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Abstract

Background and Aims: Lung cancer is ranked as the second most prevalent form of

cancer worldwide. Nonsmall cell lung cancer (NSCLC) represents the predominant

histological subtype. Research suggests that one‐third of lung cancer patients

also experiencing depression. Antidepressants play an indispensable role in the

management of NSCLC. Despite significant advancements in treatment, lung cancer

patients still face a high mortality rate. Major depressive disorder (MDD) and related

antidepressants involved in treatment efficacy and prognosis of NSCLC. However,

there has been a lack of screening and analysis regarding genes and networks

associated with both NSCLC and MDD.

Methods: To investigate the correlation between MDD and NSCLC, our discovery

and validation analysis included four datasets from the Gene Expression Omnibus

database from NSCLC or MDD. Differential gene expression (DEGs) analysis, GO

and KEGG Pathway, and protein‐protein interaction network analyzes to identify

hub genes, networks, and associated observations link between MDD and NSCLC.

Results: The analysis of two datasets yielded a total of 84 downregulated and

52 upregulated DEGs. Pathway enrichment analyzes indicated that co‐upregulated

genes were enriched in the regulation of positive regulation of cellular development,

collagen‐containing extracellular matrix (ECM), cytokine binding, and axon guidance.

We identified 20 key genes, which were further analyzed using the MCODE plugin

to identify two core subnetworks. The integration of functionally similar genes

provided valuable insights into the potential involvement of these hub genes in

diverse biological processes including angiogenesis humoral immune response

regulation inflammatory response organization ECM network.

Conclusion: We have identified a total of 136 DEGs that participate in multiple

biological signaling pathways. A total of 20 hub genes have demonstrated robust

associations, potentially indicating novel diagnostic and therapeutic targets for

both diseases.
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1 | INTRODUCTION

