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The immune cell infiltration in TME has been reported to be associated with prognosis and
immunotherapy efficiency of lung cancers. However, to date, the immune infiltrative
landscape of lung adenocarcinoma (LUAD) has not been elucidated yet. Therefore, this
study aimed to identify a new transcriptomic-based TME classification and develop a risk
scoring system to predict the clinical outcomes of patients with LUAD. We applied
“CIBERSORT” algorithm to analyze the transcriptomic data of LUAD samples and
classified LUAD into four discrete subtypes according to the distinct immune cell
infiltration patterns. Furthermore, we established a novel predictive tool (TMEscore) to
quantify the immune infiltration patterns for each LUAD patient by principal component
analysis. The TMEscore displayed as a reliable and independent prognostic biomarker for
LUAD, with worse survival in TMEscrore-high patients and better survival in TMEscrore-low
patients in both TCGA and other five GEO cohorts. In addition, enriched pathways and
genomic alterations were also analyzed and compared in different TMEscore subgroups,
and we observed that high TMEscore was significantly correlated with more aggressive
molecular changes, while the low TMEscore subgroup enriched in immune active-related
pathways. The TMEscore-low subtype showed overexpression of PD-1, CTLA4, and
associations of other markers of sensitivity to immunotherapy, including TMB,
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immunophenoscore (IPS) analysis, and tumor immune dysfunction and exclusion (TIDE)
algorithm. Conclusively, TMEscore is a promising and reliable biomarker to distinguish the
prognosis, the molecular and immune characteristics, and the benefit from ICIs treatments
in LUAD.

Keywords: immune cell infiltration, prognosis, lung adenocarcinoma, tumor microenvironment, immunotherapy

INTRODUCTION

Although great advances have been achieved in both basic and
clinical cancer research (Gu et al., 2020; Jiao and Yang, 2020),
cancer still caused approximately 10 million of deaths in 2020
(Sung et al., 2021). With the high prevalence and poor prognosis,
lung cancer is ranked as the first leading cause of cancer-related
deaths worldwide, becoming a major global health problem
(Miller et al., 2019; Siegel et al., 2019; Sung et al., 2021).
Recently, the emergence of checkpoint blockade
immunotherapy (Pardoll, 2012; Topalian et al., 2015) has
significantly improved the strategies of LUAD. However, the
minority of response and resistance to these treatments
frequently impedes the clinical outcomes. Additionally, the
effects of ICIs are not only driven by genetic and epigenetic
alterations in tumor cells, but the tumor microenvironment
(TME) has also been reported to be a crucial regulator in
tumorigenesis (Dejima et al., 2021; Ye et al., 2022),
development, metastasis (Quail and Joyce, 2013), and
resistance to therapies (Ostman, 2012; Lu et al., 2020).

TME chiefly consists of multiple subpopulations of T and B
lymphocytes, dendritic cells (DCs), macrophages, neutrophils,
andmyeloid-derived suppressor cells (MDSCs) (Belli et al., 2018).
The balance between pro-tumorigenic and anti-tumor factors in
the TME conducts tumor growth (Wellenstein and de Visser,
2018; Hinshaw and Shevde, 2019). Accumulating evidence has
indicated the TME immune composition is generally correlated
with prognosis and responsiveness to various cancer treatments.
On one hand, tumor-infiltrating lymphocytes (TILs), such as
CD4+ and CD8+ T cells, have been associated with longer survival
and better response to immunotherapy (Kawai et al., 2008;
Fridman et al., 2012). On the other hand, the tumor cells can
promote a suppressive TME, which challenges anti-tumor
immunity by inducing upregulation of inhibitory immune
signaling, suppressive cytokine secretion, and recruitment of
suppressive immune cells, such as tumor-associated
macrophages (TAMs) presenting pro-tumor effects by
secreting immunosuppressive cytokines, including interleukin-
10 (IL-10) and transforming growth factor-β (TGF-β)
(Mantovani et al., 2017), as well as immunomodulatory cells,
such as myeloid-derived suppressor cells (MDSCs) (Ostrand-
Rosenberg and Fenselau, 2018)and regulatory T cells (Tregs)
(Shimizu et al., 2010), which are all associated with unfavorable
prognosis. To be specific, focusing on cellular diversity shows that
TME heterogeneity could impact clinical outcomes and provide a
challenge for immunotherapy of LUAD (Wu F. et al., 2021;
Nguyen et al., 2021). Therefore, investigating the effects of
TME composition on the tumor cells will help us decode the
regulation of the microenvironment by the tumor.

To date, the emerging predictors for immunotherapy in
NSCLC are still imperfect, such as programmed death-ligand 1
(PD-L1) expression (Dempke et al., 2018) is thought to be
induced by interferon-γ (IFN-γ)- mediated immune responses
and tumor mutational burden (TMB) (Klein et al., 2021) is
reported to determine the tumor immunogenicity. It is
suggested that only reflecting the tumor cell intrinsic features
but ignoring the extrinsic factor, especially TME, is attributed to
inconsistencies. Thus, the characteristics of TME should be
further comprehensively explored to determine effective
biomarkers that precisely predict prognosis and considerably
optimize personalized immunotherapy.

