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Abstract

Plants and endophytic microorganisms have coevolved unique relationships over
many generations. Plants show a specific physiological status in each developmental
stage, which may determine the occurrence and dominance of specific endophytic
populations with a predetermined ecological role. This study aimed to compare
and determine the structure and composition of cultivable and uncultivable bacte-
rial endophytic communities in vegetative and reproductive stages (RS) of Passiflora
incarnata. To that end, the endophytic communities were assessed by plating and
Illumina-based 16S rRNA gene amplicon sequencing. Two hundred and four cultivable
bacterial strains were successfully isolated. From the plant’s RS, the isolated strains
were identified mainly as belonging to the genera Sphingomonas, Curtobacterium,
and Methylobacterium, whereas Bacillus was the dominant genus isolated from the
vegetative stage (VS). From a total of 133,399 sequences obtained from Illumina-
based sequencing, a subset of 25,092 was classified in operational taxonomy units
(OTUs). Four hundred and sixteen OTUs were obtained from the VS and 66 from
the RS. In the VS, the most abundant families were Pseudoalteromonadaceae and
Alicyclobacillaceae, while in the RS, Enterobacteriaceae and Bacillaceae were the
most abundant families. The exclusive abundance of specific bacterial populations
for each developmental stage suggests that plants may modulate bacterial endo-
phytic community structure in response to different physiological statuses occurring

at the different plant developmental stages.
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1 | INTRODUCTION

Microbial endophytes are part of the plant micro-ecosystem,
where they live internally without causing any damage or apparent
symptom of a disease. These endophytes are ubiquitously asso-
ciated with almost all plants (Nair & Padmavathy, 2014; Sharma,
Kansal, & Singh, 2018). Endophytic bacteria colonize plant’s intra-
cellular or intercellular spaces and may originate from the phyl-
losphere, rhizosphere, or even seeds, existing in both free-living
or endophytic states (Farrar, Bryant, & Cope-Selby, 2014). For
the establishment of this plant-microbe interaction, plants con-
stituted a complex ecosystem where they can provide necessary
nutrients for microbial colonization. In return, endophytes per-
form diverse beneficial functions for the host-plant. They may
directly affect the plant’s development by making essential nu-
trients more available and modulating levels of phytohormones
(Ryan, Germaine, Franks, Ryan, & Dowling, 2008; Tsavkelova,
Klimova, Cherdyntseva, & Netrusov, 2006), or, as an indirect ef-
fect, through the synthesis of biomolecules, they may provide
protection against abiotic and biotic stresses (Guo, Wang, Sun, &
Tang, 2008; Strobel & Daisy, 2003). Thus, the plant may select its
internal microbial population toward a specific ecological role to
be played in this ecosystem (Hardoim et al., 2015; da Silva, Armas,
Soares, & Ogliari, 2016). The plant-related factors known to deter-
mine the structure and composition of endophytic communities
are the plant genotype, developmental stage, and crop environ-
mental conditions (inceoglu, Salles, Overbeek, & Elsas, 2010; Van
Overbeek & Van Elsas, 2008; Ren, Zhang, Lin, Zhu, & Jia, 2015; Yu,
Yang, Wang, Li, & Yuan, 2015). Considering phenological aspects
of plants, endophytic communities may also respond to seasonal
conditions, as their hosts go through different developmental
stages with each season.

Several methods have been progressively developed for analyz-
ing the structure and composition of the host-associated microbial
communities. Culture-dependent methods are suitable for func-
tional studies of native species but are limited as it is estimated to
recover <1% of the total bacterial diversity. It is known that con-
ventional microbiological techniques select for specific groups that
are able to grow under preestablished isolation conditions (Stewart,
2012; Vartoukian, Palmer, & Wade, 2010). In contrast, culture-inde-
pendent methods may detect the occurrence of uncultivable, slow-
growing, or less abundant bacteria. These methods, generally based
on 16S rRNA gene sequencing (Tringe & Hugenholtz, 2008), can be
high throughput to assess the composition of bacterial communities
in soil, water, air, or any environmental sample (An, Sin, & DuBow,
2015; Doherty et al., 2017; Janssen, 2006; Shokralla, Spall, Gibson,
& Hajibabaei, 2012).

