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Background: Subcutaneous panniculitis-like T-cell lymphoma (SPTCL) is a malignant
primary T-cell lymphoma that is challenging to distinguish from autoimmune disorders and
reactive panniculitides. Delay in diagnosis and a high misdiagnosis rate affect the
prognosis and survival of patients. The difficulty of diagnosis is mainly due to an
incomplete understanding of disease pathogenesis.

Methods: We performed single-cell RNA sequencing of matched subcutaneous lesion
tissue, peripheral blood, and bone marrow from a patient with SPTCL, as well as
peripheral blood, bone marrow, lymph node, and lung tissue samples from healthy
donors as normal controls. We conducted cell clustering, gene expression program
identification, gene differential expression analysis, and cell-cell interaction analysis to
investigate the ecosystem of SPTCL.

Results: Based on gene expression profiles in a single-cell resolution, we identified and
characterized the malignant cells and immune subsets from a patient with SPTCL. Our
analysis showed that SPTCL malignant cells expressed a distinct gene signature, including
chemokines families, cytotoxic proteins, T cell immune checkpoint molecules, and the
immunoglobulin family. By comparing with normal T cells, we identified potential novel
markers for SPTCL (e.g., CYTOR, CXCL13, VCAM1, and TIMD4) specifically differentially
expressed in the malignant cells. We also found that macrophages and fibroblasts
dominated the cell-cell communication landscape with the SPTCL malignant cells.
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Single-Cell RNA-seq of SPTCL

Conclusions: This work offers insight into the heterogeneity of subcutaneous
panniculitis-like T-cell lymphoma, providing a better understanding of the transcription
characteristics and immune microenvironment of this rare tumor.

Keywords: single-cell RNA-seq (scRNA-seq), T cell malignancies, pediatric oncology, molecular diagnoses,
subcutaneous panniculitis- like T-cell lymphoma

INTRODUCTION

Subcutaneous panniculitis-like T-cell lymphoma (SPTCL) is a
rare primary cutaneous lymphoma of mature cytotoxic T cells
arising primarily in the skin without the evidence of
extracutaneous involvement. According to the 2016 World
Health Organization (WHO) and 2018 World Health
Organization-European Organization for Research and
Treatment of Cancer (WHO-EORTC) classification, SPTCL is
defined as subcutaneous lymphomas with an o/f T cell
phenotype and neoplastic T cells expressing CD3, CD8, and
cytotoxic proteins (GZMB, TIA-1, perforin) (1, 2). Both children
(3) and adults can be affected, with a median age at diagnosis of
36 years and female gender bias (4). In a cohort of pediatric
patients (3), the median age at diagnosis was 8 years (5 months to
21 years) with a male to female ratio of 1:1.7. The disease
response to therapy is usually favorable, with a 5-year survival
of more than 80% (5).

However, the clinical manifestations and pathological
features of SPTCL are similar to those of benign panniculitis,
lupus erythematosus profundus (LEP), and various autoimmune
disorders, thus SPTCL is frequently misdiagnosed at the early
stage (6). The long diagnosis period and high misdiagnosis rate
may affect the prognosis and survival of patients. Although
recent studies have provided insight into pathways that may be
important to the pathogenesis of this disease (5, 7-11), additional
investigations are required to better understand the profile and
ecosystem of SPTCL.

Here, we conducted single-cell RNA sequencing (scRNA-seq)
to decipher SPTCL at an unprecedented transcriptomic
resolution for matched subcutaneous lesion tissue, peripheral
blood, and bone marrow from a patient with SPTCL, as well as
peripheral blood, bone marrow, lymph node, and lung tissue
samples from healthy donors as normal controls. Using this
dataset, we investigated the ecosystem of SPTCL and identified
novel markers of SPTCL that may advance the detection and
diagnosis of this disease.

METHODS

Patient
A male patient diagnosed with SPTCL was recruited from the
Children’s Hospital of Fudan University in the Department of
Hematology and Oncology. At the time of sample collection, the
patient was 22 months old with SPTCL.