Progress has been recently achieved by immunotherapy,
emphasizing the importance of TME in LUAD. It elucidates
that TME is not the single-cell population but a complex interface
among cancer cells, stroma, and infiltrating immune cells. Deeper
analyses of the NSCLC TME are necessary to refine the potential
application of these findings to clinical care. We applied
“CIBERSORT” algorithm to analyze the transcriptomic data of
500 LUAD samples in TCGA and classified the LUAD into four
discrete subtypes according to the distinct immune cell
infiltration patterns. Furthermore, we established the TME
scores to characterize and quantify the immune infiltration
patterns for each LUAD patient based on the mRNA
expression profiles. Conclusively, we investigated and validated
the association between TME score and the clinical outcomes, as
well as the efficacy of anti-PD- (L)1 treatment in LUAD, which
can facilitate the identification of ideal candidates for
personalized immunotherapeutic strategies.

METHODS

Datasets and Preprocessing
A total of 1,518 lung adenocarcinoma (LUAD) and 59 normal
tissue samples were retrieved and downloaded from the
corresponding datasets, including TCGA LUAD from TCGA
data portal (https://xenabrowser.net/datapages/) and GSE31210,
GSE37745, GSE50081, GSE68465, and GSE13213 from the NCBI
Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/
geo/). The somatic mutation data (SNPs and small INDELs) were
downloaded from TCGA database (MuTect2 Variant
Aggregation and Masking). The raw data of the dataset from
Affymetrix were processed using the RMA algorithm in the
“Affy” package. The data from Agilent were downloaded with
the processed version. For TCGA dataset, RNA-sequencing data
(FPKM values) were transformed into transcripts per kilobase
million (TPM) values, which are more similar to those resulting
from microarrays and more comparable between samples
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(Wagner et al., 2012). The following inclusion criteria were used:
1) histologically confirmed LUAD, 2) simultaneously available
information on mRNA expression profile data and OS, 3) the
sample tissue was collected from the primary solid tumor (“01”),
and there was no duplication sample in TCGA, 4) genes were
recorded in all datasets, and 5) genes with more than 70% of the
missing value or 0 value were deleted. The remaining missing
values were imputed with KNN imputation approaches.
Therefore, 10,320 mRNAs were included in the analysis.

Consensus Clustering for the Tumor
Microenvironment
Distinguishing between tumor and normal tissue difference
expression genes (DEGs) in TCGA was performed with
“limma” (FDR <0.05 and |log2FC| > 1), which better identifies
the characteristics of tumor. Furthermore, the tumor
microenvironment was quantified by CIBERSORT (https://
cibersort.stanford.edu/)(Newman et al., 2015), a deconvolution
method for inference of tumor-infiltrating immune components
from bulk tissue gene expression profiles. Tumors with
qualitatively different immune cell infiltration patterns were
grouped using consensus clustering (100 iterations, resample
rate of 80%, and hierarchical cluster). This procedure was
performed with the “ConsensusClusterPlus” R package.

Identification of DEGs Associated With the
TME Phenotype
To functionally elucidate the biological characteristics of the TME
subtypes in LUAD, we employed random forest (RF), an efficient
and reliable machine learning method to identify DEGs between
subtypes of TME. We run RF 100 times with different seeds to
find the duplicated variables with at least 80% repetition rate to
further ensure the stability of variable selection.

Generation of TMEscore
To further elucidate the comprehensive profile of TME
characteristics, the construction of TME metagenes was performed
as follows: first, we further screened candidate prognostic genes from
DEGs. Next, a consensus clustering algorithm was employed to
define the cluster of genes. Then, a principal component analysis
(PCA) was performed, and principal component 1 was extracted to
serve as the signature score. After obtaining the prognostic value of
each gene signature score, we applied a method similar to GGI
(Sotiriou et al., 2006) to define the TMEscore of each patient:

TMEscore � ∑PC1i −∑PC1j,

where i is the signature score of clusters whose Cox coefficient is
positive and j is the expression of genes whose Cox coefficient is
negative.

Functional and Pathway Enrichment
Analysis
To further analyze the biological significance of the genes related to
TMEscore with KEGG andGO function analysis, the “clusterProfiler”

R package was adopted to annotate gene patterns (Wu T. et al., 2021).
The Benjamini–Hochberg procedure was used to control the false
discovery rate (FDR). We set the cut-off of adj. p-values to 0.2 so that
we could find more relevant pathways and functions based on the
small number of DEGs. Gene set enrichment analysis (GSEA)
illustrated the significantly different enriched pathways in the high-
and low-TMEscore groups. Gene sets were downloaded from the
MSigDB database of the Broad Institute (Subramanian et al., 2005)
and employed the Hallmark gene sets and 1,000 permutations. An
enrichment pathway between two subtypes was determined with an
FDR of <0.25 and the normalized enrichment score (NES).

