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1 Département des Sols et de Génie Agroalimentaire, Université Laval, Québec, Québec, Canada,
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Abstract

Wisconsin and Quebec are the world leading cranberry-producing regions. Cranberries are

grown in acidic, naturally low-fertility sandy beds. Cranberry fertilization is guided by general

soil and tissue nutrient tests in addition to yield target and vegetative biomass. However,

other factors such as cultivar, location, and carbon and nutrient storage impact cranberry

nutrition and yield. The objective of this study was to customize nutrient diagnosis and fertil-

izer recommendation at local scale and for next-year cranberry production after accounting

for local factors and carbon and nutrient carryover effects. We collected 1768 observations

from on-farm surveys and fertilizer trials in Quebec and Wisconsin to elaborate a machine

learning model using minimum datasets. We tested carryover effects in a 5-year Quebec

fertilizer experiment established on permanent plots. Micronutrients contributed more than

macronutrients to variation in tissue compositions. Random Forest model related accurately

current-year berry yield to location, cultivars, climatic indices, fertilization, and tissue and

soil tests as features (classification accuracy of 0.83). Comparing compositions of defective

and successful tissue compositions in the Euclidean space of tissue compositions, the gen-

eral across-factor diagnosis differed from the local factor-specific diagnosis. Nutrient stan-

dards elaborated in one region could hardly be transposed to another and, within the same

region, from one bed to another due to site-specific characteristics. Next-year yield and

nutrient adjustment could be predicted accurately from current-year yield and tissue compo-

sition and other features, with R2 value of 0.73 in regression mode and classification accu-

racy of 0.85. Compositional and machine learning methods proved to be effective to

customize nutrient diagnosis and predict site-specific measures for nutrient management of

cranberry stands. This study emphasized the need to acquire large experimental and obser-

vational datasets to capture the numerous factor combinations impacting current and next-

year cranberry yields at local scale.
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Introduction

Cranberry (Vaccinium macrocarpon Ait.) is an ericaceous plant grown commercially in North

America since the 19th century [1]. Cranberry beds, 1–2 ha in size, are established in low-lying

position and diked to facilitate water management [2]. Cranberry soils are acidic and vary

widely from peaty to sandy [3]. Soil particle arrangement may also change with time, impact-

ing soil hydraulic properties [4,5].

Wisconsin (USA) and Quebec (Canada) are the world leaders in cranberry production.

Quebec leads the production of organic cranberries. Hummer et al. [6] reported three periods

of cranberry selections for commercial production: native selections, early cultivars, and recent

hybrids. Twenty-five cultivars were grown in USA and Canada in 2017. Cranberry response to

fertilization is known to be cultivar-, yield-, and region-specific [7–9].

Cranberry fertilization is presently guided by general soil and tissue nutrient tests [10–13] as

well as yield and the occurrence of excessive production of vegetative biomass. Cranberry

grows best at pH 4.0–5.5 [13]. For perennial crops such as cranbrerry, soil tests are often weakly

correlated with fruit yield and are thus complementary to tissue tests [14]. Nevetheless, soil tests

provide information on soil’s capacity to supply nutrients. Results of tissue tests are sensitive to

genetic and environmental factors [15]. The interpretation of tissue tests is made even more

complicated by nutrient interactions [16] and crosstalks [17,18], the fertilization regime [19],

soil temperature impacting organic matter decomposition [2], pollination, pests, fruit loading,

climatic effects, plant vigor, pruning, irrigation, fruit quality [14], and possibly nutrient uptake

by roots in the preceding fall if conditions are favorable [20]. Carryover effects occur where car-

bohydrates and nutrients accumulated in preceding years impact on yield during the current or

next seasons of production. Hence, diagnosis conducted in relation with the current production

yield and based only on fixed critical concentration ranges can be misleading [21].

Tissue testing conducted annually is well suited to perennial crops for long-term nutrient

management [14]. Change in fertilization regimes may take more than one season to be effec-

tive because carbohydrate and nutrient reserves accumulated in off-years can be remobilized

at high rate in on-years [22,23]. Alternate bearing caused by resource competition could

deplete carbohydrate reserves required to sustain high-production over years [8]. Cranberry

fruit set and berry yield are partially limited by carbohydrates, leading to biennial yields that

may be attenuated by sanding and pruning cranberry stands [24]. Total amounts of nutrients

in fruit plants include mineral elements recycled from previous years and taken up during the

current season [23,25–28]. Yield predictions and nutrient requirements for the coming years

are important information needed by growers to design fertilization programs close to crop

needs.