Passionflower is a tropical plant of the family Passifloraceae,
mainly distributed throughout North and South America
(Dhawan, Dhawan, & Sharma, 2004). In Brazil, the species
grows into the vegetative stage (VS) from December to January,
and the reproductive stage (RS) is (flowering and fruiting) from
April to November (Fuentes, Lemes, & Rodriguez, 2000). It

grows preferentially in well-drained soil, forming a climbing
stem, three-lobed leaves, ovoid or globose fruits, and, due to
the exotic appearance of its flower, it is recognized as the sym-
bol for the “Passion of the Christ” (Miroddi, Calapai, Navarra,
Minciullo, & Gangemi, 2013; Patel, Verma, & Gauthaman, 2009).
P. incarnata has been widely used in traditional herbal medi-
cine for treating anxiety, nervousness, constipation, dyspepsia,
and insomnia. Nowadays, it is officially included in the na-
tional pharmacopeias from France, Germany, and Switzerland,
also being monographed in the British Herbal Pharmacopoeia
and the British Herbal Compendium (Dhawan et al., 2004).
Although its therapeutic aspects have been widely reported,
only one study on P. incarnata fungal endophytes was per-
formed (Seetharaman et al., 2017). The present study is the first
one to evaluate the bacterial endophytic diversity associated
with this medicinal plant.

The analysis of the structure of plant-associated bacterial com-
munities in their different stages of development may establish a
correlation between the occurrence of specific bacterial populations
and physiological changes throughout the plant’s development.
These plant-related conditions may play a critical role in the modula-
tion of the endophytic communities. This study aimed at determin-
ing and comparing the structure and composition of cultivable and
uncultivable bacterial endophytic communities to be found in the

vegetative and RS of P. incarnata.

2 | MATERIAL AND METHODS

2.1 | Sample collection and surface sterilization

P. incarnata L. cv. CF 01 leaves were collected in April 2015 and
January 2016 from the Centroflora Group agricultural fields located
at Botucatu, state of Sao Paulo, Brazil (22°56'23.4"S 48°34'11.6"W).
This area is mountainous, with altitudes ranging between 700 and
900 m, displaying a humid subtropical climate with a mean tempera-
ture of 22°C in January and 22.6°C in April. Regarding its phenology,
P. incarnata is typically in the VS in January, while in April it devel-
ops into its RS. Thirty healthy plants were randomly sampled in April
2015 for the RS, and these plants were flagged for the next sam-
pling. In January 2016, sampling from the previously flagged plants
was carried out, but these were in the VS. Sterilized gloves and scal-
pels were used to collect the whole leaves; the blades were changed
between each collection. The samples were placed in sterilized poly-
thene bags, transported to the laboratory on ice, and stored at 4°C
until they were ready to be processed up to 72 hr afterward. The
leaves were detached with a sterilized scalpel, washed with puri-
fied distilled water, and left 10-15 min to drain. Surface sterilization
was performed on whole leaves according to Azevedo, Maccheroni,
Pereira, and Aradjo (2000), with modifications. Leaf tissues were
treated with 100% ethanol for 3 min, followed by 2% sodium hy-
pochlorite for 2 min, and 70% ethanol for 3 min. The disinfected
leaves were washed three times with sterilized distilled water, and
the last washing was inoculated on nutrient agar plates to validate
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the effectiveness of the surface sterilization procedure. Control agar
plates incubated at 28 + 2°C were inspected for 48 hr to check the

occurrence of any bacterial growth.

2.2 | Culture-dependent diversity

2.2.1 | Isolation of endophytic bacteria

Surface-sterilized leaves (five per plant) were ground with sterile
mortars and pestles in 5 ml phosphate buffer saline (137 mM NacCl,
2.7 mM KCl, 10 mM Na,HPO, and 1.8 mM KH,PO,, distilled water
1,000 ml, pH 7.4) to provide a mixed sample for the isolation of bac-
terial strains. From the resulting suspension, a series of 10-fold dilu-
tions down to 10™* were prepared. Aliquots (100 pl) of each dilution
were spread in triplicates on M9 minimal medium, Gause’s synthetic
agar (Zhao, Xu, & Jiang, 2012), Chitin medium (Lingappa & Lockwood,
1961), Tap Water Yeast Extract agar (EI-Shatoury, 2013), Humic acid-
vitamin (HV) agar (Hayakawa & Nonomura, 1987), Glycerol-aspara-
gine agar (Pridham & Lyons, 1961) and 869 medium (Eevers et al.,
2015). All media were supplemented with benomyl (50 pug/ml) and
cycloheximide (50 pg/ml). Plates were incubated at 28 + 2°C for up
to 30 days. Endophytic bacterial strains, isolated from surface-steri-
lized leaves, were selected based on colony morphologies, purified,
and preserved at -80°C. Margalef index (D,,s) was calculated to
determine the species richness of bacterial populations isolated on

each culture medium.