Predicting the Patients’ Response to ICIs
The Cancer ImmunomeAtlas (https://tcia.at/) analyzed the immune
landscapes and antigenomes of 20 solid tumors that were quantified
by Immunophenoscore (IPS, a superior immune responsemolecular
marker) (Charoentong et al., 2017). The IPS value, which ranged
from 0 to 10, was positively correlated to tumor immunogenicity and
could predict the patients’ response to immune checkpoint
inhibitors (ICI treatment). Tumor Immune Dysfunction and
Exclusion (TIDE, http://tide.dfci.harvard.edu/), a computational
method to predict immune checkpoint blockade response, was
developed by Jiang et al. (2018). TIDE uses a set of expression
markers to profile two primary mechanisms of tumor immune
evasion: T-cell dysfunction and T-cell exclusion. Patients with higher
TIDE prediction scores represent a greater potential of tumor
immune escape; therefore, TIDE could evaluate patients who are
more likely to benefit from ICI. In addition, themRNA expression of
immune checkpoints was analyzed in different prognosis groups.

Statistical Analysis
Continuous variables were summarized as mean ± SD, and
categorized variables were described by frequency (n) and
proportion (%). Differences among variables were tested by the
Wilcoxon rank-sum test and Fisher’s exact tests. The relationship
between variables was tested by Spearman rank correlation analysis.
The cut-off value of TMEscore was calculated based on the correlation
between the patients’ survival and the TMEscore in TCGA with the
“survminer” package. Univariate and multivariate Cox regression
analyses were used to assess prognostic analysis. Batch effects from
non-biological technical biases were corrected using the “ComBat”
algorithm of the “sva” package. The “Maftools” package was used to
present the mutation landscape and identify the differential gene
mutations between groups. The heatmap was produced by the R
package “ComplexHeatmap.” A two-sided p < 0.05 was regarded as
statistically significant. All data processing was performed in R 4.0.2
software.

RESULTS

Landscape of Lung Adenocarcinoma TME
This study was conducted as per the flow chart shown in
Supplementary Figure S1. The information of 1,518 LUAD
patients is detailed in Supplementary Table S1. To classify the
LUAD TME, the consensus clustering algorithm was used to cluster
TME information obtained by CIBERSORT in TCGA-LUAD
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dataset (Supplementary Table S2). The most appropriate clustering
number was four (Figures 1A–D), which was selected by consensus
matrices and consensus cumulative distribution function (CDF)
curve. This analysis revealed that LUAD can be clustered into
four distinct TME subtypes termed S1–4. The patients with
subtype S4 had significantly longer overall survival (OS) than
patients with subtypes S1 and S2, and subtype S3 demonstrated
the worst survival (Figure 1E). These four TME subtypes varied
significantly based on the expression levels of LM22 gene signatures
(Figure 1F). The S4 subtype was characterized by increases in the
infiltration of CD 8+ T cells, resting NK cells, follicular helper T cells,
andM1macrophages, displaying S4was significantly associatedwith
immune activation. Meanwhile, resting mast cells, activated
dendritic cells, and regulatory T cells (Tregs) were enriched in

the S1 subtype, and the S2 subtype showed significant increases
in the infiltration of naïve B cells, plasma cells, and CD4+ memory-
activated T cells; on the contrary, M0 macrophages, M2
macrophages, and CD4+ memory-resting T cells showed high
infiltration in the S3 subtype, indicating an immunosuppressive
milieu. Taken together, we demonstrated that the four TME
subtypes were characterized by distinct immune cell infiltration
and prognosis.

Identification of DEGs and Functional
Annotation
To further identify the biological characteristics and differences
among TME subtypes, RF algorithm was employed to extract the

FIGURE 1 | Unsupervised clustering of the tumor microenvironment (TME) cells for 500 patients in the TCGA-LUAD cohort. (A–C) Consensus matrices of different
clusters. (D) Consensus cumulative distribution function (CDF) curve. (E) Kaplan–Meier (K-M) curves for overall survival (OS) of four different subtypes (log-rank test, p
=0.039). (F) Abundance pattern of 22 TME cell types in four TME subtypes.

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 9025774

Wang et al. Immune Cell Infiltration Landscape in LUAD

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


phenotype signatures. By 100 times analysis, a total of 77 DEGs
duplicated at least 80 times were identified (Supplementary
Table S3). Through consensus clustering analysis based on the
expression of the 77 most representative DEGs, we divided DEGs
into two different clusters termed G1 (62 DEGs) and G2 (15
DEGs) (Figure 2A). These two gene clusters were closely related
to distinct TME and played different biological roles. Then, GO
and KEGG enrichment analyses were performed with the
“clusterProfiler” R package. The G1 cluster was mainly

enriched in the MAPK signaling pathway, PI3K-Akt signaling
pathway, aldosterone syntheses, and focal adhesion pathways
(Figure 2B). The G2 cluster was mainly enriched in
hematopoietic cell lineage, B-cell receptor signaling pathway,
cytokine–cytokine receptor interaction, and primary
immunodeficiency (Figure 2C). Significantly enriched
pathways and molecular functions are summarized in
Supplementary Tables S4 and S5. Collectively, the coherence
between the prognostic and biological features in the two gene

