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Abstract

Background: Poisson regression modeling has been widely used to estimate influenza-associated disease burden, as it has
the advantage of adjusting for multiple seasonal confounders. However, few studies have discussed how to judge the
adequacy of confounding adjustment. This study aims to compare the performance of commonly adopted model selection
criteria in terms of providing a reliable and valid estimate for the health impact of influenza.

Methods: We assessed four model selection criteria: quasi Akaike information criterion (QAIC), quasi Bayesian information
criterion (QBIC), partial autocorrelation functions of residuals (PACF), and generalized cross-validation (GCV), by separately
applying them to select the Poisson model best fitted to the mortality datasets that were simulated under the different
assumptions of seasonal confounding. The performance of these criteria was evaluated by the bias and root-mean-square
error (RMSE) of estimates from the pre-determined coefficients of influenza proxy variable. These four criteria were
subsequently applied to an empirical hospitalization dataset to confirm the findings of simulation study.

Results: GCV consistently provided smaller biases and RMSEs for the influenza coefficient estimates than QAIC, QBIC and
PACF, under the different simulation scenarios. Sensitivity analysis of different pre-determined influenza coefficients, study
periods and lag weeks showed that GCV consistently outperformed the other criteria. Similar results were found in applying
these selection criteria to estimate influenza-associated hospitalization.

Conclusions: GCV criterion is recommended for selection of Poisson models to estimate influenza-associated mortality and
morbidity burden with proper adjustment for confounding. These findings shall help standardize the Poisson modeling
approach for influenza disease burden studies.
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Introduction

Numerous studies have demonstrated that influenza causes

substantial burden on mortality and morbidity [1–3]. Reliable

estimates for disease burden associated with influenza in the

community are essential for public health policy-making. However

the case numbers of influenza infections derived from medical

records grossly underestimated the true burden [4]. During 2001

to 2009 there were only 138 deaths registered in Hong Kong with

underlying cause of influenza infection [5]. Underreporting of

influenza cases was due to the fact that influenza infections usually

caused relatively mild symptoms and many infected people did not

seek medical care from hospital or clinic. Among outpatients and

inpatients with influenza-like illness, few were tested for influenza

to get confirmed diagnoses. Even for those with laboratory

confirmed infections, influenza was rarely recorded as underlying

cause of death on their death certificates. Several statistical models

have been used to quantify the disease burden attributable to

influenza [6]. Among these models, Poisson regression models

have become increasingly popular in recent years [7–9]. Unlike

most of the other models, the Poisson model does not require clear

seasonality of influenza to define influenza epidemic and non-

epidemic periods. Therefore, it is particularly suitable for tropical

and subtropical regions where influenza seasonality is less clear

and influenza viruses could be circulating throughout the whole

year.

Another advantage of the Poisson model lies in its ability to

adjust for multiple seasonal confounders simultaneously. There are

two types of confounders that are often considered in Poisson

models: measured confounders, such as meteorological factors,

circulation of other respiratory pathogens and air pollution [10];

and unmeasured confounders, such as seasonal change in host

susceptibility and health seeking behavior [11]. However, over-

adjustment of confounders may result in underestimation of true
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effects, as some variations caused by influenza were allocated to

confounders. Likewise, inadequate adjustment could lead to

residual confounding that causes spurious association between

influenza proxy variable (such as proportions of specimens testing

positive for influenza) and health outcome of mortality or

hospitalization. Therefore, proper adjustment of confounders is

critical for obtaining reliable estimates of influenza-associated

disease burden. Previous studies using Poisson models adjusted for

unmeasured confounders by incorporating sinusoidal pairs [12–

15] or a smoothing function of time trend into the Poisson model

[8,16,17]. However, few studies has properly discussed on how to

determine the adequacy of adjustment for seasonal confounders in

the model. Here we conducted a simulation study with the aim to

compare the performance of several commonly adopted model

selection criteria, in terms of selecting the best-fit Poisson model

with adequate adjustment for confounders. Four model selection

criteria were considered in this study: quasi Akaike information

criterion (QAIC), quasi Bayesian information criterion (QBIC),

partial autocorrelation functions of residuals (PACF), and gener-

alized cross-validation (GCV).