2.2.2 | DNA extraction and 16S rRNA
gene sequencing

The genomic DNA of the endophytic bacterial strains was extracted
using the methods described by Van Soolingen, Haas, Hermans,
Groenen, and Embden (1993), with modifications. The 16S rRNA
gene was amplified using universal bacterial 16S ribosomal gene
primers 10F (5-AGTTTGATCCTGGCTCAG-3') and 1525R (5'-
AGTTTGATCCTGGCTCAG-3') (Lane, 1991) targeting the V1-V9 re-
gion. The 25 pul PCR reaction mixture contained 10 ng of DNA, 0.5 pl
of dNTP mix (10 mM; Applied Biosystems), 2.5 ul of 10X PCR Buffer
with 15 mM MgCl, (Applied Biosystems), 0.5 uM of each primer, one
unit of Tag DNA polymerase (Applied Biosystems). The PCR condi-
tions consisted of initial denaturation at 95°C for 2 min, followed by
35 cycles of 94°C for 1 min, 60°C for 1 min, 72°C for 3 min, and a
final extension at 72°C for 5 min. Agarose gel electrophoresis sepa-
rated the PCR products, purified using GFX™ PCR DNA and Gel
Band Purification kit (GE Healthcare Life Sciences, Germany), and
sequenced on an ABI3500XL Series (Applied Biosystems) sequencer.
The primers above mentioned were used to assembly the 16S rRNA
gene sequence, and the 1100R (5-AGGGTTGGGGTGGTTG-3') was
used as an internal sequencing primer. For taxonomic assignment of
bacterial strains, the 16S rRNA gene sequences were compared with
the EZBiocloud 16S Database using the “Identify” service (Yoon et
al., 2017), and species assignment was based on closest hits (Kim &
Chun, 2014).
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2.3 | Culture-independent diversity

2.3.1 | DNA extraction and lllumina-
based sequencing

The leaf samples obtained from the same plants used for the isolation
of cultivable bacterial communities were sterilized using the same
conditions described previously. Sterilization was confirmed by run-
ning a PCR with the same primers previously used on the last washing,
and if no DNA was detected after the amplification, the sterilization
was considered successful. The sterilized leaf tissues were homog-
enized in sterile mortars and pestles with PBS solution. The total
genomic DNA was extracted using a PowerMax Soil DNA Extraction
kit (Mo Bio Laboratories, Carlsbad, CA), following the manufacturer’s
instructions. DNA from the 30 replicates collected in the VS and from
the 30 replicates collected in the RS were pooled to create a single
DNA sample for the VS and a single DNA sample for the RS. These
two DNA samples were used as templates for the culture-independ-
ent approach. The 16S rRNA gene V3-V4 hypervariable region was
amplified with primers 799F (5'-AACMGGATTAGATACCCKG-3')
and 1492R (5'-GGTTACCTTGTTACGA CTT-3') (Chelius & Triplett,
2001) with a barcode on the forward primer. The PCR reaction was
performed in 30 cycles (five cycles used on PCR products) using the
HotStarTaq Plus Master Mix Kit (Qiagen) under the following condi-
tions: 94°C for 3 min, followed by 28 cycles of 94°C for 30 s, 53°C
for 40 s and 72°C for 1 min, and a final elongation step at 72°C for
5 min. Amplification products were checked in 2% agarose gel to
determine the success of amplification and the relative intensity of
bands. Amplicon sequencing was performed on the lllumina MiSeq
platforms at Mr. DNA Molecular Research (Texas).

2.3.2 | Processing of sequencing data

Raw sequence data were checked with sequence quality filters in
FastQC software (Andrews, 2012). Sequences of lengths < 150 bp
were removed, and the adapter, barcodes, and primers were trimmed
using Trimmomatic software (version 0.36) (Bolger, Lohse, & Usadel,
2014). The sequencing data were processed using Quantitative
Insights into Microbial Ecology (QIIME) software version 1.9.1
(Caporaso et al., 2010). All sequences that passed quality controls
were clustered in operational taxonomic units (OTUs) at 97% ge-
netic identity using an open reference approach (UCLUST algorithm)
(Edgar, 2010). A representative sequence for each OTU was clas-
sified using Ribosomal Database Project classifier (Wang, Garrity,
Tiedje, & Cole, 2007) and PyNast aligner (Caporaso et al., 2009)
against the SILVA database (128 release) for taxonomy assignment
(Quast et al., 2012). The chimeras were checked and filtered out by
UCHIME (Edgar, Haas, Clemente, Quince, & Knight, 2011). OTUs
assigned to chloroplasts or of mitochondrial origin were excluded.
Only OTUs of bacterial origin were considered for further analysis.
Rarefaction curve, alpha-diversity indices (Shannon-Wiener
richness estimators