FIGURE 2 | Construction of the TMEscore for LUAD patients. (A) Consensus matrices of differentially expressed genes (DEGs) among TME subtypes. (B and C)
KEGG pathway enrichment analysis results in G1 and G2. (D) K-M curve for OS of different TMEscore groups (log-rank test, p < 0.001). (E) Forest plots illustrating the
results of multivariate Cox proportional hazards model of clinical feature in TCGA cohort. (F) Heatmap of DEG expression and clinical characteristics. TMEscore, age,
sex, stage, smoke, therapy outcome, mutation of KARS, and mutation of EGFR are shown as patient annotations. Gene clusters are shown as gene annotations.
Top legend, gray indicates a missing value.
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subgroups indicated that this classification was reliable and
reasonable.

Construction and Validation of the
TMEscore in Six Independent Cohorts
Although the four TME subtypes were identified, their
clinical significance needed to be further evaluated and
quantified. Therefore, we build TMEscore based on TME

information in the TCGA-LUAD cohort to assess the
prognostic value. Association with a prognosis of 34 genes
(G1:22, G2:12) was confirmed by Cox regression analysis.
First, principal component analysis (PCA) was used to
compute two aggregate scores, TMBscore A from G1 and
TMBscore B from G2. Then, we performed univariate Cox
regression on each TMEscore to evaluate the prognostic
value. Finally, TMEscore A and TMEscore B were
integrated to obtain TMEscore for each sample. The

FIGURE 3 | Prognostic value of TMEscore for LUAD patients in five GEO cohorts. (A) K-M curve of all 1,018 patients in the GEO database between different
TMEscore groups (log-rank test, p < 0.001). (B–F) K-M curves of five independent GEO datasets in different TMEscore subgroups. (G) Forest plots illustrating the results
of the multivariate Cox proportional hazards model of clinical features in the GEO database. (H)Heatmap of DEG expression and clinical characteristics. TMEscore, age,
sex, stage, smoke, mutation of KARS, mutation of EGFR, and mutation of P53 are shown as patient annotations. Gene clusters are shown as gene annotations.
Top legend, gray indicates a missing value.
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prognostic value of the TMEscore was further assessed by the
log-rank test after classification as high-risk and low-risk
groups based on the corresponding optimal cut-off value
(−0.92) acquired by the “survminer” R package in the
TCGA-LUAD cohort. We visualized gene expression and
clinical features distribution in different risk groups with a
heatmap in TCGA and GEO datasets, respectively (Figures
2F and 3H). The Kaplan–Meier curve of TMEscore subgroups
showed that the patients in the low TMEscore group (median
survival time 3,169 days) had significantly better overall
survival than the high-TMEscore group (median survival
time 1,235 days; log-rank test, p < 0.0001; Figure 2D).
Moreover, the prognostic value of the TMEscore was
further assessed with five external datasets in the GEO
database: GSE37745, GSE31210, GSE13213, GSE50081 and
GSE68465. Similar results were found that the survival
advantage in the low TMEscore group in above cohorts,
with the corresponding p-value of 0.038, 0.033, 0.018,
0.0036, and 0.004 (Figures 3B–F). Meanwhile, we
integrated a total of 1,018 samples in the GEO datasets to
evaluate prognostic efficiency, indicating the low-TMEscore
group patients had better overall survival compared to the
high-TMEscore group (log-rank test, p < 0.0001; Figure 3A).
These findings suggested that TMEscore possessed a reliable
and robust capacity for predicting the prognosis for LUAD
patients.

TMEscore Was an Independent Prognostic
Factor for LUAD Patients
In addition to the TMEscore, other prognostic factors such as
individual and clinicopathological features were included. After
multivariable adjustments with age, sex, smoke situation, TNM
stage, and therapy outcomes in the TCGA cohort, the TMEscore
was confirmed as an independent prognostic indicator with a
hazard ratio of 0.383 [95% CI: 0.210–0.696] in the TCGA-LUAD
cohort (Figure 2E), 0.632 [95% CI: 0.475–0.839] in the GEO
datasets (Figure 3G). Elder, ever-smoker, advanced stage, and
non-response to therapy were also suggested to be independent
risk factors in different datasets, respectively.

Recent studies have reported that specific gene alterations,
such as TP53 (Sun et al., 2020), KRAS (Hamarsheh et al., 2020),
EGFR (Chen et al., 2015), and STK11 (Mazzaschi et al., 2021)
have an important role in the regulation of the tumor immune
microenvironment (TIME) and served as biomarkers to tumor
therapeutics (Lee et al., 2017; Krishnamurthy et al., 2021). We
further explore the predictive value of this TMEscore in LUAD
patients with EGFR/KRAS mutation (MUT) or wild type (WT).
Remarkably, this risk model had predictive power for both EGFR
wild type and EGFR mutation LUAD patients, except for patients
with TP53/EGFR co-mutations (Supplementary Figure S2).
Similarly, this risk model exhibited a robustly predictive value
in both KRAS wild type and KRAS mutation LUAD patients,
except for patients with KRAS/STK11 co-mutations LUAD
patients (Supplementary Figure S3). Among the EGFR/KRAS
wild-type/mutation population, the beneficial trends of low
TMEscore in the prognosis of LUAD patients were observed

in distinct subgroups, suggesting that TMEscore was an
independent and reliable prognostic indicator.