Lung cancer is the second leading type of cancer known across the

globe. Among then, nonsmall cell lung cancer (NSCLC) represents the

predominant histological subtype among lung malignancies.1,2 Lung

cancer often caused by factors such as long‐term smoking, environ-

mental pollution, or genetic predisposition. Currently, the treatment

modalities for lung cancer primarily encompass surgical intervention,

radiotherapy, chemotherapy, and immunotherapy.3 However, despite

the advances in various strategies available to mitigate and address

the impact of these factors on lung cancer, the majority of lung

cancer patients tend to present at an advanced stage that is not

amenable to curative treatment,4 which underscore the urgency of

achieving a favorable therapeutic outcome in advanced stages of the

disease. The current uncertainty surrounding treatment outcomes,

the debilitating progression of cancer, and the adverse effects of

treatments have gradually led to a growing recognition of psycho-

logical stress as a crucial component within the continuum of cancer

treatment that strongly correlates with cancer outcomes.5,6

Unfortunately, lung cancer tends to be one of the neglected

cancers that impacted by psychological stress.7 Among these

psychological stresses, depression is a critical and familiar factor

characterized by symptoms such as low mood, diminished interest,

reduced self‐esteem, and impaired daily functioning.8 Compared to

other cancer patients, lung cancer patients are more likely to

experience depression.9,10 Clinical research shows that NSCLC

patients identified depression rate as six times compared with

healthy patients.11 Due to endocrine abnormalities, adverse effects

of drugs and stressful events caused by psychological stress are

considered to be involved in the onset of depression.12–14 Therefore,

there have a bidirectional influence between lung cancer and

depression.15 On one hand, the diagnosis of lung cancer itself can

elicit significant psychological distress and anxiety, while the physical

discomfort, nausea, fatigue, and other treatment‐related side effects

can further increase the risk of depression.16 On the other hand,

depression can impact immune system functioning, chronic inflam-

matory responses, and lifestyle factors, potentially increasing the

susceptibility to developing lung cancer which often has a detrimen-

tal effect on their quality of life.17,18 A study published in JAMA

found a significant association between depression and the risk of

developing lung cancer, with the severity of depression positively

correlating with the risk of mortality from lung cancer.19 The

mortality risk is 17% elevated in cancer patients with comorbid

depression as compared to those without depression.20 Moreover,

depression linked with poor survival in patients with postsurgical

NSCLC.11 This phenomenon may elucidate the mechanism by which

depression exacerbates lung cancer in patients, leading to treatment

failure and a dismal prognosis. Furthermore, the prevalence of major

depressive disorder (MDD) among cancer patients is significantly

higher, with rates of occurrence up to four times greater than that

observed in the general population.21 While the prevalence of MDD

was most pronounced among patients with lung cancer (13.1%),

followed by gynecologic cancer (10.9%), breast cancer (9.3%),

colorectal cancer (7.0%), and genitourinary cancer (5.6%).10,22

Importantly, there have considerable progress in the field of

depression management. Antidepressant treatments also play a

significant role in the physiological aspects of cancer.23,24 For

example, as a triple reuptake inhibitor of serotonin, norepinephrine,

and dopamine antidepressants ansofaxine hydrochloride can modu-

late the antitumor immunity, inhibits the growth of cancer.25 The

patients diagnosed with lung cancer who underwent both mindful

breathing training and diary‐based rehabilitation guidance demon-

strated a significant amelioration in their depressive symptoms.26,27

Normalizes the gut microbiota can increase anti‐inflammatory

biomarkers to display antidepressant like effects in depression

mouse,28 while the gut microbiota plays a crucial role in lung cancer

tumor pathogenesis by regulating the host metabolism and immune

response.28,29 Additionally, antidepressants can enhance antitumor

effects on lung cancer cells by increasing intracellular reactive oxygen

species levels and inhibiting antioxidant formation in tumor cells or by

suppressing the activity of the oncogenic protein yes‐associated

protein 1 (YAP1).30 Selective serotonin reuptake inhibitors, sertraline

and fluoxetine, suppressed the growth of NSCLC by inhibiting the

mTOR activity.31 Given that interventions targeting depressive

symptoms and tailored treatment regimens may have potential for

inhibiting tumor growth and enhancing prognosis,32 it is imperative to

identify the targets of depression in cancer patients who may benefit

from treatment strategies targeting depressive symptoms as a matter

of utmost public health priority. Hence, given the absence of

identified pathogenic pathways linking depression to lung cancer

patients and despite extensive research efforts, it is imperative to

urgently identify biomarkers and signaling pathways for effective

therapy and prevention management of NSCLC.

Gene Expression Omnibus (GEO) datasets play a crucial role in

advancing biological and medical research, which provide valuable

insights into gene expression patterns and regulatory mechanisms,

aiding researchers in understanding the molecular basis of

diseases, identifying potential biomarkers, and uncovering novel

therapeutic targets.33 Herein, we utilized gene expression profiles

for MDD and NSCLC, conducted bioinformatic analyzes and

validation tests to identify hub genes as potential biomarkers for

both diseases. Through this approach, we identified key genes and

related networks that link the intertwined biology pathways of

MDD and NSCLC patients. Understanding associated factors in
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NSCLC combined with MDD may be beneficial for exploring gene

pathways involved in depression among lung cancer patients,

ultimately improving treatment strategies.

2 | MATERIALS AND METHODS

2.1 | Data processing and analysis

The GSE98793 (MDD), GSE76826 (MDD), GSE33532 (NSCLC), and

GSE19804 (NSCLC) datasets were downloaded from the GEO

database (https://www.ncbi.nlm.nih.gov/geo/) using R software

version 4.3.1 (https://www.r-project.org/). The R software was

employed for all dataset processing and analysis. The GSE98793

dataset (GPL570 platform), comprises gene expression data selected

from whole blood samples of 64 patients diagnosed with MDD using

the MINI questionnaire and an equal number of healthy controls. The

data collection period spans from January 2016 to January 2018.

MDD‐associated GSE76826 (GPL17077 platform) included 32 out-

patients and inpatients between May 2017 and July 2021, the

severity of depressive symptoms was assessed using the Struc-

tured Interview Guide for the Hamilton Depression (SIGH‐D)