Methods

Data
We obtained weekly all-cause mortality data from 1998 to 2008

from the Census & Statistics Department, and daily meteorological

data of temperature and relative humidity from the Hong Kong

Observatory. Daily concentrations of air pollutants nitrogen dioxide

(NO2), sulfur dioxide (SO2), ozone (O3) and particulate matters with

diameter less than 10 mm (PM10) were obtained from the

Environmental Protection Department. Weekly numbers of speci-

mens positive for influenza and respiratory syncytial virus (RSV) as

well as total numbers of tested specimens were obtained from the

microbiology laboratory of Queen Mary Hospital. Influenza

virology data of this single laboratory have been demonstrated

representative of the virus activity in the entirety of Hong Kong [16].

Mortality Data Simulation
We performed a simulation study by generating mortality data

from a Poisson model with adjustment for over-dispersion [18].

This model is similar to the models used in our previous studies on

influenza-associated mortality and morbidity [17], in which an

influenza proxy variable is added to assess influenza effects. To

derive a proper estimate for influenza-associated mortality or

morbidity, it is important to adjust for confounding to separate the

effect of influenza from those of other seasonal factors. Co-

circulation of RSV, together with two meteorological factors of

temperature and humidity, are adjusted for as confounders in this

study given their association with both health outcomes and

influenza [19,20]. Weekly concentrations of four major ambient

air pollutants are also included as confounders based on recent

findings on the association between influenza virus and ambient

air pollutants [21]. Unmeasured confounding is adjusted for by

including the long-term and seasonal trends of outcome variables.

A typical model was as follows:

Yt*quasiPoisson(mt,wmt),

log (mt)~b0zbFlutzb1RSVtzs(t, df ~11|k)

zs(Tempt, df ~3) zs(Humt, df ~3)zb2NO2t

zb3SO2tzb4O3tzb5PM10t zb6SARSt:

8>>><
>>>:

ð1Þ

Yt denotes the weekly number of all-cause deaths which was

assumed to follow a Poisson distribution with an over-dispersion

parameter w [22]. Flut and RSVt denote the proxy variables for

influenza and RSV, which are weekly proportions of specimens

testing positive for influenza or RSV. Three natural cubic spline

smoothing functions of s(t, df = 116k), s(Tempt) and s(Humt) are

added to adjust for time (t = 1,2,…,574), weekly mean temperature

(Tempt ) and relative humidity (Humt), where the degrees of freedom

(df) of time k ranges from 1 to 10 per year. We used a natural cubic

spline with fixed degrees of freedom so that the locations of knots

were evenly distributed [23]. NO2t, SO2t, O3t and PM10t denote the

weekly mean concentrations of four air pollutants, respectively. To

adjust for the increased mortality during the outbreak of Severe

Acute Respiratory Syndrome (SARS) in 2003, we added into the

model a dummy variable SARS for the SARS period of week 1–30

of year 2003.

Before simulation, we first estimated the coefficients of model (1)

by fitting it to the all-cause mortality data during 1998 to 2008 in

Hong Kong. The degrees of freedom were fixed to three for

weekly temperature and humidity based on our previous

experience [17] and to one per year for long term and seasonal

trends. Mean mortality for week m̂mtwas then predicted from this

fitted model with the b coefficient for influenza variable Flut fixed

to 0.33 (i.e. mortality increasing 3.3% when the influenza positive

proportion increases 10%). The over-dispersion parameter wwas

also derived from this model. Because there was no statistical

package available for data simulation based on the over-dispersed

Poisson distribution, we simulated 500 mortality datasets by

assuming that mortality followed a negative binomial distribution,

i.e. Yt*NegBin(mt,h) when h~
mt

w{1
[24]. Given the uncertainty

in degrees of freedom for unmeasured seasonal confounders, we

repeated the above simulation process with the degrees of freedom

of s(t, df) changing from 1 to 2,3,…, 10 per year. Hence, we got a

total of 5000 weekly mortality datasets and 500 for each fixed

degrees of freedom for t.