This study was approved by the Medical Ethics Committee of
the Children’s Hospital of Fudan University institutional review

board and conducted under the Declaration of Helsinki
principles (approval reference: No (2020). 307). Informed
written consent was obtained from the parents before inclusion
in the study.

Healthy Donors

Healthy donors’ datasets were downloaded from the Gene
Expression Omnibus (GEO, accession number: GSE126030)
(12). The samples were obtained from deceased, brain-dead
donors at the time of organ acquisition for clinical
transplantation. Donors were free of chronic disease, cancer,
and chronic infections such as Hepatitis B, C, and HIV. The
mononuclear cells were isolated from human lungs (LG), lymph
nodes (LN), bone marrow (BM), and blood, and the untouched
CD3+ T cells were enriched from single-cell suspensions of all
tissues and blood using magnetic negative selection (MojoSort
Human CD3+ T cell Isolation Kit; BioLegend) (12).

Single-Cell RNA Sequencing

Experimental procedures followed established techniques using
the Chromium Single Cell 3’ Library V3 kit (10x Genomics).
Briefly, mononuclear cells from enzymatically digested
subcutaneous lesion biopsies and bone marrow, as well as
peripheral blood by density gradient centrifugation using
Lymphocyte Separation Medium, were loaded into the
Chromium instrument (10X Genomics), and the resulting
barcoded cDNAs were used to construct libraries. RNA-seq
was performed on each sample (approximately 200 million
reads/sample). Raw sequence data were converted into
FASTQs using the Illumina bcl2fastq software. FASTQ files
were aligned to the human genome (GRCh38) using the
CellRanger v3.0.1 (10x Genomics) pipeline according to the
manufacturer’s instructions.

Single-Cell Data Processing and Analysis
Initial data processing of scRNA-seq for peripheral blood (n =
6,463), bone marrow (n = 11,027), and subcutaneous lesion
tissue (n = 19,247) from the patient were performed using
Python 3.6 and the Single Cell Analysis in Python (Scanpy)
(v1.4.6) (13) unless otherwise stated. Healthy donors’ scRNA-seq
data were also processed in the same way. Individual cells were
filtered based on the total number of genes expressed and the
percentage of mitochondrial reads. The cells were included with
genes greater than 200 but less than 6,000, and the percentage of
mitochondrial reads less than 10%. Genes detected in fewer than
three cells were filtered out. Read counts of qualified cells were
normalized using the deconvolution method implemented in the
R package Scran (v3.11) (14) and in-transformed.
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Single-Sample Analysis

For visualization, a UMAP was calculated by computing the
single-cell neighborhood graph (kNN-graph) on the specific
principal components using 15 neighbors. The number of
principal components utilized in the neighborhood graph was
based on the standard deviations of the top 30 principal
components. The Leiden graph-clustering method was used to
cluster the neighborhood graph of cells.

Cell types were manually assigned to the clusters from the
Leiden graph-clustering by comparing the mean expression of
known markers across cells in a cluster. Markers used to type
cells included CD19, MS4A1, CD79A (B cells), CD2, CD3, CD4,
CD8 (T cells), CCR7, IL7R, LEFI1, SELL (naive T cells), CD44,
CXCR3 (memory T cells), IL2RA, FOXP3, IKZF2 (Tregs),
CXCRS5, BCL6, KLRB1, CCR4, TBX21, GATA3 (Th cells),
NCAM]1, NKG7 (NK cells), CDI14, FCGR3A, ITGAM, CD68,
ITGB2, ADGREI, LYZ (macrophages), IRF8, CLEC4C (dendritic
cells), DPP4, TAGLN, COLIA1, PDGFRA (fibroblasts), and
CD34 (progenitor).

A consensus non-negative matrix factorization (cNMF)
algorithm (15) was employed to identified gene expression
programs (GEPs) following the protocol on Github https://
github.com/dylkot/cNMF. The GEPs obtained were subjected
to Gene Ontology (GO) and KEGG analysis using the R package
clusterProfiler (v3.11) (16).