Different Biological Processes Between the
High-TMEscore Group and the
Low-TMEscore Group
For a comprehensive analysis of the potential regulatory
mechanisms resulting in different TMEscore groups, we
performed GSEA analysis between high and low TMEscore
subgroups. The results showed that 23 pathways were
enriched in different subgroups with FDR<0.25
(Supplementary Table S6). In high TMEscore group,
MYC targets V1 (NES = 2.28 and FDR = 0.001), MTORC1
signaling (NES = 2.08 and FDR = 0.011), MYC targets V2
(NES = 2.08 and FDR = 0.012), G2M checkpoint (NES = 2.00
and FDR = 0.021), glycolysis (NES = 1.79 and FDR = 0.014),
and other pathways were enriched (Figures 4A–D).
Meanwhile, the results revealed that complement (NES =
−1.74 and FDR = 0.231), inflammatory response (NES =
−1.69 and FDR = 0.212), IL6/JAK/STAT3 signaling (NES =
−1.64 and FDR = 0.181), IL2/STAT5 signaling up (NES =
−1.58 and FDR = 0.212) and interferon gamma response
(NES = −1.42 and FDR = 0.223), and other pathways were
correlated with the low TMEscore (Figures 4E–H). It is
suggested that the gene sets of the TMEscore high samples
were enriched in cancer and tumor metabolism-related
pathways, while the gene sets of the TMEscore low
samples were enriched in DNA repair and immune
response-related pathways.

The Molecular Characteristics of Distinct
TMEscore Subgroups
Genomic alterations and oncogenic signaling within the
tumors have been reported to affect anti/pro-tumor
immunity and TME activity (Hamarsheh et al., 2020;
Kumagai et al., 2020; Zhou et al., 2020; Fountzilas et al.,
2021), links between tumor mutations and TME subtypes
needed to be investigated. To illustrate the somatic variants
and acquire further biological insights into the
immunological characteristics of LUAD between TMEscore
subgroups, we utilized the Mutation Annotation Format
(MAF) files and performed the variants annotation. We
found higher mutation counts in the TME-high subgroup
than in the TME-low subgroup. Missense variations were the
most common mutation subtype, followed by nonsense and
frameshift deletions. The oncoplot of tumor somatic
mutation in the TCGA-LUAD cohort showed that TP53,
TTN, and MUC16 gene mutations in the high-TMEscore
group were approximately 20% higher than those in the low
TMEscore group (Figures 5A and B). Among a total of 54
differential mutated genes between two groups (p < 0.01;
Figure 5C), CMA1, HSPA12B, and FAM196A showed a
higher mutation frequency in the low-TMEscore group.
The other genes, such as TP53, TTN, and FBXL7, had a
higher mutation frequency in the high-TMEscore group.
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Collectively, this analysis indicated that transcriptomic-
based TME classification coupled with genomics analysis
can be exploited for further studies.

Combinations of TMEscore, Immune
Checkpoints, and TMB Improve Risk
Stratification and Survival Prediction
Previous studies have emphasized the importance of immune
checkpoint genes in modulating immune infiltration (Keir et al.,
2008; Andrews et al., 2019). Thus, we first compared the
expression pattern of immune checkpoint genes between
different patient groups delaminated by the TMEscore in
TCGA-LUAD and GEO datasets. PDCD1, CD86, CD80, and
CTLA4 showed significantly high expression in the low-
TMEscore group than in the high-TMEscore group (Figures
6A–D, F–I), which was further confirmed in five independent
validating cohorts (Supplementary Figure S4).

Considering the correlations between immune checkpoint
genes and TMEscore, we next combined TMEscore with
immune checkpoints expression to test whether they have an
influence on OS in LUAD patients. Though survival analyses
among four subgroups stratified by TMEscore and immune
checkpoint gene expression, we displayed that patients with
low PD-L1 and low TMEscore have prolonged OS compared
to those with low PD-L1 and high TMEscore (p = 0.005), and
among patients with high PD-L1 expression, a lower TMEscore

signified a remarkably better survival (p < 0.001) (Figure 7A). We
also found similar survival patterns among four patient
subgroups stratified by TMEscore and PD1/CTLA-4
expressions in the TCGA cohort (Figure 7A). We then
confirmed the results in the other five validation cohorts
(Figures 7B,C and Supplementary Figure S5). In
concordance with the TCGA dataset, patients with low
TMEscore have significantly better survival relative to the high
TMEscore group, even though with similar expression levels of
immune checkpoint genes (Figures 7B,C and Supplementary
Figure S5). In addition, TMB has been shown to have the
potential to generate a larger number of neoantigens and
make them more immunogenic (Schumacher and Schreiber,
2015), which is strongly associated with clinical outcomes and
response of immune checkpoint blockade response (Yarchoan
et al., 2017; Chan et al., 2019). We found that patients with low
TMB and high TMEscore had the worst prognosis (Figure 8A). It
is suggested that TMEscore, immune checkpoint genes, and TMB
can complement each other as prognostic biomarkers.