Model Selection Criteria Comparison
We then applied Model (1) with degrees of freedom varying

from 1–10 per year for s(t,df) to each set of 500 simulated data),

and selected the best-fit model with the minimal value for each of

the following model selection criteria:

1) Quasi-Akaike information criterion (QAIC) [25]:

QAIC(df) = (22(maximum log-likelihood)/over-dispersion

parameter) +2df

2) Quasi-Bayesian information criterion (QBIC) [26]:

QBIC(df) = (22(maximum log-likelihood)/over-dispersion

parameter) + log(n)6df

where n is the number of observations.

3) Residual autocorrelation: the sum of the absolute value of the

partial autocorrelation function (PACF) of the residuals up to

5 lag weeks.

4) Generalized cross validation (GCV) [26]:

GCV~

1

n

Xn

t~1

D(yt; m̂mt)

f1{tr(R)=ng2

Model Selection in Influenza Disease Burden Study
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where tr(R) is the trace of weighted additive-fit operator

corresponding to the last iteration of the local-scoring procedure;

yt is the observed number of death at week t; m̂mtis the predicted

number of death at week t; D(yt; m̂mt) is the deviance of yt from m̂mt; n

is the number of observations.

We calculated the bias as the average difference between the

estimated coefficients of the influenza variable from the best-fit

model and the true coefficient of 0.33. Standard error and root-

mean-square error (RMSE) were defined as the standard deviation

and square root of the mean square error of estimated coefficients,

respectively. In this study we took RSME as the primary measure

to compare the performance of different model selection criteria,

as it could evaluate both accuracy and variation of the estimates

[25]. The criterion that obtained the minimal RMSE under the

different assumptions of confounding was considered as the best

criterion in selecting the model with adequate adjustment for

confounders.

To investigate the robustness of our results, we conducted a

sensitivity analysis by changing the pre-determined coefficient of

influenza variable from 0.33 to 0.1 and 0.5, which were the lower

and upper boundaries of influenza effects based on our previous

experience. Because a short study period might offer less reliable

estimates with large standard error, we did another sensitivity

analysis with the data of 2003 to 2008 or those of 2006 to 2008.

Given that influenza effects on mortality might lag several weeks

behind the increase of influenza activity [15], we separately added

the influenza proxy variables up to 3 weeks before (lag 1–3 weeks)

into the models to assess any lag effects. All the analyses were

conducted using R software (version 2.13.0) [27].

Application of Models to Empirical Hospitalization Data
We applied the four model selection criteria to an empirical

dataset of weekly hospitalization numbers of pediatric patients

younger than 18 years. These patients were admitted into two

major public hospitals on Hong Kong Island from October 2003

through September 2008, with acute respiratory disease (ARD)

listed in the first five discharge diagnoses. These data were

retrieved from the computerized database of the Hong Kong

Hospital Authority, according to the International Classification of

Disease 9th Revision (ICD9) codes of 4602466 or 4802487. Five

age groups were considered: 021, 122, 225, 5210, 10218 years.

Zt*quasiPoisson(mt,wmt),

log (mt)~b0zbFlutzb1RSVtzs(t, df ~5|k)

zs(Tempt, df ~3)zs(Humt, df ~3)

zb2NO2tzb3SO2tzb4O3tzb5PM10t

zb6Adenotzb7P1tzb8P2tzb9P3t:

8>>>>>><
>>>>>>:

ð2Þ

This Poisson model was similar to model (1), except that two

proxies for adenovirus (Adenot) three types of parainfluenza viruses

(P1t, P2t, P3t) were added as confounders, because these data were

only available after 2003. Influenza-associated hospitalization rates

were defined as the difference between the observed and expected

hospitalization under the assumption of no circulating influenza

viruses. These rates were separately estimated from the best-fit

models chosen by each criterion, and the bias and RMSE were

calculated by comparing with the observed admission rates of a

pediatric cohort of influenza hospitalization cases. As previously

described [17], this cohort was composed of all the pediatric

patients who were recruited from the same two hospitals and

diagnosed with influenza infection by immunofluorescence tests

and viral culture. Ethics approval for collecting specimens from

pediatric patients was obtained from the Ethics Committee of Li

Ka Shing Faculty of Medicine, The University of Hong Kong

(EC1880-02).