Integration Sample Analysis

We combined the data generated from isolated cells with CD3
and CD8 positive from peripheral blood (n= 1,812), bone
marrow (n=1,143), and subcutaneous lesion tissue (n=5,956) of
the patient, and healthy donors (n=13,494) to conduct
integration analysis. The Scanorama algorithm (17) was
applied to correct the combined dataset for technical batch
effects. All reduced dimensions were the same as that in the
single-sample analysis. Partition-based graph abstraction
(PAGA) was calculated by Scanpy.

The top 100 correlated genes were defined as a GEP, and their
average relative expression was calculated as a GEP cell score
(18). The reference set was randomly sampled from the gene
pool for each binned expression value. The number of reference
genes to be sampled from each bin was 100.

The Wilcoxon rank-sum test was used to estimate and
identify differentially expressed genes. The novel markers
utilized a default threshold of 2 for average fold change and a
filter for the minimum delta percent of cells ([X (percentage of
clusterl) — X (percentage of cluster2)]/X (percentage of clusterl)
*100) greater than 90%.

InferCNV Analysis

Raw gene expression data were extracted from the Scanpy object
as recommended in the “Using 10x data” section (inferCNV of
the Trinity CTAT Project, https://github.com/broadinstitute/
inferCNV). Normal reference cells were identified from
annotated Leiden clusters as naive T cells. Tumor cells were
identified as malignant-like cells in Leiden clusters. The

inferCNV analysis was performed following the tutorial
(https://github.com/broadinstitute/inferCNV/wiki) with
parameters including default settings.

Cell-Cell Ligand-Receptor Interactions
Cell-cell ligand-receptor interactions were inferred using the
CellPhoneDB (v2.0.0) method in Python (19). The lower cutoff
for the expression proportion of any ligand or receptor in a given
cell type was set to 10%, and the number of permutations was set
to 1000.

Whole-Exome Sequencing and Analysis
DNA was extracted from paraffin-embedded (FFPE) SPTCL
tissue for whole-exome sequencing (WES). The Agilent
SureSelect Human All Exon V6 kit was used for exome capture
and library preparation. Paired-end sequencing (2 x 150 bp read
length) was performed using the Illumina NovaSeq platform.
Reads were mapped to the human genome (GRCh37) reference
sequence by the Burrows-Wheeler aligner (bwa mem) algorithm
(version 0.7.17) (20). The data processing, including indel
realignment, marking duplicates, and recalibrating base quality
scores, were performed according to the GATK best practices
using GATK (version 3.7) (21) and Picard tools (version 2.18.25,
http://broadinstitute.github.io/picard). Variants in the HAVCR2
gene were manually checked using the Integrative Genomics
Viewer (IGV) with the bam file (22).

H&E and Immunohistochemistry Staining
The formalin-fixed and paraffin-embedded tissue was cut into 4-um
thick sections and affixed onto the slides. The slides were subjected
to H&E staining and immunohistochemistry. After being
deparaffinized and rehydrated, the antigens were retrieved in
boiled Tris-EDTA (pH 9.0) buffer for 15 min, cooled off for 1h in
the fume hood, and then blocked according to the protocol of the
DAB polymer detection kit (Gene Tech, Shanghai, China) for
10 min. The slides were incubated with primary antibody in 1%
bovine serum albumin (BSA)/tris-base solution buffer at 4°C
overnight. The next day, the slides were incubated with the
secondary antibody and developed with DAB reagent according
to the protocol of the DAB polymer detection kit (Gene Tech).
Finally, the slides were counterstained with hematoxylin. Anti-CD3
antibody (Catalog Number : AR0042, Talent Biomedical, 1:500),
anti-CD4 antibody (Catalog Number : AR0273, Talent Biomedical,
1:500), anti-CD8 antibody (Catalog Number : AMO0063, Talent
Biomedical, 1:500), anti-TIA-1 antibody (Catalog Number :
AMO0226, Talent Biomedical, 1:500), anti-Granzyme B antibody
(Catalog Number : AMO0308, Talent Biomedical, 1:500), anti-
Perforin antibody (Catalog Number : AMO0311, Talent
Biomedical, 1:500), anti-Ki67 antibody (Catalog Number :
AR0248, Talent Biomedical, 1:500), anti-CXCL13 (Catalog
Number:10927-1-AP, Proteintech, 1:500), anti-TIMD4 (Catalog
Number:12008-1-AP, Proteintech, 1:500), and anti-VCAMI1
(Catalog Number:11444-1-AP, Proteintech, 1:400) were used.
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RESULTS