Cranberry was found to be more responsive to nitrogen than to other nutrients [9,29,30].

While nitrogen fertilization may show no effect on fruit set or cranberry yield during the year

of application [31], N overfertilization may result in fewer and poor-quality fruits, and excess

vegetative growth may increase plant susceptibility to disease, spring frost, and insect feeding

[2,23]. High N rates may produce adverse effects in following years as the N stored in excess is

remobilized [2]. However, the observed carryover effects have not been supported by models

to predict future yields and nutrient requirements in cranberry agroecosystems.

Because several features impact cranberry mineral nutrition, regional guidelines are likely

to be less relevant at local scale where factor interactions occur and numerous factor can be

combined succcessfully to produce nutritionally healthy plants. Large and diversified data sets

are thus required to capture numerous combinations of growth-impacting factors and to doc-

ument diagnostic models [32,33]. Methods of artificial intelligence and compositional data

analysis can unravel complex patterns that are beyond human capabilities [34,35].
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We hypothesized that (1) cranberry tissue compositions can be diagnosed accurately at

local scale using a minimum set of yield-impacting features, and (2) cranberry yield prediction

is impacted by the preceding yield that reflects prior carbohydrate consumption and by nutri-

ent carryover that reflects prior nutrient storage. Our objective was to customize cranberry

nutrient diagnosis in Quebec and Wisconsin. Hypothesis no. 1 was tested using a large dataset

collected in Quebec and Wisconsin. Hypothesis no. 2 was tested using a 5-year experiment

conducted in central Quebec. Regional and local diagnoses were compared.

Material and methods

Datasets

The dataset comprised 1768 observations on tissue composition and berry yield collected from

Quebec fertilizer trials at plot scale in 2000–2002 and 2014–2018, and from Quebec and Wis-

consin cranberry farms at bed scale. There were 1696 fully documented observations (Table 1)

reporting berry yield, cultivar, and tissue nutrient composition.

A single cultivar name was assigned to each observation as the dominant cultivar because

100% genetic purity is rarely attained in commercial stands due to cuttings supplied from pro-

duction sites rather than pure stands, and to cross-pollinated flowers and their leftover berries

[36]. Stands were irrigated to prevent early frost damage and to maintain soil matric potential

between −3 and −7 kPa [5].

The 2000–2002 phosphorus fertilization trials were described by Parent and Marchand

[37]. Duplicated multi-nutrient on-farm fertilizer trials were conducted from 2014 to 2018 on

permanent plots in four sites located in south-central Quebec, Canada. There were five N

doses (0, 15, 30, 45, 60 kg N ha-1) applied as acidifying ammonium sulfate (21% N) and sulfur-

coated urea (24% N, 2% P, 9% K, 5% S) or organic fertilizers (8% N for aminoacids; 6% N,

0.4%P, and 0.8% K for fish emulsions) and four K doses (0, 40, 80, 120 kg K ha-1) applied as

potassium sulfate (0% K, 14% S) or Sul-Po-Mag (18% K, 9% Mg, 18%S) overlapping the K

application range suggested in USA [2]. Where N treatment was 45 kg N ha-1 and K treatment

was 80 kg K ha-1, the P, Mg, Cu and B were applied at rates of 0, 15, or 30 kg P ha-1 as triple

super-phosphate (20% P) or bone meal (5.7% P), 0 or 12 kg Mg ha-1 as Epsom salt (11% Mg), 0

or 2 kg Cu ha-1 as copper sulfate and 0 or 1 kg B ha-1 as Solubor. The P, Mg, Cu and B treat-

ments were replaced at three sites in 2016 to test N sources and sulfur treatments while apply-

ing 15 kg P ha-1 as triple super-phosphate (20% P) or bone meal (5.7% P), 12 kg Mg ha-1 as

Espom salt (11% Mg), 2 kg Cu ha-1 as copper sulfate and 1 kg B ha-1 as Solubor in 2016 and

2017. Elementary sulfur was applied at rates of 0, 250, 500, and 1000 kg S ha-1 on each of the

three sites in the spring of 2016 and 2017 to maintain acidic conditions in the soil. Fertilizers

were surface-applied manually at four occasions during the season [2,13], as follows: 15% at

early flowering (29 June to 2 July), 35% at 50% flowering (July 8 to 11), 35% at 50% fruit set

(July 16 to 19) and 15%, 1–2 weeks after the last application. Sites returned to growers’ nutrient

management at site #10 in 2017 and 2018, and at the three other sites in 2018. There was thus a

large variation in nutrient supply. Berries were harvested by hand in four 30 cm × 30 cm quad-

rats per plot lined by a squared frame.