rating scale. The remission of the syndrome was defined as a stage

in which a participant did not meet the criteria for a MINI major

depressive episode continuously for 2 months and achieved a

SIGH‐D score below 8. These samples were categorized into the

MDD and healthy groups based on their respective sources,

adhering to stringent criteria for group assignment. The GSE33532

dataset (GPL570 platform) identified gene expression profiling of

primary tumors and matched normal lung tissue from 20 NSCLC

patients, at four different sites (A, B, C, D) from 2011 to 2019. The

gene expression analysis of GSE19804 (GPL570 platform) was

F IGURE 1 Flow diagram of the study design. The primary objective of this study is to identify the overlapping differentially expressed genes
between the two datasets, followed by an analysis of enriched pathways. Subsequently, we aim to identify key genes and their associated functional
genes and transcription factors. Finally, experimental validation will be conducted for these identified key genes and transcription factors.
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F IGURE 2 The DEGs in the gene expression profiling datasets. The packet intersection genes of MDD and NSCLC exhibited 52 upregulated
genes and 84 downregulated genes. (A) Heatmap and Volcano plot of the GSE98793 dataset are presented. (B) The heatmap and Volcano plot of
the GSE33532 dataset are displayed, where black nodes represent genes with no significant difference in expression, red nodes indicate
upregulated genes, and blue nodes denote downregulated genes. (C) Venn diagrams demonstrate the number of upregulated and downregulated
genes in both datasets. The intersection represents the common DEGs between the two datasets. The DEGs in the gene expression profiling
datasets were visualized using a heatmap, volcano plot, and Venn diagram based on the criteria of |log2 fc| >1 and adjusted p < 0.05 to facilitate
data interpretation. DEG, differential gene expression; MDD, major depressive disorder; NSCLC, nonsmall cell lung cancer.
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validated using a cohort of 120 nonsmoking female lung cancer

samples collected from 2010 to 2020. The samples were classified

into the NSCLC group and control group based on their different

sources. Figure 1 illustrates a simplified workflow of the current

investigation.

2.2 | Differentially expressed genes (DEGs)
analysis

To extract as much genetic information as possible about the

differences that might cause the two diseases, We performed a

separate analysis to identify DEGs between MDD and NSCLC,

which were subsequently utilized in the subsequent analyzes.

Firstly, we employed the limma package (version 3.44.0) in R

(version 4.3.1) for standardizing and correcting the dataset of

MDD gene expression profiling (GSE98793) and the NSCLC gene

expression profiling dataset (GSE33532), while simultaneously

annotating the corresponding gene names. A rigorous threshold

(|log2FC| >1.0, p < 0.05) was applied to assess the associations of

DEGs in patients diagnosed with MDD or NSCLC. The VennDia-

gram package in R (version 4.3.1) was used to generate the

intersection of co‐expression DEGs between MDD and NSCLC.

Volcano plots were created using R software to visualize the DEGs

obtained from the two datasets, illustrating all statistically

significant DEGs (Figure 2).

2.3 | Discovery analysis in Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway

We employed R package “clusterProfiler” to conduct GO and

KEGG enrichment analyzes on the DEGs on upregulated and

downregulated genes based on MDD/NSCLC interactional genes

with the aim of investigating potential mechanisms underlying

pathway enrichment in these two diseases.34 The GO pathway

enrichment analyzes were employed to identify potential biological

processes (BP), molecular functions (MF), and cellular components

(CC)35 (Figure 3).

F IGURE 3 Functional annotation of genes involved in the interplay between MDD and NSCLC. The MDD and NSCLC can exert their effects
through multiple shared GO terms and KEGG pathways. (A) Bubble diagrams, bar graphs, and circlize charts were used to visualize the GO
enrichment analysis results for genes involved in MDD/NSCLC interactions. (B) Bubble diagrams and bar graphs were utilized to display the
KEGG pathway analysis outcomes for these interactional genes. The rich factor is calculated by dividing the number of input genes annotated in
a specific term by the total number of genes annotated in that term, using the given formula: Rich factor = number of input genes under this
pathway term/number of all annotated genes under this pathway term. The presence of a higher rich factor signifies a heightened level of
pathway enrichment. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; MDD, major depressive disorder;
NSCLC, nonsmall cell lung cancer.
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2.4 | Protein–protein interaction (PPIs) networks
analysis

To comprehensively investigate the biological functions of coex-

pressed DEGs between the two groups, we analyzed the associated

DEGs using the STRING online analysis tool (version 11.5; http://

string-db.org, November 1, 2023),36 which predicts protein func-

tional associations and PPIs. This step was aimed at predicting

potential protein interactions among the encoded proteins, utilizing a

medium confidence score (>0.4). The resulting DEGs were visualized

using Cytoscape (version 3.7.1; https://cytoscape.org/), the degree of

each protein node and subnetworks core using MCODE plugin was

calculated. The “cytoHubba” plugin software in Cytoscape was utilized

to compute a topological parameter, enabling the identification of the

top 20 hub DEGs associated with this network. This methodology

facilitated the further identification of the top 20 hub DEGs, which

established related pathways characterized by a connectivity degree of

≥3. The shared protein‐coding genes represent pivotal genetic factors

linked to MDD in association with NSCLC.

