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Abstract Chinese painted quails immunized with a single

dose (6 lg HA) of inactivated H5N1 (clade 1) influenza

vaccine NIBRG-14 and challenged with 100 LD50 of the

heterologous A/Swan/Nagybaracska/01/06(H5N1) (clade

2.2) strain were protected, whereas unvaccinated quails

died after challenge. No viral antigens or RNA were

detected in cloacal swabs from immunized animals. Sera

obtained post-immunization gave low titres in serological

assays against the vaccine and the challenge viruses. Our

results demonstrate the protective efficacy of the NIBRG-14

strain against the challenge virus and the usefulness of these

small birds in protection studies of influenza vaccines.
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Highly pathogenic avian influenza virus (HPAI) strains

cause significant mortality in unvaccinated chickens, but

their virulence varies in mammals, and mutations in certain

viral genes coding for structural and non-structural proteins

contribute to virulence [7, 14, 18]. HPAI strains also cause

human infections with high mortality rates, some with a

high probability of human-to-human transmission, and they

are thus a constant threat to humans [27].

When the mammalian virulence of HPAI H5N1 strains,

including human isolates, was tested either in mice or in

ferrets, these strains proved to be highly pathogenic or

caused only mild or no symptoms. Few studies have

measured virulence in both mice and ferrets; some strains

have displayed similar pathogenicity in both animals, but

other HPAI strains have exhibited virulence differences,

especially at high doses [4, 18, 21, 33]. Inbred mouse

strains vary considerably in their ability to resist the H5N1

virus, and the distinct expression profiles of inflammatory

mediators have been suggested to control disease severity

[1]. Such observations indicate that results obtained in

H5N1 mammalian protection models can vary with the

animal species and the dose and type of the experimentally

applied challenge virus.

The immunogenicity and protection-conferring ability

of a candidate vaccine virus, NIBRG-14 (clade 1), have

been evaluated in mammalian model systems. The pro-

tective effect of the anti-haemagglutinin (HA) and anti-

neuraminidase (NA) antibodies in BALB/c mice was

shown by injecting the serum into severe combined

immunodeficiency mice, which were then challenged with

a homologous highly pathogenic H5N1 virus strain [25].

Immunization with the adjuvanted NIBRG-14 vaccine

strain conferred protection in mice or monkeys against a

lethal challenge with homologous or heterologous strains

[9, 10, 22]. In humans, one injection of the NIBRG-14

vaccine triggered antibody responses that cross-reacted

with clade 2 H5N1 strains, including the A/Swan/Nagy-

baracska/01/06(H5N1) reassortant strain, in in vitro sero-

logical assays [6]. These earlier results demonstrated the

cross-clade efficacy of the NIBRG-14 vaccine strain.

Animal model systems that met the requirements of high

susceptibility to a great variety of H5N1 viruses, easy

animal handling, and fast, cost-effective and reliable results
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are still needed. The HPAI H5N1 strains tested so far were

all pathogenic in chickens [8, 17] and Japanese quails

(Coturnix-japonica) [11, 13, 19, 32]. The Chinese painted

quail (Coturnix-chinensis, formerly Excalfactoria chinen-

sis, in the family Phasianidiae of the order Galliformes) is

the smallest ‘‘true quail’’, common worldwide in avicul-

ture; the average weight of the adult male and female is

about 48 and 56 g, respectively. Chinese painted quails are

superior to chickens and Japanese quails due to their ease

of handling and general care, hardiness, excellent repro-

ductive performance, and less expensive maintenance [26].

Importantly, Chinese painted quails are smaller in size than

chickens and Japanese quails. Using Chinese painted quails

for vaccine studies with HPAI H5N1 viruses that require

enhanced biosafety level 3 (BSL-3?) conditions provides a

reasonable opportunity for the inclusion of the birds in

appropriate numbers and groups in the experiments, thus

achieving scientifically acceptable results. Quails carry

sialic acid receptors with the potential of binding of avian

and human influenza viruses, thereby serving as an inter-

mediate host for the zoonotic transmission of influenza

viruses [30] and potentially as a challenge system for

human and avian influenza virus vaccines. We are not

aware of published results on the use of Chinese painted

quails in influenza vaccine research.