Soil and tissue analyses

Four soil subsamples were collected in the root zone (0–15 cm) then composited in each exper-

imental plot in the spring before applying fertilization treatments. Soils were air-dried and

sieved to less than 2 mm to perform soil tests. Grain-size distribution was determined by sedi-

mentation in Bouyoucos cylinder followed by hand-sieving. Bulk density was measured in the

0–10, 10–20, and 20–30 cm layers using the cylinder method. Soi pH was taken in water. Soil
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series were identified at the site. Minerals (P, K, Ca, Mg, Cu, Zn, Mn, Fe, Al) were extracted

using the Mehlich III method [38] and quantified by inductively coupled plasma optical emis-

sion spectrometry. Soil C and N were quantified by combustion (Leco-2000 instrument, St-

Louis MO). Soil pH was measured in distilled water.

Leaves and stems were collected between August 15 and September 15 across the observa-

tional and experimental sites [19,29,30]. Tissues were not cleaned as recommended unless

absolutely necessity [39]. One hundred current season’s fruiting and vegetative uprights were

sampled randomly per plot and composited, oven-dried at 65˚C for 24 h to 36 h, ground to

pass through 1-mm sieve, and analyzed for total P, K, Mg, Ca, B, Cu, Zn, Mn, and Fe by plasma

emission spectroscopy (ICP-OES) after tissue digestion. Total N was quantified by micro-Kjel-

dahl digestion or by combustion (Leco-2000 instrument, St-Louis MO).

Statistical analysis

Machine learning. Machine learning models are useful to describe complex living systems

phenomenologically from features [32,40]. Features are independent variables such as climatic,

edaphic or managerial data, indices or categories, soil tests and tissue tests. The choice of the

machine learning model among tens of models depends on the objective of the user. A random

forest is a collection of decision trees useful for classification purposes [40]. Adaboost is a forest

Table 1. Regional provenance and pedigree [6,36] of cranberry cultivars in the dataset.

Cultivar Data collection Quebec Wisconsin Pedigree Release year Origin

# observations

Native selections

Ben Lear Survey 14 12 Native selection 1901 Wisconsin

Howes Survey 1 0 Native selection 1843 Massachusetts

LeMunyon Survey 0 13 Native selection 1960 New-Jersey

McFarlin Survey 0 1 Native selection 1874 Massachusetts

Searles Survey 0 15 Native selection 1893 Wisconsin

Early cultivars

Bergman Survey 10 0 Early Black × Searles 1961 New-Jersey

Pilgrim Survey 17 10 McFarlin x Prolific 1961 Massachusetts

Stevens Survey 298 117 McFarlin × Potters Favorite 1950 New-Jersey

Stevens Fertilizer trials 1042 6 McFarlin × Potters Favorite 1950 New-Jersey

Wilcox Survey 3 0 Howes × Searles 1950 New-Jersey

Late cultivars

Crimson Queen Survey 0 8 Stevens × Ben Lear 2006 New-Jersey

DeMoranville Survey 2 10 Franklin × Ben Lear 2006 New-Jersey

GH1 Survey 12 51 Rezin × Searles 2004 Wisconsin

HyRed Survey 0 25 Stevens × Ben Lear 2003 Wisconsin

Recent cultivars

BG Survey 0 4 Beckwith × Grygleski Hybrid 1 2012 Wisconsin

Mullica Queen Survey 0 17 (Howes × Searles) × LeMunyon 2007 New-Jersey

Ruby Star† Survey 0 5 HyRed × Bergman 2017 Wisconsin

Sundance Survey 0 3 Stevens × Lear 2011 Wisconsin

Total 1399 297

†https://www.warf.org/documents/technology-summary/P120284US01.pdf.

https://doi.org/10.1371/journal.pone.0250575.t001
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boosted by sequentially modelling the error of the previous tree, potentially increasing model

accuracy.