Clinical Characteristics of the Studied
Patient With SPTCL

The clinical manifestations of the studied patient with SPTCL are
summarized in Table 1. The initial disease onset of this male
patient was at six months old, diagnosed with a small hard
nodule (diameter: 1 cm) in the left clavicle and enlarged lymph
nodes in the groin. When he was 12 months old after a measles
vaccination, the initial nodule was significantly enlarged
(diameter: 6 cm) with enlarged lymph nodes in the head of the
pancreas and did not decrease significantly after antibiotic
treatment, puncture, and drainage. At the age of 18 months,
the disease progressed with multiple lesions at the root of the
patient’s right thigh (diameter: 5 cm) accompanied by fever and
then at the left hip (diameter: 3 cm) after anti-inflammatory
treatment for controlling body temperature. Four months later
(22 months old), the patient progressed with a new single lesion
at the right shoulder (diameter: 2 cm) with no fever but enlarged
lymph nodes in the neck, underarms, mediastinum, and groin.
Subcutaneous lesions were more common in the extremities and
partly in the trunk. The lesions varied from 1 cm to 6 c¢m in
diameter, with redness and swelling. No ulcerated plaque was
observed. Multiple lymphadenopathies were proven by
computerized tomography (CT) scans without hepatomegaly.
The patient did not receive any chemotherapy but was followed
up according to his parents’ decision.

Histopathological, immunophenotypical, and molecular
features of the patient samples are also summarized in Table 1.
All skin biopsy specimens demonstrated a dense lymphoid
infiltrate located in the subcutaneous tissue, with the overlying
epidermis and dermis involved. Atypical lymphocytes were
pleomorphic small to medium-sized to diffusely large T cells
with irregular hyperchromatic nuclei and were admixed with
small lymphocytes and histiocytes, which were found in both
biopsy specimens at 18 and 22 months old. Areas of karyokinesis
and karyorrhexis were seen. These atypical lymphocytes showed
a CD3", CD4", CD8", Granzyme B, Perforin’, and TIA1"
phenotype (Figure 1) with a high proliferation rate. Epstein-
Barr virus (EBV) detection by EBV-encoded RNA (EBER) in
situ hybridization was negative. Clonal rearrangement of the
TCR beta gene was found in the biopsy at 22 months old. In all
episodes, bone marrow examination showed no evidence
of lymphoma.

The SPTCL-Specific Ecosystem at
Single-Cell Resolution

We used scRNA-seq to profile gene expression in cells obtained
from the enzymatically digested subcutaneous lesion tissue of the
biopsy before any treatment at 22 months old. Transcriptomic
data were obtained from a total of 17,598 cells, with a median of
1,672 genes detected per cell. Cells were grouped according to
their expression profiles by principal component analysis (PCA)
and Uniform Manifold Approximation and Projection (UMAP)
dimensional reduction. Unsupervised graph-based Leiden
clustering by Scanpy identified 17 clusters of cells that were

TABLE 1 | The clinical characteristics of multiple episodes in the patient with SPTCL analyzed in this study.
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FIGURE 1 | Histopathological (A) and histochemical (B-H) results of the lesion. (A) Sections at low power stained with hematoxylin and eosin showing a heavy
lymphocytic infiltrate predominantly in the subcutis (x40). (B) CD3 positive (x40). (C) CD4 in approximately 5% of cells (x40). (D) CD8 positive (x40). (E) Granzyme B
positive (x40). (F) Tia1 positive (x40). (G) Perforin positive (x40). (H) Ki-67 positive (x40).