We set out to investigate the possible usefulness of the

Chinese painted quail in H5N1 vaccine studies. We dem-

onstrated the high pathogenicity of the wild-type A/Swan/

Nagybaracska/01/06(H5N1) (clade 2.2) strain in Chinese

painted quails and the protective effect of vaccination with

the NIBRG-14 strain (clade 1) against this heterologous

strain, demonstrating for the first time that Chinese painted

quails are useful, reliable, and economically and techni-

cally tractable for measuring the protective effect of vac-

cination against H5N1 viruses.

In our experiments, 10-week-old Chinese painted quails

that were seronegative for currently circulating influenza A

and B viruses (K.A.G. Technologies Ltd, Hungary) were

immunized with the NIBRG-14 H5N1 (clade 1) strain and

challenged with the A/Swan/Nagybaracska/01/06(H5N1)

(clade 2.2) strain at week 3 or 6 after immunization.

The NIBRG-14 virus strain, obtained from the National

Institute for Biological Standards and Control, London,

UK, is a reverse-genetics-derived 2:6 reassortant and one

of the available and proposed candidate A (H5N1) vaccines

[5]. The seed virus was grown in eggs. The formaldehyde-

inactivated whole-virus vaccine, produced by Omninvest

Ltd., Hungary, contained 6 lg HA and 0.3 mg aluminum

phosphate adjuvant/dose. The preparation and immunoge-

nicity of the vaccine in humans were described earlier [6,

28, 29].

The HPAI challenge strain, influenza A/Swan/Nagy-

baracska/01/06(H5N1), a wild-type avian influenza virus,

was isolated in Hungary and shown to belong to clade 2.2

on the basis of HA sequences [6]. The TCID50 of the virus

was determined by titration in Madin-Darby canine kidney

cells. To determine the LD50, birds were inoculated sub-

cutaneously (s.c.) with serial dilutions of the virus in a

volume of 100 ll, 4 birds for each dilution, and monitored

daily for morbidity and mortality for 2 weeks. The TCID50

and LD50 titres were calculated by the method of Reed and

Muench [23] and compared; 50 TCID50 were required to

give one LD50 in Chinese painted quails.

The immunization and challenge experiments were

conducted in the BSL-3? containment facility at the

National Center for Epidemiology, as approved for such

use by the Chief Medical Officer of Hungary. The facility

was secured by procedures recognized as appropriate by

the institutional biosafety officers, facility management and

Laboratory Animal Care Committee as well as Hungarian

government inspectors. The Chinese painted quails were

housed in individually ventilated cages used convention-

ally for mouse experiments (4 birds/cage).

In the first experimental series, 12 birds were immu-

nized s.c. twice at an interval of 3 weeks with the NIBRG-

14 strain in a volume of 100 ll and challenged s.c. in 3

groups of 4 animals at week 6 with 1 or 10 LD50 of the

A/Swan/Nagybaracska/01/06(H5N1) virus in a volume of

100 ll. Three of the 4 unimmunized control birds that

received 1 LD50 and all four of the unimmunized animals

that received 10 LD50 of the challenge virus died within

8 days post-challenge. All of the immunized birds survived

and remained healthy, demonstrating the protective effect

of the twice-inoculated vaccine virus.

In the second experimental series, 24 birds were

immunized with a single dose of the vaccine strain. Three

weeks later, 8 birds were bled for serologic testing, and 16,

in 2 groups of 8 animals, were challenged with 10 or 100

LD50 of strain A/Swan/Nagybaracska/01/06(H5N1). Six-

teen unimmunized quails, 8 per group, served as controls

and were challenged similarly. All birds in the unvacci-

nated control groups died within 8 days post-challenge,

while all vaccinated quails remained healthy and showed

no clinical signs of illness (Fig. 1). The unvaccinated group

challenged with the 10 or 100 LD50 dose displayed

depression, reluctance, decreases in food and water con-

sumption, and increased respiratory rates at 24 h post-

challenge. At 48 h and 96 h, the clinical signs were similar,

but the weakness and drowsiness were more pronounced,

and diarrhoea occurred.