2.4.1 | GeneMANIA analyzes

GeneMANIA (http://www.genemania.org) is a flexible web interface

server that generates hypotheses about gene function, analyzes gene

lists with precision and prioritizes genes for functional assays with

utmost accuracy. The genes showing positive and negative correla-

tions were inputted into GeneMANIA to unveil intricate protein‐

protein interactions, gene regulation mechanisms, coexpression

patterns, and pathway associations.

2.5 | Analysis of hub gene‐associated transcription
factor (TF) network

We also used Sentence Based Text Mining (TRRUST) database

(https://www.grnpedia.org/trrust/) to identify the hub gene of

transcriptional regulatory TFs for the co‐expressed DEGs, Then

Cytoscape was applied, and the hub gene‐TF network was

constructed. This study shed light on their regulatory roles, leading

TABLE 1 Top 20 overlapping expressed upregulated and downregulated genes identified in MDD and NSCLC.

Upregulated Downregulated
Gene name Description Gene name Description

PAFAH1B3 Platelet activating factor acetylhydrolase 1b catalytic
subunit 3

LRRC36 Leucine rich repeat containing 36

SRPK1 SRSF protein kinase 1 RTKN2 Rhotekin 2

EPHB2 EPH receptor B2 GPM6A Glycoprotein M6A

IER5L Immediate early response 5 like SPTBN1 Spectrin beta, nonerythrocytic 1

PLOD2 Procollagen‐lysine,2‐oxoglutarate 5‐dioxygenase 2 ANGPTL1 Angiopoietin like 1

PTGFRN Prostaglandin F2 receptor inhibitor CPB2 Carboxypeptidase B2

SPINT2 Serine peptidase inhibitor, Kunitz type 2 S1PR1 Sphingosine‐1‐phosphate receptor 1

SAPCD2 Suppressor APC domain containing 2 RGCC Regulator of cell cycle

LAD1 Ladinin 1 ABCB1 ATP binding cassette subfamily B member 1

ABCB6 ATP binding cassette subfamily B member 6 RRN3P1 RRN3 pseudogene 1

CKAP4 Cytoskeleton associated protein 4 FAM86B2‐DT FAM86B2 divergent transcript

SOX4 SRY‐box transcription factor 4 SOX7 SRY‐box transcription factor 7

RASAL1 RAS protein activator like 1 PZP PZP alpha‐2‐macroglobulin like

ANKRD22 Ankyrin repeat domain 22 MS4A7 Membrane spanning 4‐domains A7

IQGAP3 IQ motif containing GTPase activating protein 3 COL4A3 Collagen type IV alpha 3 chain

LYPD1 LY6/PLAUR domain containing 1 A2M‐AS1 A2M Antisense RNA 1

LOXL2 Lysyl oxidase like 2 UTRN Utrophin

H2BFS H2B.S histone 1 TGFBR3 Transforming growth factor beta receptor 3

CRABP2 Cellular retinoic acid binding protein 2 PRKCH Protein kinase C eta

PROC Protein C, inactivator of coagulation factors Va and VIIIa MAPRE2 Microtubule associated protein RP/EB family
member 2

Abbreviations: MDD, major depressive disorder; NSCLC, nonsmall cell lung cancer.
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to discover the treatment targets of MDD and NSCLC. These results

guide future experimental research and clinical transformation.

2.6 | Statistical analysis and data manipulation

The statistical analyzes and data visualization in this study were

conducted using the highly acclaimed R statistical software version

4.3.1, renowned for its comprehensive range of tools and packages

that facilitate robust data analysis and visualization. Cytoscape

software (version 3.9.1), Perl 5.32.1 (https://www.perl.org), and R

Bioconductor packages were employed for the analysis in this study.