annotated and assigned with a cell type based on the expression  cluster, one Treg cell cluster, two CD8" T cell clusters, two NK
of genes described in known canonical markers and published  cell clusters, one naive B cell cluster, six macrophage clusters, one
transcriptome data (see Methods for details) (Figures 2A, B and dendritic cell cluster, two fibroblast clusters, and one progenitor
Supplementary Figure S1). These included one naive T cell  cell cluster. Macrophages were the most abundant immune cells
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covariate bar on the top side indicates the component associated with each gene, and red boxes highlight the prominent expression of genes for the known
subtypes. (C) UMAP plots of malignant markers (MKI67, PRF1, TIA1, GZMB) expression in subcutaneous lesions’ cells. (D) Chromosomal landscape of inferred
large-scale copy number variations (CNVs) distinguishes malignant from non-malignant cells. Amplifications (red) or deletions (blue) were inferred by averaging
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in our study, with a low proportion of B cells. Malignant-like T
cells were identified based on conventional SPTCL markers (i.e.,
MKI67, PRF1, TIAI, and GZMB; Figure 2C), which were highly
expressed in these two CD8" T cell clusters. However, we cannot
rule out the possibility that there were a few normal CD8" T cells
in these two clusters since some markers such as GZMB and
PRFI were also expressed to a certain extent in normal CD8" T
cells. To validate the identification of malignant-like T cells, we
further distinguished malignant from non-malignant T cells by
inferring large-scale chromosomal copy-number variations
(CNVs) based on transcriptomes (Figure 2D). As expected,

almost all the identified malignant-like cells (>99%) showed
clear evidence of a gain of 6p, 12p, and 14p compared with
normal reference cells, supporting that most of them were real
malignant cells.

Next, we use cNMF (15) to infer potential GEPs underlying
the expression profiles and which cells expressed the GEPs. We
identified 23 distinct programs in this dataset, which were
further divided into identity programs (n=19) and activity
programs (n=4) based on the criterion that the former
represents a unique cell type while the latter can occur in
multiple diverse cell types (Supplementary Table S1;
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Supplementary Figure S2A). Most cells had only one GEP,
which represents their identity program. In addition to the 17
primary cell-type clusters initially generated by Scanpy and
refined by the identity GEPs, we also identified epithelial cells,
endothelial cells, and mast cells in this SPTCL-specific ecosystem
(Supplementary Figure S2A). We noticed that the identified
malignant T cells expressed one identity GEP that was
significantly enriched for genes involved in cell killing and T
cells activation (Supplementary Figures S2A, B), including the
chemokines family (i.e., CCL5, CCR5, CXCR3, CXCR6), cytotoxic
proteins (i.e, NKG7, GZMA, GZMB, GZMH, GZMK, GNLY,
PRF1), and immune checkpoint genes (i.e., LAG3, CD27, TIGIT,
HAVCR2, PDCDI1, CTLA4) (Supplementary Figure S2C;
Supplementary Table S1). Some malignant T cells also
expressed an activity GEP named Proliferation, which was
strongly enriched for genes associated with cell cycle (e.g.,
Mitotic Nuclear Division; Supplementary Figures S2A, B).
Moreover, parts of malignant T cells expressed an activity GEP
named Act.T, which was also expressed in naive T cells and NK
cells (Supplementary Figure S2A).

Comparison of Malignant and Normal

T Cells by Expression Profiling

To investigate the difference between malignant and normal T
cells, we paired isolated T cells from the subcutaneous lesion
tissue of the patient with normal T cells from donors’ peripheral
blood, bone marrow, lung tissues, and lymph nodes. We applied
Scanorama to correct the potential batch effects between two
datasets and merged the neighbor sets via the UMAP algorithm
as a combined dataset. Based on the cell-type clusters in SPTCL,
we found that the naive T cells from the patient overlapped with
normal T cells from donors, while malignant T cells were
obviously separated from them (Supplementary Figure S3).
Using the Leiden clustering algorithm, we identified nine
UMAP clusters presenting the normal versus malignant
classification clearly (Figure 3A), actively supporting the
separation within the UMAP. The graph-like maps of cells
generated by the partition-based graph abstraction (PAGA)
also confirmed these two distinct populations without secure
connections (Figure 3B).

