mm/s paper
speed and digitized through an analog-to-digital
board (dual control systems) interfaced to an IBM
AT computer at 500 Hz and stored on a floppy
disk. Data were analyzed using an algorithm and
software developed in our laboratory. Steady-state
data were acquired over 5–10 s during spontane-
ous respiration and averaged.

Experimental Protocols
Hemodynamic studies were performed a mini-
mum of 1 week after instrumentation and were
repeated after 22–30 (26.8 � 2.7) days of thyroid
T4 administration. Animals were tranquilized with
Valium (1–5 mg) and ketamine (100 mg), and
cholinergic blockade was achieved with atropine
(0.4–0.8 mg i.v.); additional ketamine was admin-
istered as necessary, to a maximum cumulative
dose of 40 mg/kg. Animals were atrially paced at
a rate 40–50 % greater than the control heart rate
in order to obtain data at matched heart rates after
thyrotoxicosis was produced.

Dobutamine Group
After hemodynamic stability was ensured and base-
line data were recorded, intravenous dobutamine
was infused at 5-min intervals at upwardly titrated
rates of 2.5, 5.0, 7.5, and 10.0 μg � kg�1 � min�1 to
examine the effects of β1-adrenergic stimulation.
The dose range of catecholamine for these
studies was chosen to alter inotropic and lusitropic
states without causing an untoward increase in
heart rate. Steady-state hemodynamic measure-
ments were made during minutes 4 and 5 of each
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infusion period. At each level, the pacemaker was
briefly turned off to determine the effect of
dobutamine on the heart rate.

Four of the animals in this group were
studied with incremental pacing both before
and after β-adrenergic blockade with esmolol
(0.3 mg � kg�1 � min�1 i.v.). The pacing protocol
and the results from a larger group of animals
studied before β-adrenergic blockade were
detailed in a previous report. Briefly, atrial pacing
was instituted at a rate above the intrinsic heart
rate to avoid competing rhythms and was
increased at 0.2-Hz increments until the critical
heart rate was achieved. The critical heart rate was
defined as the rate at which dP/dtmax and τ reached
a maximum and minimum, respectively, during
progressive increases in heart rate. We showed pre-
viously that hyperthyroidism significantly increases
the critical heart rates for both dP/dtmax and τ.

The EC50 of dobutamine for LV dP/dtmax was
determined by fitting log(dose)-transformed data to
a sigmoidal relation with software from GraphPad.

Terbutaline Group
Additional animals were chronically instrumented
so that we could examine the effects of
β2-adrenergic stimulation. One animal died
suddenly after receiving thyroid hormone for
20 days. In the remaining three animals, the
β2-adrenergic agonist terbutaline was infused
both before and after production of the hyperthy-
roid state. Incremental doses of terbutaline
(15 min/dose) were infused over a dosing range
of 25–300 ng � kg�1 � min�1.

Thyroid Function Tests
Thyroid function tests were performed before the
baseline experiment in the euthyroid state and
before the terminal experiment (within 24 h of
the last dose of T4) in the hyperthyroid state. T3

radioimmunoassay, T4, and free T4 levels were
measured at each state.

Evaluation

Pairedmean data were compared by Student’s t-test.
The effects of thyroid status, catecholamine dose,

and β-blockade on hemodynamic and dimension
variables were examined with repeated-measures
ANOVA (SuperAnova, Abacus Concepts). When
significant differences were found, group means
were compared with contrasts. A value of
P < 0.05 was considered significant. Unless speci-
fied, data are expressed as mean � SD.
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Cardiac Failure in Other Species

Purpose and Rationale

Various species have been used to study experi-
mental cardiac failure.

Breisch et al. (1984) studied the effects of
pressure-overload hypertrophy in the left myocar-
dium of young adult cats. Hypertrophy was
induced by a 90 % constriction of the ascending
aorta.

Genao et al. (1996) recommended dilated car-
diomyopathy in turkeys as an animal model for
the study of human heart failure.

Do et al. (1997) studied energy metabolism in
normal and hypertrophied right ventricle of the
ferret heart.

Wang et al. (1994) studied Ca2+ handling
and myofibrillar Ca2+ sensitivity in ferret
cardiac myocytes with pressure-overload
hypertrophy.

Bovine hereditary cardiomyopathy was
recommended as an animal model of
human dilated cardiomyopathy by Eschenhagen
et al. (1995).
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Hypertrophy of Cultured Cardiac Cells

Purpose and Rationale

Kojima et al. (1994), Komuro et al. (1990,
1991, 1993), and Yamazaki et al. (1993, 1994,
1996) described a method to induce hypertrophy
of cardiomyocytes by mechanical stress in vitro.

Procedure

Primary cultures from cardiomyocytes are pre-
pared from ventricles of 1-day-old neonatal
Wistar Kyoto rats. According to the method of
Simpson and Savion (1982), the cultures are
treated for 3 days with 0.1 mM bromodeox-
yuridine to suppress proliferation of non-
myocardial cells. Elastic culture dishes
(2 � 4 � 1 cm) are made by vulcanizing liquid
silicone rubber consisting of methylvinyl
polysiloxane and dimethyl hydrogen silicone
resin using platinum as a catalyst. The bottom
of the disk is 1 mm thick, and it is highly trans-
parent because of no inorganic filler in either
component. Cells are plated in a field density of
1 � 105 cells/cm2 in culture medium consisting
of Dulbecco’s modified Eagle’s medium with
10 % fetal bovine serum. Mechanical stress on
cardiac cells is applied by gently pulling and
hanging the dish on pegs. A 10% change in length
of the dish results in an almost identical change in
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the length of the cell along a single axis (Komuro
et al. 1990). Cardiocytes are stretched by 5 %,
10 %, or 20 %. Drugs, e.g., an angiotensin II
receptor antagonist, are added 30 min before
stretch.

For protein analysis, the silicone dishes are
stretched for 24 h after 2 days of serum starvation
and [3H]phenylalanine (1 μCi/ml) is added for
60 min. At the end of each stress, the cells
are rapidly rinsed four times with ice-cold
phosphate-buffered saline and incubated for
20 min on ice with 1 ml of 5 %trichloroacetic
acid. The total trichloroacetic acid-insoluble
radioactivity in each dish is determined by liquid
scintillation counting.

For the determination of mitogen-activated
protein kinase, cardiomyocytes are lysed on ice
and centrifuged. Aliquots of the supernatants of
myocyte extracts are incubated in kinase buffer
(25 mM/l Tris–HCl, pH 7.4, 10 mM/l MgCl2,
1 mM/l dithiothreitol, 40 μM/l APT, 2 μCi
[γ -32P]ATP, 2 μM/l protein kinase inhibitor pep-
tide, and 0.5 mM/l EGTA) and substrates (25-μg
myelin basic protein). The reaction is stopped by
adding stopping solution containing 0.6 %HCl,
1 mM/l ATP, and 1 % bovine serum albumin.
Aliquots of the supernatant are spotted on P81
paper (Whatman), washed in 0.5 % phosphoric
acid, dried, and counted.

For determination ofc-fos mRNA, Northern
blot analysis is performed.

Evaluation

Values are expressed as mean � SEM. Compari-
sons between groups are made by one-way
ANOVA followed by Dunnett’s modified t-test.

Critical Assessment of the Method

The interesting approach to induce hypertrophy of
cardiac cells in vitro has been used predominantly
by one research group. Confirmation by other
research groups including modifications of the
mechanical procedures seems to be necessary.
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