Index, Simpson’s evenness Index) and

(Abundance-based Coverage Estimator and Chaol) were calculated
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using the QIIME pipeline. The index estimator Chao was used to
estimating the richness of the bacteria. The Shannon diversity and
Simpson index were used to estimate the biodiversity of the bacterial
communities. In order to calculate the diversity indices, each sample
was rarified to an average sequences’ depth, due to the variation
in number obtained per sample (de Carcer, Denman, McSweeney,
& Morrison, 2011). In this study, the OTU table was rarefied to 404
sequences, corresponding to the sample with the lowest number of
sequences (RS). We normalized this table of good reads by divid-
ing the reads per OTU in a sample by the sum of good reads in that
sample, resulting in a table of relative abundances (frequencies). All
diversity indices and richness estimators were calculated 10 times.
Unassigned sequences were excluded from the determination of
contributions of taxonomic groups in each bacterial community.
The structure of bacterial endophytic communities was visualized
in Krona graphs, plotted using the Krona web interface software
(Ondov, Bergman, & Phillippy, 2011).

2.4 | Statistical analysis

In order to search for biologically meaningful differences in the
taxonomic distribution between endophytic bacterial communi-
ties in VS and RS, the two-way Fisher’s exact test with a Storey
False Discovery Rate multiple test correction analysis (adjusted g-
value < 0.05 and ratio of proportions effect size < 2.00) was car-
ried out using the graphical software package Statistical Analysis of
Taxonomic and Functional Profiles (STAMP) (Parks & Beiko, 2010).
The normalized OTUs table format was adjusted to generate a heat
map with hierarchical cluster based on Bray-Curtis distance using
the clustering function hclust2 at R version 3.4.2.

3 | RESULTS

3.1 | Culture-dependent diversity analysis

In total, 204 pure cultures showing different colony morphologies
were obtained; 146 were retrieved from the RS and 58 from the
VS. No colonies emerged from the final washing of the sterilization
procedure, an assurance that the surface sterilization procedure
was effective. All isolates were identified based on 16S rRNA gene
sequencing and alignment. The sequence data for these isolates
have been submitted to the GenBank database under accession
numbers from MG778707 to MG778907. Most of the sequences
showed > 99% similarity to the reference strains of EzBiocloud data-
base; only 10.3% showed a similarity between 97% and 99%. The re-
sultsrevealed ahighdiversity, distributed in 84 different bacterial taxa
(Appendix Table A1l). In the RS, Proteobacteria was the most abun-
dant phylum, comprising 68.5% of total isolates. Alphaproteobacteria
was represented mainly by Sphingomonadaceae (32.9%) and
Methylobacteriaceae (13.7%), followed by Rhodobacteraceae (4.6%),
Bradyrhizobiaceae (1.4%), and one strain of Caulobacteraceae.
Moraxellaceae
(2.8%),

The class included

(7.6%),

Gammaproteobacteria

Pseudomonadaceae and Enterobacteriaceae

and Xanthomonadaceae (1.4%). Actinobacteria were the sec-
ond most abundant phylum (25.9% of total isolates) domi-
nated by Microbacteriaceae (21%), Streptomycetaceae (2.8%),
Micrococcaceae (1.4%), and one isolate of the genus Mycobacterium.
The phylum Firmicutes, mainly represented by bacteria belonging to
the genus Bacillus, constituted only 4.9% of the total isolates. One
isolate of genus Chryseobacterium represented the Bacteroidetes. In
the VS, Firmicutes was the dominant phylum (76%), uniquely rep-
resented by the family Bacillaceae (74%). Proteobacteria was the
second most present phylum (21%), comprising Pseudomonadaceae
(9%), Erwiniaceae (7%), followed by Enterobacteriaceae (4%) and
Xanthomonadaceae (2%). Actinobacteria were represented by the
genus Rhodococcus (3%).