Model performance can be assessed in different ways such as cross-validation, one-leave-

out, and split into training and validation datasets. Cross-validation is data-saving, allowing to

process relatively small datasets rapidly. The training set is split into k smaller sets, training the

model using k-1 folds and validating it using the remaining data. A sequence of k boolean tests

is run by randomly sampling data with replacement. Accuracy is averaged across the k out-

comes. Hyperparameters are set to maximize model performance. Orange data mining [41]

suggests using 5, 10, or 20 folds (k). Data selection is stratified to avoid oversampling certain

variables and undersampling others.

Machine learning models can predict outcomes by combining a minimum of key features

selected to increase R2 or decrease RMSE in regression mode relating predicted and actual val-

ues, or to increase area under curve (AUC) and classification accuracy (CA) in classification

mode about yield cutoff. The model is informative if AUC > 0.7 [42]. In classification mode

the confusion matrix returns four quadrants allowing to classify specimens as true negative

(high-yielding and nutritionally balanced specimens), false negative (low-yielding but nutri-

tionally balanced specimens), false positive (high-yielding but nutritionally imbalanced speci-

mens), and true positive (low-yielding and nutritionally imbalanced specimens). The CA is

computed as number of true negative and true positive specimens shown in the confusion

matrix, divided by total number of observations. The number of true negative specimens

should be high to allow diagnosing growing conditions at high yield potential under given

combinaitons of factors. Where the number of true negative specimens is too small, false nega-

tive specimens that are also nutritionally balanced could be considered as additional nutrient

benchmarks.

The list of features and target variables documented in the dataset is provided in Table 2.

The fertilization features were reported as total seasonal nutrient applications. Climatic data

were obtained from the closest Environment Canada meteorological stations within 10 km of

the sites. Yield cutoff between high and low yields was set at 40 ton ha-1 (above average yield of

� 30 ton ha-1 in Wisconsin and Quebec) to run the Random Forest model in regression and

classification modes using Orange 3.23 [41]. In preliminary analysis, Random Forest per-

formed better than other learners such as Gradient Boosting, Support Vector Machine, Naïve

Bayes, KNN and Neural Network in terms of classification accuracy. While yield cutoff of 40

ton ha-1 provides high classification accuracy, it could be adjusted to growers’ capacity to

Table 2. Features and target variables in the Quebec-Wisconsin dataset.

Feature Description

Region Quebec, Wisconsin

Farming system Conventional, organic

Cultivar See Table 1

Fertilization N, P, K, Mg, S, Cu, B

Plant tissue N, P, K, Mg, Ca, B, Cu, Zn, Mn, Fe

Soil test pH; total C and N; Mehlich3 P, K, Mg, Ca, Cu, Zn, Mn, Fe, Al

Soil grain-size distribution Clay, silt, very coarse sand, coarse sand, medium sand, fine sand, very fine sand

Soil bulk density 0–10 cm, 10–20 cm, 20–30 cm

Soil series St-Judes, St-Samuel, Ste-Sophie (Spodosols and Inceptisols)

Temperature Monthly means (from beginning of May to end of October)

Precipitations Monthly totals (from beginning of May to end of October)

Target variable Yield (ton ha-1), yield class about yield cutoff of 40 ton ha-1

https://doi.org/10.1371/journal.pone.0250575.t002
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reach higher yields or to site conditions leading to lower yield potential. The confusion matrix

allows discarding false positive specimens from the calculation of nutrient standards. False

positive specimens can bias nutrient norms as in the Diagnosis and Recommendation Inte-

grated System [43] and the boundary line approach [44] due to luxury consumption, contami-

nation or sub-optimum concentrations [45].

Latent variables

To account for carryover effects, we used 575 observations on cultivar ‘Stevens’ from the

5-years fertilizer experiments (2014–2018). We removed two sites in 2017 that have been

severely damaged by spring frost. Yield-year models were elaborated as follows:

Ytþ1 ¼ f ð∁tÞ

Ytþ1 ¼ f ð∁t; Ft;YtÞ and other features;

Where t is current year, t+1 is next year, Y is berry yield, C is foliar tissue composition, and F is

fertilization.

Isometric log ratio transformation. The sample space of tissue composition is defined by

tissue nutrient concentrations and a filling value (Fv) computed by difference between mea-

surement unit (1000 g kg-1 on dry weight basis) and the sum of nutrient concentrations. Note

that total nutrient analysis is an amalgamation of several molecular or ionic forms of the ele-

ment, some impacting plant metabolic processes more than others [45]. Amalgamation of

components is common in compositional data analysis [46].