The TMEscore Predicts Clinical Outcomes
of Immunotherapy
Given the linkage between TMEscore and immune checkpoint
genes as well as TMB, we further explore the predictive potential
of TMEscore for immune checkpoint blockade response through
analyzing the correlation of TMEscore and published

FIGURE 4 |Gene set enrichment analysis (GSEA) in TMEscore groups. (A–D) Enrichment plots showingMYC targets V1, MTORC1 signaling, MYC targets V2, and
G2M checkpoint in the high-TMEscore group. (E–H) Enrichment plots showing complement, myogenesis, IL6/JAK/STAT3 signaling, and KRAS signaling up in the low-
TMEscore group.
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immunotherapy predictors, including TIDE and IPS. The
relationship between TIDE and TMEscore was investigated in
TCGA and GEO datasets. As expected, the high-TMEscore group
was characterized by a significantly higher TIDE score (Figures
6E and J). The IPS values (IPS-PD-1/PD-L1/PD-L2_pos and IPS-
CTLA-4_pos) increased in the low-TMEscore group compared to
the high-TMEscore group in TCGA (Figures 6K and L). It is
likely that the patients in the low-TMEscore group may have a
better immune microenvironment and respond better to ICIs
than those in the high-TMEscore group.

Furthermore, the practicability of the TMEscore was further
evaluated for speculation of the therapeutic benefit for ICI treated
patients. The patients who received anti-PD-L1 immunotherapy in
the IMvigor210 cohort were assigned based on high and low TME
scores. Given the contraindicatory prognostic and predictive value of
TMEscore, TMB, and immune checkpoint gene expression (PD-L1,
PD-1, and CTLA4), we next evaluated the synergistic effect of these
biomarkers in the prognostic and predictive stratification of LUAD.
Consistent with previous results, stratified survival analysis revealed
that the TMB status did not interfere with TMEscore-based

FIGURE 5 | Molecular variations between low-TMEscore and high-TMEscore groups. (A and B) Mutation profiles of high-TMEscore and low-TMEscore groups.
(C) Comparing differentially mutated genes between two subgroups by Fisher’s exact tests.
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predictions. Subtypes of the combination of TMEscore and TMB
showed significant survival differences (log-rank test, p = 0.0076;
Figure 8B). On the other hand, Kaplan–Meier analysis revealed
patients in the IMvigor210 cohort with TMEscore low and PD-L1
high obtained most favorable OS than either single positive (TME
low or PD-L1 high) or dual negative (TMEscore high PD-L1 low, p=
0.0018, Figure 8D). In addition, analysis of objective response also
supported that TMEscore low and PD-L1 high subgroup
represented an increased proportion of PR/CR/SD than either
single positive (TMEscore low or PD-L1 high) or dual negative
(p = 0.047, Figure 8E). Taken together, these findings indicate the
TME classification system and scoring system may explain the
effectiveness of immunotherapy in patients with low TMB and
low PD-L1, and these distinct classification systems, TMEscore, PD-
L1, and TMB might function as complementary factors for the
prediction of immunotherapy.

DISCUSSION

Although immune checkpoint inhibitors (ICIs) have
revolutionized treatment strategies of lung cancer, the overall
response rate of ICI monotherapies is still limited and no more
than 20% in NSCLC patients with EGFR/ALK wild-type
(Doroshow et al., 2019). It has been reported that TME plays
a crucial role in cancer development and anti-tumor process,

especially the immunotherapy response in cancers (Lu et al.,
2020; Ye et al., 2022). Therefore, characterizing the
tumor–immune microenvironment can improve the
personalized immunotherapeutic strategies.

Multi-omics data are often used for generating various
predictive or prognostic models through machine learning or
statistical modeling methods (Xu et al., 2021). However, to date,
comprehensive analyses based on integrated genomic and
transcriptomic profiles of the tumor and its TME remain rare
and lack efficient and useful models. Therefore, we constructed a
scoring system to classify and quantify the comprehensive tumor
immune landscape based on an immune-cell phenotype
algorithm and validation in external LUAD cohorts.