Cloacal swab samples from immunized and unimmu-

nized animals were analysed for the presence of viral

antigens and RNA. The RapidSignalTM Influenza H5

Dipstrip (Orgenics Ltd., Israel) chromatographic immuno-

assay was used to detect H5 virus antigens according to the

instructions of the manufacturer. RNA was extracted with
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Tri-Reagent (Sigma-Aldrich, St. Louis, MO, USA), and

reverse transcription was performed with avian transcrip-

tase according to the manufacturer’s instructions (Applied

Biosystems Foster City, CA, USA). REDTaq ReadyMix

PCR Reaction Mix with MgCl2 (Sigma-Aldrich) was used

in the PCR with a primer pair corresponding to the M

segment; positive results were confirmed with specific H5

primers [31]. The results showed that H5 viral antigens

were present in the cloacal swabs of all the unvaccinated

control birds. Those unvaccinated and challenged with 100

LD50 were PCR positive, demonstrating the presence of

viral RNA in the samples. All samples obtained from

immunized and challenged animals were negative for H5

viral antigens and RNA (Table 1). Oropharingeal swabs

were not taken from the birds for analysis of viral antigens

and RNA.

Sera from 8 birds at 3 weeks after single-dose immu-

nization were tested for anti-HA and neutralization anti-

bodies against the vaccine and challenge strains.

Haemagglutination inhibition (HI) tests were performed by

standard procedures with chicken red blood cells and 4 HA

units of virus/well [16]. The microneutralization (MN)

assay was performed as described [31]. Positive antibody

controls for HI and MN assays were prepared by immu-

nization of birds with s.c. injection of an emulsion con-

taining 0.5 mg of whole, formaldehyde-inactivated

influenza NIBRG-14 four times with complete or incom-

plete Freund’s adjuvant (Calbiochem, La Jolla, CA, USA).

The titre of the positive antibodies against the NIBRG-14

strain was [1:40 in the HI and MN assays. Sera obtained

from non-immunized birds did not react in these assays.

Statistical analysis was performed with the SPSS program,

version 17.0. Differences between groups in continuous

variables were calculated using the nonparametric Mann-

Whitney U-test; p \ 0.05 was taken as significant.

All birds responded with an HI titre of 10.6-32, geo-

metric mean titre (GMT) of 21.1 against the NIBRG-14

homologous strain, but the HI titres against the A/Swan/

Nagybaracska/01/06(H5N1) strain were significantly

lower, some \ 1:4 (GMT = 4.4). When the same sera

were examined by MN, the animals gave a GMT of 20.7

against the vaccine strain, and the five animals that

exhibited seroconversion against the A/Swan/Nagy-

baracska/01/06(H5N1) strain in the HI test were also

positive in the MN assay. The sera from three birds with a

titre of \ 1:4 against the challenge virus in the HI tests

showed similarly undetectable titres in the MN assays

(Table 2). Positive control antibodies exhibited the

expected HI and MN titres against the NIBRG-14 strain;

negative antibody controls did not react in the assays (not

shown).

Correlates for protection from disease and death by

H5N1 isolates are complex. HI titres of C 1:40 in [70 %

Fig. 1 Protection of Chinese painted quails immunized with the

NIBRG-14 (clade 1) vaccine against the highly pathogenic heterol-

ogous A/Swan/Nagybaracska/01/06(H5N1) (clade 2.2) strain. Sixteen

birds vaccinated s.c. with a single dose of NIBRG-14 vaccine (6 HA/

dose) were challenged in two groups of eight birds with 10 or 100

times the LD50 of the A/Swan/Nagybaracska/01/06(H5N1) strain at

3 weeks post-immunization. Sixteen unvaccinated birds were simi-

larly challenged. Mortality was monitored on a daily basis for 14 days

Table 1 Protection from virus excretion in the intestinal tract after challenge of Chinese painted quails immunized with a single dose of the