Parent [34] suggested using isometric log ratios with orthonormal basis to group nutrients

into subsets and to compute the Euclidean distance between two compositions. The isometric

log ratio (ilr) is a log contrast between the geometric means of two nutrient subsets computed

as follows [47]:

ilri ¼
ffiffiffiffiffiffiffiffiffiffi
rs

r þ s

r

ln
Gr

Gs

� �

Where r and s are the numbers of components at numerator and denominator, respectively,

and Gr and Gs are geometric means across the r and s components at numerator and denomi-

nator, respectively. Euclidean distance ε between defective and successful (�) tissue composi-

tions was computed as follows for a D-parts composition [47,48]:

ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD� 1

i¼1
ðilri � ilr�i Þ

2

q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD

i¼1
ðclri � clr�i Þ

2

q

Centered log ratios (clr) made DRIS compositional [49]. In contrast with clr, the ilr trans-

formation offers the possibility to focus on selected subsets and to compute their Euclidean

distance. While the ilr variables have orthonormal basis, they are not uncorrelated [50].

Hence, setting apart groups of nutrients does not mean that there is not relationship with

other groups of parts.

The successful Euclidean subspaces were called “enchanting islands” in [34] and “ilhas

encantadas” or “Humboldtian loci” in [35]. The reference successful specimens provide not

only an assessment of “optimal” nutrient concentrations under conditions similar to those of

the diagnosed specimen, but also the associated yield and successful fertilization regime at

local scale as documented in the dataset.

The perturbation vector can rank nutrients in the order of their limitation to yield as rela-

tive shortage or excess. It is a scaling operation between diagnosed (X) and reference (x)
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compositional vectors computed as follows [51]:

p ¼ X � x ¼
N
N�
;
P
P�
; . . .

� �

The reference vector is the composition of successful specimens (�) showing close Euclid-

ean distance from that of the diagnosed specimen. The perturbation vector can be interpreted

about the ratio of 1, as per example where there is relative excess, X
x� > 1, or preferably about

zero as X
x� � 1 > 0,. The perturbation vector differs from the more common weighted distance

between the centroid of the compositional hyperellipsoid of performing crops and composi-

tion of the diagnosed specimen.

Results

Minimum dataset to run the machine learning model

The minimum dataset was searched iteratively by adding or removing yield-impacting features

documented in the Quebec-Wisconsin dataset, followed by comparing the accuracy of the

ensuing Random Forest models. We added sequentially regions and cultivars, then climatic

indices, soil features, tissue tests, and various combinations of features. The most accurate

Random Forest model included all documented growth-limiting features (Table 3).

The fact that several features must be combined to increase model accuracy makes regional

nutrient standards across factors hazardous to apply at local scale. Nevertheless, the quartiles

of true negative tissue concentrations across regions and cultivars were generally narrower

than published concentration ranges currently used in North America (Table 4).

Biplot analysis and balance design

Biplot analysis of the tissue analytical results showed that micronutrients were much more var-

iable than macronutrients (Fig 1), indicating large variation in local soil mineralogy as well as

managerial features such as applications of fungicides and fertilizer micronutrients. The den-

drogram in Fig 2 showed that the large variation in micronutrient concentrations impacted

considerably the balance between macro- and micronutrients. Due to large variation in con-

centration values among micronutrients, the perturbation vector should be interpreted with

care to avoid diagnosing excessive shortage or excess of micronutrients without additional

information on soil test and management practices.

Table 3. Factor contribution to ML model accuracy.

Factors AUC† CA‡

Region+cultivar 0.563 0.694

Region+cultivar+climate 0.771 0.761

Region+cultivar+soil test 0.699 0.729

Region+cultivar+tissue test 0.844 0.787

Region+cultivar+tissue test+climate 0.861 0.807

Region+cultivar+tissue test+soil test 0.854 0.805

Region+cultivar+tissue test+soil test+texture+density 0.868 0.819

Region+cultivar+tissue test+soil test+texture+density +climate 0.878 0.833

Region+cultivar+tissue test+climate+soil test+stand age 0.885 0.832

†Area Under curve;
‡Classification accuracy.

https://doi.org/10.1371/journal.pone.0250575.t003
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Local nutrient diagnosis

Yield cutoff between high or low yields was set at 40 ton ha-1, but other yield cutoffs may have

been selected depending on growers’ objective. The ML classification model returned risk

analysis as predicted probability to exceed yield cutoff. Thereafter, the ilr variables allowed

computing Euclidean distance between the defective and successful compositions. Factor-spe-

cific nutrient diagnosis implied comparing, using the perturbation vector, the composition of

a diagnosed specimen to that of the nearest successful neighbors among 265 true negative

specimens. The perturbation vector ranked nutrients in a numerical order of limitation to

yield.