Transcriptomic analysis offers an opportunity to dissect the
complexity of tumors, including TME, dynamically regulating
cancer progression and influencing therapeutic outcomes (Cieslik
and Chinnaiyan, 2018; Thorsson et al., 2018). In our study, we
identified four distinct immune subtypes characterized by
different biological processes and prognosis, using
“CIBERSORT” algorithm to analyze the transcriptomic data of
TCGA-LUAD samples. Furthermore, we established the TME
scores to characterize and quantify the immune infiltration
patterns for each LUAD patient based on the DEGs among
the distinct subtypes. The TMEscore displayed as a reliable
prognostic immune-related biomarker for LUAD, with worse
survival in TMEscore-high patients and better survival in

FIGURE 6 | TMEscore in the prediction of immunotherapeutic benefits. (A–D) Expression of immune-checkpoint-relevant genes (PDCD1, CD86, CD80, and
CTLA4) between high- and low-TMEscore groups in TCGA and (F–I) all 1,018 patients in GEO datasets after batch correction. (E and J)Relationships between TIDE and
TMEscore in TCGA and GEO datasets. (K and L) Relative probabilities of response to anti-CTLA-4 and anti-PD-1/PD-L1 treatment (IPS score) in the low-TMEscore and
high-TMEscore groups in TCGA cohort.

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 90257710

Wang et al. Immune Cell Infiltration Landscape in LUAD

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


TMEscore-low patients and in both TCGA and other five
independent GEO cohorts. In addition, enriched pathways and
genomic alterations were also analyzed and compared in different
TMEscore subgroups, and we observed that a high TMEscore was
significantly correlated with more aggressive molecular changes
such as TP53 mutations. As expected from its increased immune
gene expression, the TMEscore-low subtype showed
overexpression of PD-L1, PD-1, CTLA4, and associations of
other markers of sensitivity to immunotherapy, including IPS
score and TIDE score. Our findings also revealed that the
TMEscore is a robust and reliable prognostic tool and
predictive indicator of the response to immunotherapy in the
IMvigor210 cohort. With further in-depth investigation, our

TMEscore might be utilized as an important supplementary
predictor to LUAD immunotherapy.

The tumor microenvironment (TME) is a complex interface
between cancer cells, stroma, and infiltrating immune cells
(Fridman et al., 2012). A previous study demonstrated that the
tumor microenvironment contexture plays a key role in tumor
development and immunotherapeutic efficacy (Stankovic et al.,
2018). TME heterogeneity, which impacts tumor progression and
prognosis, has been identified in cancers, especially LUAD (Lavin
et al., 2017; Zhang et al., 2019; Chen et al., 2020; Nguyen et al.,
2021). In addition, the difference in TME patterns was found to
be correlated to tumor heterogeneity and treatment diversity (Jia
et al., 2018; Vitale et al., 2021). Considering the individual

FIGURE 7 | Impact of immune checkpoint gene expressions and TMEscore on clinical outcome. Kaplan–Meier survival curves of overall survival among four patient
groups stratified by TMEscore and immune checkpoint genes (PD1, PD-L1, and CTLA-4) in TCGA dataset (A), GSE37745 dataset (B), and GSE50081 dataset (C).
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heterogeneity of the immune milieu, it was demanded to quantify
the TME patterns of individual tumors. Here, using the
“CIBERSORT” algorithm, we identified 22 human immune-
cell phenotypes and generated an individualized TMEscore to
assess TME patterns. Our study represents an essential step
toward understanding the crosstalk between malignant cells
and immune cells in LUAD.

Our findings of the TCGA molecular mutations displayed
significant differences in distributions across the TMEscore
subgroups. The largest difference in mutations between subgroups
was in TP53 mutations, which were more common in TME-high
samples than in TME-low samples (53 vs. 35%). TP53mutation is not
only the most common genetic event in NSCLC but also reported to
be associated with poor prognosis in cancers, especially non-small cell
lung cancer (Ozaki and Nakagawara, 2011). TP53 mutation could
affect disease progression, tumor cell characteristics, and the
therapeutic effect of different therapeutics (Wu and Hwang, 2019).
In addition, the more enrichment of KEAP1 mutations in TMEscore
high tumors than TMEscore lowmay be one potential explanation for
the distinct performance of ICI efficacy in LUAD. KEAP1 mutations
were reported to be enriched in patients with high TMB lacking T-cell
infiltration and immunologically cold (Marinelli et al., 2020), which
have been associated with decreased efficacy of ICIs in NSCLC in
published studies (Papillon-Cavanagh et al., 2020; Di Federico et al.,

2021). The differences in their molecular characteristics between
TMEscore subgroups might contribute to the diverse
immunogenic features and consequently varied responses to
immunotherapy.