Seven different culture media were used to recover a repre-
sentative cultivable diversity from the composition of the bacte-
rial community associated with P. incarnata. All agar media were
suitable for the isolation of endophytic bacteria. No bacteria were
isolated on Chitin and HV media when processing VS samples.
Based on D,,;, the 869 medium recovered the highest species
richness (D, = 3.41) in the VS. By contrast, no bacteria were iso-
lated on the 869 medium from RS samples, and the highest species
richness (D, = 7.71) was obtained from the Glycerol-Asparagine
medium (Figure 1).

3.2 | Culture-independent diversity analysis

3.2.1 | Bacterial diversity, species richness, and
taxonomic distribution

A total of 133,399 sequences (111,335 from VS and 22,064 from
RS) was recovered after applying all quality filters. As per QIIME
analysis, most sequences from both developmental stages (78% in
VS and 98% in RS) showed similarity to chloroplast or mitochondrial
16S rRNA gene, even using the primers designed to avoid this bias.
Sequence data have been deposited into the NCBI Sequence Read
Archive database with the BioProject No. PRJINA430160.

After excluding the unassigned sequences, the OTUs table re-
tained 17,526 sequences clustered in 416 OTUs representing the VS
and 404 sequences clustered in 66 OTUs representing the RS. The
rarefaction curve indicated different diversity profiles between the
two samples (Figure 2). The VS rarefaction curve did not reach sat-
uration, suggesting that taxonomic diversity was not fully exploited,
while the RS curve tends to reach a plateau, indicating that most of
the diversity was recovered. The OTU table was rarefied to 404 se-
quences per sample before calculation of the alpha-diversity indices
to compare the diversity and species richness in the VS and the RS.
Shannon, Simpson, Ace and Chaol indices (Table 1) confirmed that
VS presented the highest species richness.

Given that 98.4% of the sequences could be classified at the fam-
ily level, and 70.1% of sequences could be classified at the genus
level, the taxonomic composition was represented at the family
level. Taxonomic composition in each developmental stage was plot-
ted into Krona charts (Figure 3).
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The sequences from the VS were classified into six different
phyla, 11 classes, 24 orders, 54 families and 51 genera; the sequences
from RS were classified into four different phyla, seven classes, 15
orders, 23 families, and 18 genera. Most of the identified OTUs in
both stages belong to the phylum Proteobacteria (56.2% in the VS
and 52.5% in the RS). Other bacterial phyla found in the VS were
Firmicutes (20.7%), Actinobacteria (17.1%), Bacteroidetes (5.9%),
Nitrospirae (0.08%) and Chlamydiae (0.01%). The other three domi-
nant phyla in the RS were Firmicutes (28.5%), Actinobacteria (16.8%)
and Bacteroidetes (2.2%). In the VS, the most abundant families were
Pseudoalteromonadaceae, Alicyclobacillaceae, and Bacillaceae,
representing 9.5%, 9.2%, and 7.4% of all OTUs, respectively. On

the other hand, in the RS, Enterobacteriaceae (20.6%), Bacillaceae
(15.4%) and Sphingomonadaceae (11.7%) were the most OTU-rich
families. At the genus level, Candidatus Portiera and Alicyclobacillus
were the most abundant in the VS, representing about 13.2%
and 12.9%, respectively, followed by Pseudonocardia (10.2%) and
Sphingomonas (9.8%). The relative abundance of other genera ranged
between 0.4% and 5%. In the RS, Sphingomonas was the predom-
inant genus, comprising 18.3% of total sequences. Brevibacterium
(16.4%), Pseudomonas (16.3%), Alicyclobacillus (15.2%) and Bacillus
(11.3%) were the other main genera detected in the samples.
Because the taxonomic assignment had a better resolution at
the family level, the specific bacterial populations were statistically
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TABLE 1 Number of OTUs and
alpha-diversity indices of the endophytic
bacterial communities associated with

Developmental stage Reads OTUs? Ace Chaol
Vegetative 17,526 115 192 193
Reproductive 404 51 59 58

Shannon Simpson Passiflora incarnata
3.992 0.96
3.125 0.92

*The operational taxonomic units (OTUs) were defined at a 97% similarity level.
The coverage percentage, richness estimators (ACE and Chao1) and diversity indices (Shannon and
Simpson) were calculated using Quantitative Insights into Microbial Ecology pipeline.