As reported by Gayden et al. (8), germline HAVCR2
mutations altering TIM-3 were significantly overrepresented in
SPTCL patients, especially with hemophagocytic
lymphohistiocytosis (HLH). They also observed elevated serum
levels of IFN-y-induced CXCLI10, inflammasome-activated
interleukin-18 (IL-18), and soluble CD25 in a HAVCR2
mutant SPTCL patient at the time of active disease, and
increased amounts of tumor necrosis factor-oo (TNF- o) and
IL-2 produced in vitro by T lymphoblasts from HAVCR2 mutant
patients with SPTCL. Thus, we checked the genotype of
HAVCR2 by examining the whole-exome sequencing (WES)
data of the patient’s SPTCL tissue and did not observe any
coding mutation in the HAVCR2 gene (Supplementary Figure
§4). We also checked the expression of genes (HAVCR2, TNF,
IL2, CXCL10, IL18, and IL2RA/CD25) in our scRNA-seq data for

malignant and normal T cells and found regular expression of
HAVCR2 and CXCLI10 and low expression of TNF, IL2, IL18, and
IL2RA(CD25) in the SPTCL malignant cells (Supplementary
Figure S5) compared with normal T cells, suggesting the
difference between HAVCR2-wild-type and mutant
SPTCL patients.

It has previously been proposed that regulatory T
lymphocytes (Treg) could play an essential role in SPTCL
pathogenesis, especially in the skin (8, 23). In particular,
Gayden et al. identified a drastic decrease in FOXP3'CD4" T
cells in TIM-3 mutants compared with TIM-3 wild-type SPTCL
(8). For comparison, we isolated FOXP3"CD4" T cells in our
SPTCL scRNA-seq data and found that the proportion (21.97%)
of FOXP3"CD4" T cells in CD4" T cells in our patient was
similar to that in TIM-3 wild-type SPTCLs and higher than that
in TIM-3 mutants in the reported cohort, consistent with their
finding (Supplementary Figure S6).

Next, we used the conventional SPTCL markers to examine
the separation of normal and malignant cells above. As expected,
we found that the classical SPTCL marker MKI67 was very
specifically observed in malignant cells but mostly not seen in
normal cells, while the markers GZMB and PRFI were not only
expressed in the tumor T cells but also in part of normal CD8" T
cells (Supplementary Figure S7). Then we scored each cell by
their gene expression correlation to malignant GEPs, including
the previously identified malignant identity GEP (Int.SPTCL)
and activity GEPs (Proliferation and Act.T). There were
significant differences in malignant and normal T cells scored
with all these GEPs (P< 0.001) (Figure 3C).

Meanwhile, we also paired the isolated T cells from the
subcutaneous lesion tissue with T cells from the peripheral
blood and bone marrow of the patient using the same process.
Interestingly, there were a small amount of CD8" T cells from
peripheral blood and bone marrow in proximity to malignant T
cells, and PAGA analysis also showed connections between them
(Supplementary Figures S8A, B). Furthermore, we also found
that the malignant T cells and the proximate T cells from
matched peripheral blood and bone marrow were scored
significantly higher than others with GEPs named Int.SPTCL
and Proliferation (Supplementary Figure S9), suggesting that
malignant-like or pre-malignant cells may exist in the circulation
of the patient resulting in malignant recurrence.

To identify potential novel markers and/or therapeutic targets
of SPTCL, we performed differential gene analysis by comparing
the malignant cells to normal T cells. In total, we identified 45
significantly overexpressed genes in the malignant cells as
potential markers for SPTCL (P.,g; < 0.05 and average fold
change >2). As expected, the top upregulated genes in the
malignant cells were GNLY and the granzyme subfamily (e.g.,
GZMA, GZMK) (Supplementary Figure S10). We further
identified potential novel markers for SPTCL including
CYTOR, CXCL13, VCAMI1, and TIMD4, which were
specifically differentially expressed in the SPTCL cells as
defined by average fold change > 2 and delta percentage > 90%
in malignant T cells versus normal T cells (Figure 3D).
Moreover, we also examined previously reported SPTCL-
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related genes (10) and found a group of genes significantly
differentially expressed in the SPTCL cells (i.e., APOBEC3G,
CCL4, CCL5, CXCL10, CXCR3, FASLG, GBP5, IFNG, IKZF3,
KLRDI, PRF1, and TNFRSF9 (P,g; < 1 x 10'°; Supplementary
Figure S11). The complete results for differential expression
analysis are included in Supplementary Table S2.