Results

Figure 1 shows the weekly number of deaths simulated under

the scenario of low and high seasonal confounding (df = 1 and

df = 10 per year for the seasonal trend smoothing functions). The

simulated data fluctuated within the range of 400 to 1100 with a

steadily increasing annual trend. As expected, the data simulated

under df = 10 was rougher and closer to the true mortality than

those simulated under df = 1 (Figure 1). Overall, the simulated all-

cause mortality data were generally comparable with the true

mortality data.

Most models overestimated influenza effects with a few

exceptions observed for the models selected by the minimal

GCV (Figure 2). Estimates tended to have larger biases as the

seasonal confounding of the simulated data increased. Overall the

models selected by PACF, QAIC and QBIC had the larger biases

(ranging from 0.0022 to 0.2909) than did those selected by GCV

(ranging from 0.0008 to 0.007) (Figure 2). Standard error of

influenza coefficients was comparable between these four criteria,

ranging from 0.0012 to 0.0045. RMSE was similar between the

models selected by PACF, QAIC or QBIC when the df of

smoothing functions for time were less than 5 per year, but

dramatically increased when the df increased to 5 or more per year

(Figure 2). The RMSE of GCV criterion remained lower than

those of the other three criteria (Figure 2).

Biases and RMSE did not markedly change when the pre-

determined coefficient for influenza proxy variable of weekly

positive proportions changed from 0.33 to 0.1 and 0.5 (Figure S1).

Among the four criteria, GCV still provided the smallest bias and

RMSE under the different simulation scenario. Sensitivity analysis

of a shorter study period of 2003–2008 or 2006–2008 showed

slightly higher RMSE than those from the whole study period, but

GCV provided smaller biases and RMSE compared to the other

three criteria (Figure S2). In the models with the lag effects of up to

3 weeks, GCV still provided the smallest biases and RMSE for

influenza coefficients (Figure S3).

Figure 3 shows the percentage difference between the estimated

excess ARD hospitalization rates and directly observed admission

rates of influenza cases in the pediatric cohort from 2003 to 2008.

For the age groups of 021and 10218 years, the best-fit models

selected by GCV provided the estimates closer to the observed

rates than did those selected by QAIC, QBIC and PACF (Figure

S4). Estimates from the four criteria were comparable for the 122

and 225 age groups. All the Poisson models respectively selected

by the four criteria slightly overestimated the true rates for all the

age groups, except that the PACF and GCV criteria provided the

estimates smaller than the observed rates in the 5210 age group.

Among the four criteria, GCV had the smallest biases and RMSE,

whereas QAIC and QBIC had the largest (Table 1).

Discussion

As underreporting of influenza cases is common in clinical

practice, the Poisson modeling approach has been widely accepted

in estimating disease burden of influenza [28]. Two recent studies

in Canada and Hong Kong have demonstrated the estimates of

influenza-associated hospitalization derived from Poisson regres-

sion models reasonably matched the numbers of patients with

laboratory confirmed influenza infections [17,29]. However, it is

extremely difficult to obtain the gold standard data on influenza

associated deaths to assess the validity of the statistical models,

Model Selection in Influenza Disease Burden Study
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because patients with influenza infection could have died from

secondary bacterial infections and exacerbation of their preexist-

ing conditions [30,31]. Therefore, their presenting problems may

not be directly linked to influenza. Moreover, given the potential

lag time between severe complications and primary influenza

infection, influenza virus might have become undetectable in these

patients in the time of admission. Hence recorded influenza deaths

could still seriously underestimate the true numbers of deaths due

to influenza even if laboratory tests for influenza are intensively

conducted. In this study we performed a simulation study to assess

the performance of Poisson regression models. The small biases

and RMSE of most estimates may give further evidence to support

the validity and reliability of Poisson models.