Tissue analyses of two cultivars in Quebec and Wisconsin were diagnosed across the docu-

mented features (Table 5). The Random Forest prediction model showed probabilities of 13%

and 25% for Quebec and Wisconsin defective specimens to attain high yield (> 40 ton ha-1).

As a result, both low-yielding specimens were declared nutritionally imbalanced. Tissue com-

positions of defective specimens were compared to those of the corresponding closest success-

ful specimens to identify the source of nutrient imbalance and the attainable trustful high

yields by rebalancing tissue nutrients at local scale. By comparison, the average composition of

the 265 true negative specimens at regional scale was also used as regional reference

composition.

Regional nutrient diagnosis of cultivar ‘Stevens’ in Quebec indicated possible N, Cu and Zn

excess, and K, Mg, B, Mn and Fe shortage to achieve > 40 ton ha-1. Local diagnosis detected N

and Zn excess, and P, K, Mg, Ca, B, Mn and Fe shortage for attainable yield of 57.6 ton ha-1

(Fig 3). Regional nutrient diagnosis of cultivar ‘Crimson Queen’ in Wisconsin indicated B, Zn

and Fe shortage and P, K and Mn excess to reach > 40 ton ha-1. Local diagnosis returned N, P,

K, Mg, Ca, B abd Mn excess and Cu and Fe shortage at local scale where yield potential of the

closest neighbor was 62.8 ton ha-1 (Fig 3). Euclidean distance between diagnosed and reference

compositions were higher using regional average concentrations compared to the closest true

negative specimen (Table 5). While regional averages are statistical constructs, compositional

entities at local scale are combinations of nutrients uniquely impacted by site-specific genetic

environment management interactions. Those results showed that adding local factors to

diagnose tissue compositions changed the traditional interpretation of plant nutrient status

based on regional nutrient references averaged across factors.

Table 4. Intervals of compatibility of quartile nutrient concentrations in plant tissues (leaves and stems) of true

negative specimens across factors compared to published ranges.

Nutrient First quartile Third quartile Davenport et al. [19]

g kg-1

N 10.0 11.3 9.0–11.0

P 1.0 1.2 1.0–2.0

K 4.9 5.9 4.0–7.5

Mg 1.8 2.2 1.5–2.5

Ca 7.7 9.5 3.0–8.0

B 0.034 0.065 0.015–0.060

Cu 0.003 0.005 0.004–0.010

Zn 0.016 0.025 0.015–0.030

Mn 0.195 0.441 > 0.010

Fe 0.066 0.114 > 0.020

https://doi.org/10.1371/journal.pone.0250575.t004
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Fig 1. Biplot analysis of the Quebec-Wisconsin dataset.

https://doi.org/10.1371/journal.pone.0250575.g001

Fig 2. Dendrogram to analyze macro- and micronutrients separately (Fv = filling value).

https://doi.org/10.1371/journal.pone.0250575.g002
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Yield prediction model including latent variables

Current berry yield is a measure of carbohydrate depletion while tissue test is an index of

stored nutrients that could be mobilized in the following years. The 2014–2018 experiments

provided such information. While berry yields and soil and tissue analyses collected annually

on the same beds can grow rapidly in size and diversity with growers’ collaboration, they could

be informative to predict future yields if collected in the same plots through time.

After removing two sites due to severe early frost damage in 2017, 575 observations were

retained to predict next-year yields based on current-year yields and features. The R2 values of

the predictive Random Forest model depended on the number of features included in yield

functions (Table 6). Even without future climatic indices at hand, yield prediction for the fol-

lowing year was satisfactory (Fig 4), providing evidence for carryover effects.

Table 5. Diagnosis of two Quebec and Wisconsin cranberry cultivars against their respective closest Euclidean distances from successful cultivar-specific neighbors.