Next, we focused on three of these potential novel markers,
CXCL13, VCAMI, and TIMD4, which are protein-coding genes
and presented no or shallow expression in normal lymphocytes.
Their expression was examined by immunohistochemistry in the
patient’s subcutaneous lesion and additional samples from
patients with panniculitis (PA) (Supplementary Figure S12).
Results showed that PA lesions were negative or weakly positive
for the expression of these markers, while SPTCL lesions
exhibited high numbers of positive cells for all three markers.

Single-Cell Expression Patterns of Novel
SPTCL-Specific Imnmune Subsets

To further characterize immune cells in the tumor environment
of SPTCL, we annotated and dissected macrophages and
fibroblasts based on the expression of genes described in
known canonical markers (Figure 4A). We found that most of
the macrophages were of the MIl-type (classically activated
macrophage) and M2-type (alternatively activated
macrophage) with similar proportions (48.9% vs. 41.1%). The
other two clusters of macrophages were not in polarized
activation states; thus, they may be in MO resting states.
Intriguingly, we also identified a group of cancer-associated
fibroblasts (CAFs), a type of perpetually activated fibroblasts,
based on the “CAF markers”, suggesting that these cells could
emerge as players in immune regulation.
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FIGURE 4 | Characteristics of SPTCL-specific immune subsets. (A) Heatmap summarizing mean expression (normalized and log-transformed) of M1, M2, CAF, and
MYF markers in each cluster (above). Bar plot showing the cell fraction of subsets of macrophages and fibroblasts (below). M1, classically activated macrophage;
M2, alternatively activated macrophage; CAF, cancer-associated fibroblasts; MYF, myofibroblasts. (B) Heatmap depicting the log number of all possible interactions
between the clusters analyzed. (C) Violin plots showing expression of ligands CXCR3, CCL5, TNFRSF1B, and VCAM1 and cognate receptors CXCL9, CCR1, GRN,
and IGTB1 on respective stromal populations. (D) Dot plot depicting selected tumor-immune interactions enriched in the microenvironments.
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Next, we sought to elucidate the interactions of the malignant
T cells with the immune populations by examining the cross-talk
between them. We systematically predicted cell-cell
communication networks based on CellPhoneDB (19), a
manually curated repository of ligands, receptors, and their
interactions integrated with a statistical framework to infer
cell-cell communication networks from single-cell
transcriptomic data. We found that the interactions of
malignant T cells occurred more frequently with macrophages,
fibroblasts, and dendritic cells, compared with naive T cells, Treg,
NK cells, and B cells (Figures 4B, C). Notably, macrophages and
fibroblasts dominated the cell-cell communication landscape in
this microenvironment, suggesting they might play the primary
role in tumor-immune interactions of SPTCL. There was no
significant difference between M1 and M2 macrophages in
tumor-immune interactions. We identified multiple tumor-
immune interactions, for example between CXCR3, CCL5,
TNFRSFIB, and VCAMI-expressing malignant T cells and
macrophages/fibroblasts positive for CXCL9, CCRI, GRN, and
IGTBI, respectively (Figure 4C). Interestingly, we found that the
recruited macrophages might promote the inflammatory activity
of malignant T cells via suppressing the PDCDI and CTLA4 axis
(Figure 4D), because the PDCDI(PD-1)-CD274(PD-L1) and
CTL4-CD80/86 interactions can inhibit activation, expansion,
and acquisition of effector functions of CD8" T cells (24).

DISCUSSION

SPTCL is a rare disease facing significant diagnostic challenges.
The clinical manifestations of SPTCL are complex with only a
few consistent characteristics. Subcutaneous tissue infiltration
and/or infiltration by CD3"CD8" cells expressing cytotoxic
proteins (GZMB, TIA-1, perforin) is the typical pathological
change of SPTCL (25). However, this change can also occur in
benign panniculitis and lupus erythematosus profundus caused
by autoimmune attacks (26, 27). The patient in this study
experienced multiple subcutaneous mass in 16 months, and the
results of the biopsy have shown that the mass evolved from
benign to malignant. Because no standardized therapeutic
approach has been established for SPTCL, the patient received
two surgeries to remove the tumor without chemotherapy or
radiotherapy. Interestingly, after the final operation, the patient
has been followed up for more than one year and has not suffered
a relapse. Thus, if there are proper approaches to effectively
diagnose the disease and specific markers to distinguish
malignant cells of SPTCL, timely surgical resection could
be an effective therapy.