All statistical p‐values were two‐sided, with a significance level set

at p < 0.05.

3 | RESULTS

3.1 | Identification of DEGs between MDD and
NSCLC

The MDD datasets obtained from the GSE98793 dataset revealed a

total of 2786 genes that exhibited differential expression in association

with MDD. In comparison to the control group, 1396 genes were found

to be downregulated while 1390 genes were upregulated, as evidenced

by a heatmap and volcano plot (Figure 2A). We identified a total of 2127

DEGs associated with MDD in the GSE33532 dataset. Among these,

1262 genes were found to be downregulated while 865 genes were

upregulated when compared to the healthy control group, as illustrated

in Figure 2B. The Venn diagram shows 136 overlapping genes shared

between MDD and NSCLC‐related DEGs. Through conducting an

overlap analysis between the two datasets, we have identified a total of

84 downregulated and 52 upregulated DEGs (false discovery rate

[FDR] < 0.05) (Figure 2C and Table 1). The findings suggest that these

genes play a pivotal role in the development or progression of either

MDD or NSCLC.

3.2 | GO functional and KEGG pathway
enrichment analysis of DEGs

To gain insight into the commonalities of biological functions and

pathways affected by these DEGs, the enrichment analysis revealed

481 significant GO terms (BP: 403; CC: 25; and MF: 53) and

highlighted a total of 32 KEGG pathways (FDR < 0.05), and the top

five of each item is presented (Figure 3A and Table 2). Representative

BP terms included positive regulation of cellular development,

positive regulation of protein localization to the membrane, and

extracellular matrix (ECM) organization; representative CC terms

included collagen‐containing ECM, basement membrane, and com-

plex of collagen trimers; representative MF terms included cytokine

binding, alpha‐tubulin binding, and ECM structural constituent. The

representative KEGG pathways identified in this study encompassed

axon guidance, focal adhesion, relaxin signaling pathway, comple-

ment and coagulation cascades. Furthermore, the AGE‐RAGE

signaling pathway, which has been implicated in the development

TABLE 2 The top five GO terms in enrichment analyzes of DEGs.

Category term ID Description p‐value Counts

BP GO:0010720 Positive regulation of cell development <0.0001 13

BP GO:1905477 Positive regulation of protein localization to membrane <0.0001 7

BP GO:0030198 Extracellular matrix organization <0.0001 11

BP GO:0043062 Extracellular structure organization <0.0001 11

BP GO:0045229 External encapsulating structure organization <0.0001 11

CC GO:0062023 Collagen‐containing extracellular matrix <0.0001 15

CC GO:0005604 Basement membrane <0.0001 5

CC GO:0098644 Complex of collagen trimers <0.0001 3

CC GO:0009897 External side of plasma membrane <0.0001 10

CC GO:1904724 Tertiary granule lumen <0.0001 4

MF GO:0019955 Cytokine binding <0.0001 7

MF GO:0043014 Alpha‐tubulin binding <0.0001 4

MF GO:0005201 Extracellular matrix structural constituent <0.0001 6

MF GO:0015631 Tubulin binding <0.0001 9

MF GO:0019199 Transmembrane receptor protein kinase activity <0.001 4

Abbreviations: BP, biological process; CC, cellular component; DEG, differential gene expression; GO, Gene Ontology; MF, molecular function.
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of diabetic complications, is also worth investigating (Figure 3B). The

combination of these GO terms and KEGG pathways exhibit a

synergistic impact on the morbidity of both MDD and NSCLC,

providing potential therapeutic strategies for these two diseases.

4 | CORRELATION NETWORK ANALYSIS
OF HUB GENES/PROTEINS

The results of correlation network analysis for genes/proteins are

depicted in Figure 4A,B, visualized using a graphical representation.

The genes were ranked and prioritized based on their score values,

resulting in the identification of the top 20 genes as prime candidates

through meticulous screening. Key genes are COL4A3, SPTBN1,

FCER1A, EPHB2, F12, A2M, S100A9, COL4A4, PLOD2, VCAN,

CD1C, PLAU, PTPN13, COL1A2, CPB2, S1PR1, IL7R, MMP9,

PIK3R1, and FYN (Figure 4C). The analysis of key network modules

using the MCODE plugin reveals that the target gene interaction

network comprises two distinct sub‐networks. Subnetwork 1 consists

of 5 nodes and 9 edges, while subnetwork 2 encompasses 10 nodes

and 16 edges (Figure 4D).