Region Cultivar Yield N P K Mg Ca B Cu Zn Mn Fe Fv Euclidean distance

ton kg-1 g kg-1

Defective specimens

Quebec Stevens 26.7 12.1 1.1 4.0 1.5 8.2 0.030 0.005 0.030 0.220 0.090 972.7 -

Wisconsin Crimson Queen 11.7 10.2 1.4 6.9 2.0 9.3 0.024 0.004 0.017 1.198 0.060 968.9 -

Closest successful specimens at local scale

Quebec Stevens 57.6 10.1 1.0 4.7 1.9 9.0 0.029 0.006 0.018 0.222 0.097 972.9 0.66

Wisconsin Crimson Queen 62.8 12.3 1.5 6.2 2.8 14.7 0.053 0.003 0.020 0.339 0.074 962.0 1.64

Regional averages of true negative specimens

All regions All cultivars TN > 40 10.6 1.1 5.4 2.0 8.9 0.052 0.004 0.021 0.355 0.117 971.3 0.82;1.77†

† Euclidean distance between average composition of TN specimens and that of defective specimens in Quebec and Wisconsin, respectively.

https://doi.org/10.1371/journal.pone.0250575.t005

Fig 3. Nutrient diagnosis for ‘Stevens’ in Quebec and ‘Crimson Queen’ in Wisconsin at regional scale across factors or

at local scale at factor-specific level.

https://doi.org/10.1371/journal.pone.0250575.g003
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The Random Forest classification model returned similar CA values of 0.848 for current-

year and 0.847 for next-year predictions. However, there were 165 true negative specimens for

current-year yield assessment, and 64 true negative specimens for next-year yield assessment,

indicating mismatch between current-year and next-year true negative specimens.

A predictive diagnosis was conducted for the Quebec defective ‘Stevens’ specimen in

Table 6. Among the 64 true negative specimens predicted by the carryover model, a successful

specimen predicted to produce 57.1 ton ha-1 in the next year showed Euclidean distance of

0.99 and the following concentration values in the current year: 11.4 g N kg-1, 0.7 g P kg-1, 4.8

g K kg-1, 1.5 g Mg kg-1, 5.7 g Ca kg-1, 0.043 g B kg-1, 0.003 g Cu kg-1, 0.048 g Zn kg-1, 0.197 g

Mn kg-1, and 0.077 g Fe kg-1. The perturbation vector showed relative excess of P, Ca, and Cu,

and relative shortage of K, B and Zn (Fig 5). This suggests discontinuing P, Ca and Cu fertiliza-

tion, and increasing K, B and Zn rates. This emphasizes the importance of collecting large and

diversified data on the same plots through time, and to conduct local factor-specific diagnosis

across several features against close successful neighbors to increase the probability to attain

high yield.

Discussion

Nutrient standards

Tissue test interpretation is based traditionally on fixed nutrient sufficiency ranges collected at

regional scale and averaged across myriads of genetic environment management interactions.

Therefore, the diagnostician must assume heroically that all controllable and uncontrollable

factors other than those being addressed are similar or at near-optimum levels [52]. Ulrich

[53] pointed out that “in view of the great variability of plants and soils, it would be remarkable

if all plants became deficient in nutrients at the same time”.

Indeed, growers are used to compare defective specimens to successful neighbors. Parent

[34] represented growers searching for successful conditions as compositional parachutists try-

ing to land on the closest “enchanting islands” by manipulating nutrients represented by para-

cords. Where high yields have been reached in the successful neighborhood, realistic yields

can be targeted and trustful correction measures applied. Factor specific diagnosis translates

into site-specific recommendations and precision agriculture.

In our study, we assembled experimental and observational cranberry data from Quebec

and Wisconsin. We found that relating berry yield to nutrient composition of leaves and stems

and other features collected in the same year resulted in the highest model accuracy where all

yield-impacting features documented in the dataset were included in the model. There is thus

a need for paradigm change toward factor-specific nutrient diagnosis and site-specific fertilizer

recommendations supported by large and diversified datasets [35,54,55].

Table 6. Accuracy of Random Forest regression models (Yt, Yt+1 for yield, t for current year, Ft for fertilization

regime, and Ct for tissue composition) using the Quebec 2014–2018 fertilization trials with cultivar “Stevens”.