Here, we used scRNA-seq profiling of the malignant and
normal cells from the SPTCL patient and normal cells from
healthy donors to characterize the molecular events of SPTCL.
To our knowledge, this is the first study exploring gene
expression signatures, summarizing the tumor microenvironment
of SPTCL in single-cell resolution. We identified a unique GEP that
was expressed significantly higher in SPTCL cells than in normal T
cells, which could be a characteristic of SPTCL. We found four

genes (ie, CYTOR, CXCL13, VCAMI, and TIMD4) explicitly
expressed in malignant T cells, which may be potential novel
markers for SPTCL. We also investigated interplays between
different stromal populations and malignant T cells and found
the leading role of macrophages and fibroblasts (especially CAFs)
in the SPTCL microenvironment, suggesting their contribution to
malignant T cell dysfunction. More specifically, the recruited
macrophages might suppress the PDCDI and CTLA4 axis to
enhance the inflammatory activity of malignant cells, consistent
with the clinical manifestation of SPTCL.

CYTOR (or Linc00152) is a long non-coding RNA that is
overexpressed in multiple cancer cells, and it can promote cell
proliferation and epithelial-mesenchymal transition (28). Given
its crucial role in the pathogenesis of cancers, CYTOR (average
fold change = 3.40, A percentage =95%) may play a role in
SPTCL development.

CXCL13, initially identified as a B-cell chemoattractant, exerts
essential functions in lymphoid neogenesis and has been widely
implicated in the pathogenesis of several autoimmune diseases
and inflammatory conditions, as well as in lymphoproliferative
disorders (29). This chemokine has been proposed as a marker
for certain lymphomas, such as angioimmunoblastic T-cell
lymphoma (AITL), an aggressive nodal T-cell lymphoma
derived from Tpy cells (2, 30). The SPTCL malignant cells
highly expressed CXCLI13, suggesting that its role in SPTCL
is intriguing and worth exploring.

Vascular adhesion molecule-1 (VCAMI), a member of the
immunoglobulin family of cell-cell adhesion receptors, is
expressed aberrantly in some tumor cells, such as renal, breast,
or gastric carcinomas (31-33). Clustering of VCAM-1 on the cell
surface, acting through Ezrin, triggers Akt activation and
protects cancer cells from proapoptotic cytokines such as the
TNF-related apoptosis-inducing ligand (TRAIL) (32, 34).
VCAM-1 can tether macrophages to cancer cells via counter-
receptor a4P1-integrins, and we found that macrophages and
fibroblasts in the SPTCL microenvironment highly expressed
ITGA4 and ITGBI, which constitute a4Pl-integrins. The
interaction between malignant T cells and immune cells may
possess similar effects like VCAMI-mediated mechanisms in
breast cancer cells (32, 34).

TIMD4, a member of the TIM family of immunoregulatory
proteins, is overexpressed in multiple tumor tissues, which has
been proven to promote tumor cell growth and proliferation
both in vitro and in vivo in lung cancer (35). As reported in
recent studies, TIMD4 is expressed in professional antigen-
presenting cells (APCs), pro-B cells (36), and NKT cells (37)
but not in normal CD8" T cells. Its role of aberrant expression in
SPTCL cells needs to be explored further in the future.

Single-cell methods allow researchers to characterize the
tumor transcriptome and microenvironment in an
unprecedented resolution. Our study offered a new insight into
the heterogeneity of subcutaneous panniculitis-like T-cell
lymphoma, providing a better understanding of the
transcription characteristics and immune microenvironment of
this rare tumor. This new level of data provided an opportunity
for clinically meaningful advances in SPTCL.
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