NIBRG-14 strain

Quails challenged with A/Swan/

Nagybaracska/01/06(H5N1)

Viral antigens no. of ? samples/total

no of samples/no. of quails

Viral RNA no. of ? samples/total

no. of samples/no. of quails

Immunized and challenged with 100 LD50 0/40/8 0/40/8

Immunized and challenged with 10 LD50 0/40/8 0/40/8

Non-immunized and challenged with 100 LD50 14/14/6 14/14/6

Non-immunized and challenged with 10 LD50 16/16/7 ND

Quails were immunized with a single dose of the NIBRG-14 vaccine and challenged with the A/Swan/Nagybaracska/01/06(H5N1) strain.

Cloacal swab samples were collected on days 0, 2, 4, 6, 8 and 10, but samples were not taken from dead animals. Thirty-two samples from the

four groups obtained on day 0 were all negative for viral antigen and RNA (not shown). Results obtained from samples collected on days 2–10

are included in the table

ND not done
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123



of adult subjects are required for the licensing of currently

available influenza vaccines [3]. Our results, confirming

earlier results [2, 20, 25], suggest that these requirements

may not be critical for avian H5N1 viruses and indicate that

the low levels or insufficient detection of anti-HA anti-

bodies following immunization with the NIBRG-14 vac-

cine are not limited to mammals, but are also observed with

Chinese painted quail, an avian species that is highly sus-

ceptible to a HPAI H5N1 strain. Protection from a lethal

viral challenge may possibly be independent of the pre-

challenge anti-HA antibody levels, and other mechanisms,

such as anti-NA antibodies, are involved in protection [24,

25]. Alternatively, anti-HA antibodies were present at a

seroprotective level in the sera, but the HI and MN assays

detected avian H5N1 antibody with low sensitivity, as

suggested earlier [20, 25]. Similarly to our results, cross-

reacting antibodies against A/Swan/Nagybaracska/01/

06(H5N1) were detected in in vitro assays in only about

25 % of humans who were reactive to the homologous

NIBRG-1 strain [6]. Furthermore, the vaccine and chal-

lenge viruses possessed antigenically distinct HA and NA

genes from the clade 1 A/Vietnam/1194/2004 and clade 2

A/Swan/Nagybaracska/01/06(H5N1) strains, respectively,

but the cell-mediated immune responses directed to the

internal proteins of the strains, or to common cytotoxic T

cell epitopes in the vaccine and challenge HA, may con-

tribute to or be responsible for the cross-clade protection.

Antibody-dependent cellular cytotoxicity was detected in

humans in the absence of neutralization to various strains,

including a H5N1 HA [12]. New approaches using

recombinant technologies to identify universal influenza

vaccines that improve the level of cross-protection are

being investigated [15].

The limitations of our study include the lack of inves-

tigations on the mechanism of protection in the presence of

low or undetectable levels of anti-HA antibodies against

the challenge virus. Moreover, some wild-type H5N1 iso-

lates may be more pathogenic in quails than the A/Swan/

Nagybaracska/01/06(H5N1) challenge virus, hence requir-

ing higher levels of immune responses for protection.

Aspects of these limitations demand further studies.

In summary, we report that (1) small Chinese painted

quails may serve for testing vaccine-induced protection

against avian H5N1 virus strains, and (2) a single dose of

NIBRG-14 vaccine containing 6 lg HA induces anti-HA

and neutralizing antibodies at low titres against the

homologous strain in all quails and seroconversion against

the heterologous strain in only some of the quails, but it

confers 100 % protection in those challenged with high

doses of the highly pathogenic heterologous (clade 2) strain

A/Swan/Nagybaracska/01/06(H5N1). Thus, the conven-

tionally used anti-HA titer might not be a good indicator

for protection against influenza A (H5N1) virus.
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