analyzed at this level. The heat map graph (Figure 4) was based on
the 16 most abundant bacterial families. This analysis allowed us
to find which taxonomic groups were most abundant in each de-
velopmental stage. The VS presented a larger abundance of fami-
lies Pseudoalteromonadaceae, Alicyclobacillaceae, Bacillaceae,
Sphingomonadaceae, and Pseudomonadaceae. In the RS, the
families Enterobacteriaceae, Bacillaceae, Sphingomonadaceae,
Brevibacteriaceae, and Pseudomonadaceae were more frequent.
When leading bacterial families of each developmental stage
were compared using the STAMP software (Appendix Figure A1),
a significant overrepresentation of the Enterobacteriaceae,
Brevibacteriaceae,and Bacillaceae was observedinthe RS. Analysis of
the VS showed a significant overrepresentation of Halomonadaceae,

Pseudoalteromonadaceae, and Pseudonocardiaceae.

4 | DISCUSSION

This study is a first effort toward the characterization of endophytic
bacterial communities associated with passionflower (P. incarnata),
especially its leaves, analyzed by culture-dependent and independ-
ent methods, comparing the two stages of plant development. The
combination of both methods is highly recommended because it
captures the microbial community structure and composition more
precisely than when applying only one method, independently (Al-
Awadhi et al., 2013). Our results show the occurrence of specific
endophytic populations at each developmental stages of this host
(vegetative and reproductive). Endophytic groups that possibly
boost plant growth were predominant at the VS, while groups as-
sociated with plant resistance and protection occurred more fre-
quently at the RS.

The main disadvantage of culture-based techniques is that they
typically allow for the detection of no more than 0.1%-10% of true
bacterial diversity within an ecosystem (Handelsman & Smalla, 2003;
Pace, 1997), compared to the diversity obtained from culture-inde-
pendent techniques. However, in this study, the number of bacterial
species (84 total) recovered by plating represented almost 20% of
the overall number of OTUs (430 total) detected by Illlumina-based
sequencing. There was an exclusive occurrence of some families
within the cultivable diversity (Bradyrhizobiaceae, Micrococcaceae,
Mycobacteriaceae, Erwiniaceae, Nocardiaceae), which emphasizes

the importance of combining approaches (Thomas & Sekhar, 2017;

Yashiro, Spear, & McManus, 2011). The exclusive occurrence of
some bacterial taxa in cultivable diversity is not uncommon, since
the culture-independent approach may face limitations, such as the
heterogeneous lysis of some bacterial species or low specificity of
primers (Hill et al., 2000; Kennedy, Hall, Lynch, Moreno-Hagelsieb,
& Neufeld, 2014). On the other hand, the significant difference in
the number of OTUs obtained by lllumina-based sequencing com-
pared with culturing may be explained by the inherent limitations
of culture-dependent methods and the undoubted capability of the
next-generation sequencing platform in producing large data sets
(Tang, Ma, Li, & Li, 2016; Yang, Liu, & Ye, 2017). The diversification
of culture media, expanding available nutrient sources, is considered
a smart strategy to overcome the limitations of a culture-depen-
dent approach, because it favors the isolation of a broader range
of bacterial populations. Despite most studies on isolation of leaf
endophytic bacteria reporting low species richness (Gagne-Bourgue
et al., 2013; de Oliveira Costa, Queiroz, Borges, Moraes, & Aradjo,
2012; Rhoden, Garcia, Santos e Silva, Azevedo, & Pamphile, 2015;
Singh et al., 2017), our culture-based approach allowed us to recover
the highest number of species compared to the studies mentioned
above. The species richness calculated from each culture medium
was compared based on D,.. The highest species richness was ob-
tained from the samples of the VS plated on the 869 medium. This
culture medium comprises ingredients (glucose, yeast extract and
tryptone) commonly used to recover nonfastidious microorganisms,
which explains the observed dominance of easily cultivable bacterial
species belonging to the families Bacillaceae and Pseudomonadaceae
(Eevers et al., 2015). In the RS, the highest species richness was
obtained on the Glycerol-Asparagine medium, which contains
glycerol as carbon source, asparagine as amino acid source, and
various trace minerals; this combination of ingredients allowed for
the isolation of a wide range of bacterial species belonging to the
Sphingomonadaceae, Methylobacteriaceae, and Microbacteriaceae
families (Huang et al., 2012; Li et al., 2005; Veyisoglu et al., 2013).
Their growth rate may also have contributed to the predominance
of these taxonomic groups in the culture media mentioned above.
Regarding the culture-independent approach, rarefaction analy-
ses from both samples suggested that the bacterial diversity in the
RS was lower than that in the VS. Another possible bias affecting the
culture-independent analysis was the high percentage of sequences
of plastid and mitochondrial origin yielded, though specific primers