In this study, we adopted a semi-parametric model with

smoothing functions to adjust for potential confounders, whereas

most of the other studies just used linear terms of confounding

variables in their Poisson models [13,15]. This semi-parametric

model is preferred over the traditional parametric model in that it

does not require any pre-determined relationships between the

independent and dependent variables and thereby allows us to

assess both linear and nonlinear relationships. Although we chose

natural spline smoothing functions in this study, there are also

other smoothing functions available. However, previous studies

have found that having a sufficient number of degrees of freedom

is more important than the type of smoothing functions for

adequate adjustment of confounding in the semi-parametric model

[32]. Therefore, in this simulation study, we mainly focused on the

determination of degrees of freedom by an appropriate model

selection criterion. Among the four criteria under study, GCV

consistently provided the smallest biases and RMSE under the

different assumptions of seasonal confounders, particularly when

this confounder was assumed to have a high seasonal variation.

Our findings were robust to the various assumptions of influenza

coefficients in simulation and also to the length of study period.

Increase of RMSE was observed when the study period was

shorten, which is not surprising as using less data points would

increase the variation of estimates.

All the four model selection criteria were developed under the

different schemes. PACF measures the autocorrelation of the

residuals, whereas both QAIC and QBIC evaluate the relative

goodness of fit of a statistical model by quantifying the relative lost

of information when a given model is used to describe the reality.

Therefore the latter two reflect the tradeoff between accuracy and

simplicity, but QAIC penalizes the number of model parameters

to a lesser extent than QBIC does. Unlike other criteria, GCV

assesses the model validity by cross-validation, i.e. randomly

sampling data as training and test datasets to compare the

accuracy and variation of prediction. Our findings that GCV

outperforms the other criteria in Poisson models are also in line

with previous studies on air pollution [25].

We chose the best-fit model based on the adequacy of

confounding adjustment in terms of providing reliable estimates

for influenza effect. Although many seasonal factors could

confound influenza effects on mortality, we only focused on the

Figure 1. Weekly observed all-cause mortality (black line) and simulated mortality data (green lines). Data were generated (A) under
the assumption of low seasonal variation with the degree of freedom for trend set at 1 per year, or (B) under the assumption of high seasonal
variation with the degrees of freedom for trend set at 10 per year.
doi:10.1371/journal.pone.0039423.g001

Model Selection in Influenza Disease Burden Study
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confounding of long term and seasonal trends of mortality in the

present study, as this factor affected our estimates to a greater

extent than any other confounders according to our previous

experience. In this study the best-fit model was selected by

minimizing each of the selection criteria, but the magnitude of

their difference was not assessed. Some studies suggested that the

models selected under the different criteria might perform equally

well if the difference between these criteria were small [33,34].

However, it is not easy and somewhat arbitrary to define the cutoff

points for small difference. Burnham and Anderson (2002)

developed a set of cutoff points for AIC to select the models with

meaningfully different estimates [33]. Similar thresholds for the

BIC value were also introduced by Kass and Raftery [34].

However, so far there are no commonly accepted cutoff points for

those selection criteria used in our study. Therefore, we did not

take into consideration of the difference magnitude between these

values, in order to achieve the simplicity and efficiency in the

model selection procedure.

Figure 2. Bias, Standard error and RMSE of influenza coefficients estimated from the best-fit models selected by different criteria.
Note: Lines of QAIC and QBIC are overlapping when the degrees of freedom (df) range from 2 to 10 per year. Abbreviations: QAIC, quasi-Akaike
information criterion; QBIC, quasi-Bayesian information criterion; PACF, partial autocorrelation function; GCV, generalized cross validation; RMSE, root-
mean-square error.
doi:10.1371/journal.pone.0039423.g002
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There are several limitations in our study. First we assessed the