Yield function R2

1. Yt+1 = f(Ct) 0.600

2. Yt+1 = f(Ct, Ft) 0.632

3. Yt+1 = f(Ct, Ft, Yt) 0.639

4. Yt+1 = f(Ft, Yt) + soil test 0.684

5. Yt+1 = f(Ct, Yt) + soil test 0.687

6. Yt+1 = f(Ct, Ft, Yt) + soil test 0.730

https://doi.org/10.1371/journal.pone.0250575.t006
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Carryover effects

While substantial response to fertilization is possible where strong nutrient deficiency occurs,

the major contribution of tissue testing is to reduce or discontinue the unneeded application

of fertilizers in the following years [14]. Relationships between yield and tissue composition of

annual crops have been found appropriate to elaborate nutrient standards [56]. For perennial

crops, more modelling effort must be implemented because latent processes to account for car-

bohydrate depletion and nutrient cycling during preceding years may impact crop productiv-

ity thereafter.

Fig 4. Relationship between actual and predicted cranberry yields at year t+1.

https://doi.org/10.1371/journal.pone.0250575.g004

Fig 5. Perturbation vector of the defective Quebec specimen in Table 4 compared to a close successful specimen to attain high

yield in the following year.

https://doi.org/10.1371/journal.pone.0250575.g005
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Nutrient carryover effects can occur because nutrients can be stored in plant tissues during

the year of fertilization [22,23] and rendered available later on for cranberry production [2].

Biennal effects occur where carbohydrate supply limits yield [8]. Based on model accuracy,

next-year cranberry yield and composition of leaves and stems proved to be sensitive to tissue

test (leaves and stems), applied fertilization and carbon allocation to fruits during the preced-

ing yield in Quebec fertilizer trials with cultivar ‘Stevens’.

Carryover effects on yield prediction and optimum nutrient management have been mod-

elled successfully in the special case of lowbush blueberry (Vaccinium angustifolium) because

the tissue is sampled the year preceding harvest and the crop is harvested every other year [54].

For most perennial fruit crops, the harvesting is annual. Annual geolocalized sampling is thus

recommended to identify nutritional problem in the current year in order to adjust fertiliza-

tion in the following year for long-term nutrient management [14]. We translated this concept

into accurate machine learning and compositional models. Data acquired from on-farm sur-

veys relating soil and tissue analyses to crop performance could thus contribute to document

carryover effects from the preceding year for next-year yield prediction and fertilizer recom-

mendation at local scale.

Acquisition of large data sets

Successful compositional neighborhood sharing the same features but differing in the ones

that could limit yield can provide trustful corrective measures tailored for local scale. However,

this requires large, informative and diversified datasets to capture numerous combinations of

features. While experimental data are expensive to acquire and specific to the experimental

areas, on-farm survey data can be collected to build large and diversified datasets as supported

by “citizen science projects” [57].

Kyveryga et al. [58] and Anderson and Kyveryga [59] stressed the great importance of his-

torical farm data to search for near-optimum dosage and to guide fertilization decisions.

Indeed, more than two hundred years ago, Alexander von Humboldt elaborated the principles

of biogeography to document complex interactive biosystems by facts, measurements, and evi-

dence at local scale [33]. Such large datasets can now be solved easily using tools of machine

learning and compositional data analysis.

Conclusion

Well-documented datasets processed by machine learning and compositional methods allow

conducting nutrient diagnosis at cultivar × environment × management interaction levels.

This is a major change of paradigm compared to traditional diagnostic methods elaborated

across growth-impacting factors. The Random Forest model confirmed that carryover effects

of carbohydrate and nutrient accumulations impacted berry yield in the following year. This

emphasized acquiring large and diversified datasets. Cranberry nutrient datasets could grow

rapidly at minimum cost through collaboration between researchers and growers to develop

accurate nutrient diagnostic tools. Factor-specific diagnosis must translate into site-specific

fertilizer recommendations and precision agriculture.
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34. Parent S-É. Why We Should Use Balances and Machine Learning to Diagnose Ionomes. Authorea,

January 20, 2020. https://doi.org/10.22541/au.157954751.17355951
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tions for compositional data analysis. Math Geol. 2003; 35: 279–300.

48. Aitchison J. The Statistical Analysis of Compositional Data. London UK: Monographs on Statistics and

Applied Probability; Chapman & Hall Ltd.: 1986.

49. Parent LE, Dafir M. A theoretical concept of compositional nutrient diagnosis. J. Am. Soc. Hortic. Sci.

1992; 117: 239–242.
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