were used to avoid the amplification of plant organelle sequences
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(Chelius & Triplett, 2001). Similar results were found in a study on
endophytic bacterial communities from banana shoot-tip tissues
(Yashiro et al., 2011). Additionally, 15% of the overall sequences
from both the vegetative and RS corresponded to unassigned OTUs.
A similar undetermined fraction was found in bacterial communities
from the rhizosphere of amylaceous maize (Correa-Galeote, Bedmar,
Fernandez-Gonzalez, Ferndndez-Lépez, & Arone, 2016), which indi-
cates the occurrence of yet uncultured bacterial groups. However,
as occurred in the study just cited, the unassigned sequences had
no affected clustering (Dohrmann et al., 2013). The heat map anal-
ysis showed that the RS has more overrepresented bacterial groups
than the VS. This differentially predominant grouping (seen in the
heatmap graph) of several bacterial groups in the RS may consti-
tute a defense against pathogen invasion that consequently would
contribute to the plant’s health (Mendes, Raaijmakers, Hollander,
Mendes, & Tsai, 2017). Alpha-diversity indices indicate that the VS
shows a vast superiority in species richness (Chaol and Ace) over the
RS, while values for Shannon and Simpson indices are very similar
for both samples. The low endophytic richness values followed by
an overrepresentation of specific microbial groups in the RS were
also observed in the endophytic community from Sequoia sem-
pervirens leaves, in which an association of lower species richness
with higher leaf age was observed (Espinosa-Garcia & Langenheim,
1990). Additionally, a study led by Andreolli, Lampis, Zapparoli,
Angelini, and Vallini (2016) showed that species richness in an endo-
phytic bacterial community associated with Vitis vinifera cv. Corvina

is higher on 3-year-old grapevines than on 15-year-old ones. These

FIGURE 4 Heat map of the bacterial
community composition of each stage
based on Bray-Curtis distance. Taxonomic
distribution of the core endophytic
bacterial community at family level,

based on an analysis of the first 16 most
abundant families. Clustering of samples
based on Bray-Curtis distance indices
calculated by operational taxonomy units
at a distance of 3%
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changes in diversity may occur due to the loss of “passenger” endo-
phytic populations within senescent leaves and, consequently, they
may lead to the permanence and establishment of endophytes with
critical ecological roles for the most advanced plant developmental
stages. On the other hand, the decrease of nutrients in more ad-
vanced developmental stages may also make the host-plant a less
attractive niche for endophytic colonization, since in many conifers
it was reported that mineral and sugar contents change as leaves age
(Distelbarth, Kull, & Jeremias, 1984).

The study of host-associated microbial community composition
and structure may elucidate the ecological role that each microbial
group plays within the phytobiome. Moreover, host development
and health are dependent on the presence of an entire microbial
community (Robinson, Bohannan, & Young, 2010). This study re-
vealed that the genera Bacillus and Pseudomonas outnumber other
cultivable bacteria in the host’s VS. The dominance of Bacillus iso-
lates in the VS was also observed in a similar study where this genus
made up to 90% of the entire endophytic bacteria in the early de-
velopmental stage of Ginseng (Panax ginseng) (Vendan, Yu, Lee, &
Rhee, 2010). Similar results were reported on the abundance of
Bacillus and Pseudomonas recovered from Trichilia elegans leaves
(Rhoden et al., 2015). Besides being commonly characterized as
endophytes (Govindasamy et al., 2010), Bacillus and Pseudomonas
play a critical role in the promoting plant growth (Adesemoye, Obini,
& Ugoji, 2008; Mercado-Blanco & Bakker, 2007; Pérez, Collavino,
Sansberro, Mroginski, & Galdeano, 2016). The genera Sphingomonas,
Curtobacterium, and Methylobacterium together represented more
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than half of all bacteria isolated from the RS. The dominance of these
three genera was also found in a study on cultivable endophytic bac-
teria associated with yerba mate (llex paraguariensis) (Aradjo et al.,
2002). Additionally, some previous studies showed that the occur-
rence of Curtobacterium and Methylobacterium has a particular in-
fluence on the acquisition of resistance to diseases caused by the
phytopathogenic bacteria Xylella fastidiosa (Lacava, Araujo, Marcon,
Maccheroni, & Azevedo, 2004; Sturz & Matheson, 1996) and Erwinia
caratovora var. atroseptica (Ren et al., 2015), which means they may
contribute to host-plant health.