To acquire a deeper insight into the biological feature of the
TMEscore subgroups, we further investigated enriched pathways
and immune characteristics of different TMEscore subgroups.
Patients with the low-TMEscore subtype, whose molecular traits,
including an abundance of infiltration immune active cells,
enhanced enrichment of immune-related pathways, such as
interferon gamma response, complement, inflammatory
response, were previously reported to predict the efficacy of
pembrolizumab. In addition, we also observed elevated IL6/
JAK/STAT3 signaling pathway in the low-TMEscore group,
modulating the IFN-γ-induced expression of PD-L1 (Zhang
et al., 2021). Collectively, the designated distinct TMEscore
subtypes of LUAD were identified, and the crucial insights
into the immunologic features of these subtypes were
provided. Meanwhile, we proved that the TMEscore showed
significant correlations with immune checkpoint genes (PD-
L1, PD-1, and CTLA-4), TMB, and other biomarkers of
immunotherapy, including IPS and TIDE, indicating that
TMEscore possessed the potential to predict the response to
immunotherapy. Previous studies have demonstrated that

FIGURE 8 |Kaplan–Meier survival curves of overall survival among four patient groups stratified by TMEscore and TMB in TCGA dataset (A) and IMvigor210 cohort
(B). Proportional representation of the objective response rate among subgroups categorized by TMEscore and TMB in the IMvigor210 cohort (C). Kaplan–Meier survival
curves of overall survival among four patient groups stratified by TMEscore and PD-L1 in the IMvigor210 cohort. (D) Proportional representation of the objective response
rate among subgroups categorized by TMEscore and PD-L1 in the IMvigor210 cohort (E). CR, complete response; PR, partial response; SD, stable disease; PD,
progressive disease.
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some biomarkers, such as TIDE and IPS, could predict patient
response to immunotherapy. TIDE, a creative computational
method to identify the induction of T-cell dysfunction in
tumors with high infiltration of cytotoxic T lymphocytes and
the prevention of T-cell infiltration in tumors with low-CTL
levels (Jiang et al., 2018), has been proven to predict the outcomes
of cancers treated with ICIs (Jiang et al., 2018). In addition, IPS
was developed to quantitatively predict patients’ response to anti-
PD-1/PD-L1 and anti-CTLA-4 therapies based on an 18-gene
signature including genes that reflect an ongoing adaptive Th1
and cytotoxic CD8 T-cell response (Charoentong et al., 2017).
Thus, the low-TMEscore patients presenting high IPS and low
TIDE scores may have a better response to immunotherapy.
However, both TIDE and IPS focused on the function and status
of T cells, which could not fully reflect the complexity of the TME
involved in the response to immunotherapy. Therefore, our
scoring system exhibits promising clinical flexibility for the
predictive value of anti-PD-(L)1 therapy.

Furthermore, patients in the high-risk subgroup presented with a
higher level of immune checkpoint molecules and showed higher
immunogenicity. However, PD-L1 expression and TMB are neither
the only nor the satisfying tool to identifyNSCLCpatients thatmight
benefit from therapy with immune checkpoints inhibitors (Klein
et al., 2021). One critical obstacle impeding the extensive utility of
TMB and PD-L1 expression is the determination of feasible cut-off
values. Moreover, these two predictors only focused on the intrinsic
features of tumors and may not cover other situations involved in
antitumor immune responses such as TME. Notably, we
demonstrated that it is reasonable to combine TMEscore with
PD-L1 or TMB together, and thus it might help make clinical
decisions in LUAD. Patients with TMEscore-low PD-L1 high or
TMB high should be preferentially recommended for ICI treatment,
while patients with TMEscore-low PD-L1 low, or TMEscore-high
PD-L1 high can optionally consider anti-PD- (L)1 therapy; however,
patients with TMEscore high/low PD-L1 or low TMB should
carefully choose anti-PD-(L)1 therapy. Taking this step further, it
is suggested that TMEscore can identify either potential sensitive
patients with low PD-L1 expression/low TMB who may benefit or
patients who do not respond to ICIs despite having a high PD-L1
expression/high TMB. In addition, we also explored the stability of
our TMEscore model. We found that patients with a lower
TMEscore were more likely to respond to ICB and had
improved overall survival in the IMvigor210 cohort treated with
checkpoint blockade. Collectively, combinations of TMEscore, TMB,
and PD-L1 could be applied not only as refined prognostic
stratification tools but also as more reliable predictive biomarkers
for personalized immunotherapy treatment.

Our study provides a translational rationale for evaluating
TME based on transcriptomic data and TMEscore as a biomarker
for immunotherapy response in patients with LUAD. However,
this study still has several limitations. First, while the composition
of the TME has been recognized as a determinant of cancer
progression and response to therapy, most analyses have focused
on a limited proportion of cell types. Nonetheless, there are still
numerous cellular and molecular mechanisms involved in
immunotherapy, and our TMEscore may not cover the
possible intra/extracellular situations involved in antitumor

immune responses. Second, since this study was a
retrospective analysis, the ability of the TMEscore in
predicting survival and response to immunotherapy should be
validated in a large-cohort, multi-center, and prospective study in
the future. Third, all quantifications of gene expression are
relative values, which makes it difficult to determine the
absolute threshold and cut-off values for clinical application.
Therefore, quantitative determinations of gene expression are
also needed. Specifically, the underlying molecular mechanisms
remain to be elucidated in LUAD in vivo and in vitro.

CONCLUSION

In conclusion, our translational rationale for TME classification
may help in distinguishing immune and molecular characteristics
and predicting clinical outcomes of LUAD patients. These
findings will further improve the implementation and utility of
precisely personalized immunotherapeutic strategies in LUAD.
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