parameter uncertainty in Poisson regression models based on the

data of subtropical city Hong Kong, where influenza seasonality is

less clear than that in the temperate regions [16]. Given the well

defined winter peaks of influenza in temperate regions, it can be

expected that the data from these regions probably required less

complex adjustment for seasonal confounders. Nevertheless, the

framework developed in our study can still be applied to a wide

range of data. Second, we did not separately estimate the effects of

different influenza virus subtypes, although previous studies have

demonstrated their difference in excess mortality and mutation

frequency [35,36]. Unfortunately, the virus subtype data during

the study period are not available to us. Future studies are needed

to assess the performance of these model selection criteria in

assessing the disease burden associated with each subtype.

By applying Poisson regression models to an empirical dataset of

influenza hospitalization, we demonstrate that our findings can be

generalized to other health outcomes. The best-fit models were

validated by comparing the estimates of age-specific excess

hospitalization rates with the observed rates in a pediatric cohort

undergoing intensive laboratory tests for influenza infections.

Consistent with the findings of our mortality simulated study,

GCV criterion outperformed QAIC, QBIC and PACF with

smaller biases and RMSE. Given the enormous cost in money and

manpower by such a prospective cohort study, statistical modeling

is relatively easier to conduct and able to provide reliable estimates

for influenza associated disease burden.

In conclusion, our results suggested that the GCV criteria

should be recommended for selection of the best-fit model in the

future disease burden studies using Poisson models. Standardiza-

tion of this modeling procedure shall increase the reliability of

estimates and facilitate the comparison across countries or regions.

Supporting Information

Figure S1 Sensitivity analysis by influenza coefficient.
Bias and RMSE of influenza coefficient estimates from the models

selected by different criteria, (A, B) when the simulation coefficient

for influenza was fixed to 0.1 and (C, D) when the simulation

coefficient for influenza fixed to 0.5. Abbreviations: QAIC, quasi-

Akaike information criterion; QBIC, quasi-Bayesian information

criterion; PACF, partial autocorrelation function; GCV, general-

ized cross validation; RMSE, root-mean-square error

(TIF)

Figure S2 Sensitivity analysis by study period. Bias and

RMSE of influenza coefficient estimates from the models selected

by different criteria, (A, B) during the study period of 2006 to

Figure 3. Percentage difference of estimated excess hospitalization rates from the observed admission rates of influenza cases
during 200322008. Note: Percentage difference = 100%6 (estimated excess hospitalization rate – observed rate)/observed rate.
doi:10.1371/journal.pone.0039423.g003

Table 1. Bias, RMSE of the estimated excess hospitalization
rates from the observed hospitalization rates with laboratory
confirmed influenza infections.

Criteria Bias RMSE

QAIC 46.81 9.55

QBIC 46.81 9.55

PACF 40.66 8.3

GCV 25.93 5.29

Note. QAIC, quasi-Akaike information criterion; QBIC, quasi-Bayesian
information criterion; PACF, partial autocorrelation function; GCV, generalized
cross validation; RMSE, root-mean-square error.
doi:10.1371/journal.pone.0039423.t001
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2008, and (C, D) the study period of 2003 to 2008. Abbreviations:

QAIC, quasi-Akaike information criterion; QBIC, quasi-Bayesian

information criterion; PACF, partial autocorrelation function;

GCV, generalized cross validation; RMSE, root-mean-square

error;

(TIF)

Figure S3 Sensitivity analysis by lag effect. Bias and

RMSE of influenza coefficient estimates from the models selected

by different criteria, for (A, B) the lag effect of 1 week, (C, D) the

lag effect of 2 weeks and (E,F) the lag effect of 3 weeks.

Abbreviations: QAIC, quasi-Akaike information criterion; QBIC,

quasi-Bayesian information criterion; PACF, partial autocorrela-

tion function; GCV, generalized cross validation; RMSE, root-

mean-square error;

(TIF)

Figure S4 Weekly numbers of observed and fitted
hospitalization by age group. The fitted hospitalization data

were derived from the best-fit models selected by the generalized

cross validation (GCV) criterion.

(TIF)
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