Taxonomic composition from the culture-independent analysis
was relatively similar to the cultivable diversity, mainly because the
phyla Proteobacteria, Firmicutes, and Actinobacteria were the dom-
inant groups in both analyses. Although Bacillaceae (third in abun-
dance) was not the most abundant group in the VS, it kept its specific
relevance in the community structure. The abundance of Bacillaceae
in the VS of P. incarnata was similar to a culture-independent study
showing that Bacillaceae was the fourth most abundant family of
the entire leaf endophytic bacterial communities in the tillering
stage (part of the VS) of rice cultivation (Lafi et al., 2016). The dom-
inance of Alicyclobacillaceae in the VS is of particular interest due
to the potential of extant members of this family to promote plant
development and health (Suebphankoy, Sookanun, Na Chiangmai,
Sawangsri, & Kanjanamaneesathian, 2013). For example, they can
mitigate the adverse effects of heat and cold stress on plants (Xu et
al., 2017). This finding might explain the relationship between the
bacterial groups associated with promoting plant growth and the
VS in P. incarnata. In the structure of cultivable bacterial communi-
ties, Sphingomonadaceae was one of the most abundant families in
the RS. This dominance was statistically confirmed by the analysis
of taxonomic distribution between the two developmental stages
conducted on STAMP.

Plants display specific physiological needs at each stage of devel-
opment, which may be met by the occurrence of beneficial and critical
microbial groups capable of boosting the host’s health. During the VS
of the host-plant, various metabolites are produced and mobilized for
the growth of stems, branches, and leaves. Crucially, within the plant
grows demand for nutrients such as nitrogen, phosphorus or iron,
which are not always bioavailable (Crowley, 2006; Gupta, Panwar,
Akhtar, & Jha, 2012; Hartmann, Schmid, Tuinen, & Berg, 2009).
Therefore, the microbial groups that facilitate the intake of these nu-
trients could be selected by the plant and coevolve with it to supply
for the physiological needs of the VS (Hartmann et al., 2009; Santoyo,
Moreno-Hagelsieb, Orozco-Mosqueda Mdel, & Glick, 2016). This
hypothesis was confirmed in this study, as the dominant taxonomic
groupsinthe VS are commonly characterized as plant growth promoter
microorganisms (Govindasamy et al., 2010; Lafi et al., 2016; Mapelli
et al., 2013; Mercado-Blanco & Bakker, 2007). On the other hand,
there is a phenomenon in which plants gradually acquire resistance to
pathogens during their life cycle; in the case of resistant plants, they
increase with age their ability to control infections (Develey-Riviere &
Galiana, 2007). Thus, plants are generally more resistant in the most
advanced developmental stages. The dynamic of the host-associated
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bacterial communities may explain this phenomenon. During its de-
velopment, the plant host may show a predisposition to be colonized
by bacterial populations that participate in the defense against patho-
gens (Develey-Riviere & Galiana, 2007; Sturz & Matheson, 1996). This
might explain why predominant taxonomic groups in the RS are heav-
ily related to bacterial groups that have previously shown influence on
resistance to some infectious diseases (Aradjo et al., 2002; Lacava et
al., 2004; Pérez et al., 2016; Sturz & Matheson, 1996). Further studies
are needed to assess host-endosymbiont metabolomics at different
developmental stages and determine whether the structure and com-
position of the endophytic bacterial communities could correlate with
the plant phenological patterns.

5 | CONCLUSIONS

This study revealed the existence of differentiated communities ac-
cording to the developmental stage of the plant. Both the culture-de-
pendent and culture-independent approaches showed that specific
bacterial populations were exceptionally abundant for each devel-
opmental stage, which may be due to endophyte selection being
driven by physiological changes (such as nutritional requirements or
susceptibility to pathogens) occurring during the host development.
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TABLE A1 Cultivable bacterial diversity associated with Passiflora incarnata leaves
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TABLE A1 (Continued)

Plant developmental stages
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No. isolates
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The closest neighbor

Paenibacillus
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Mycobacterium
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No. isolates Accession no.
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FIGURE A1 Comparison of taxonomic profiles between bacterial communities of vegetative and reproductive stages. (a) Scatter plot
graph showing differences at the family level, (b) extended error bar percentage representation plot is showing differences in abundance
between central bacterial populations at family level.