To elucidate the interaction among hub genes, we employed the

“cytoHubba” algorithm to discern the top 20 hub genes. The

comprehensive information of all 20 genes was presented in

Table 3, encompassing complete gene names, RRA method scores,

directionality, and primary functionalities. The regulatory network of

these hub genes was constructed by integrating functionally

similar genes from the GeneMANIA database, thereby elucidating

their potential involvement in diverse biological functions: angiogen-

esis, humoral immune response, regulation of inflammatory response,

ECM organization, regulation of peptidase activity, negative regula-

tion of response to external stimulus and blood coagulation

(Figure 5).

4.1 | GO functional annotation and KEGG pathway
enrichment analysis of target genes

We conduct GO functional annotation and KEGG pathway

enrichment analysis for hub genes, separately. The GO analysis

unveiled that the hub genes were predominantly enriched in four

distinct BPs, namely blood coagulation, regulation of hemostasis,

F IGURE 4 PPIs network and subnetworks of key genes. The relevant differential genes were analyzed, resulting in the extraction of 20 key
genes. Subsequently, two core gene subnetworks were identified. (A) The PPIs network of the targets as studied in the STRING database. (B) All the
circle indicates that the DEGs does belong to the core gene. Red represents upward DEGs, blue represents downward DEGs; Linear representation
these genes have regulatory relationship. (C) PPIs network for modules which are a candidate from the PPIs network using the cytoHubba plugin.
The gradient ranging from dark red to light red signifies the variation in the number of edges, transitioning from a higher count to a lower count.
(D) Subnetwork modules composed of pivotal genes. DEGs, differential gene expression; PPIs, protein–protein interaction network.
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coagulation regulation, and regulation of protein localization to

membrane. The cellular composition primarily consisted of an ECM

rich in collagen, as well as the lumen of the endoplasmic reticulum,

as shown in Figure 6A–C. MF primary focused on ECM structural

constituent. The KEGG enrichment analysis unveiled a remarkable

enrichment of the hub genes in pathways associated with

amoebiasis, relaxin signaling, focal adhesion, and PI3K‐Akt signal-

ing (Figure 6D–F).

4.2 | Prediction of hub gene‐related TFs

We predict that a total of 15 families of TFs interact with hub genes.

Among all the hub genes, matrix metallopeptidase 9 (MMP9) is

predicted to have the highest number of interactions with TFs,

including HDAC1, CIITA, SRF, JUN, FOS, RELA, NFKB1, EP300,

ETS1, SIRT1 and STAT3 (Figure 7). The subsequent gene, COL1A2,

exhibits interactions with RELA, NFKB1, CIITA, SIRT1, EP300,

HDAC1, and YY1. PLAU demonstrates interactions with NFKB1,

RELA, SRF, FOS, ETS1, JUN, and SP1. These findings suggest that

these hub genes may be regulated by these TFs and engage in

biological functions associated with MDD and NSCLC.

4.3 | Validation of hub genes

Other MDD and NSCLC datasets were retrieved from the GEO data

library. Finally, GSE76826 dataset (MDD) was selected to analyze the

differential expression levels of these hub genes between MDD and

healthy controls (Figure 8). Although we did not see evidence of

significant differences in some genes, we identified differences in

COL4A4, F12, FYN, IL7R, MMP9, S1PR1, and S100A9 genes.

Compared with the control group, MDD patients had significantly

increased in F12, MMP9, S100A9 and decreased in COL4A4, FYN,

TABLE 3 MDD/NSCLC interactional hub genes.

Hub gene Description Score Direction Primary function

COL4A3 Collagen type IV alpha 3 chain 0.708 Down Angiogenesis, basement membrane

SPTBN1 Spectrin beta, nonerythrocytic 1 0.685 Down Axonogenesis, neuron projection guidance

FCER1A Fc fragment of IgE receptor Ia 0.663 Down Localization to membrane, regulation of protein
localization to membrane

EPHB2 EPH receptor B2 0.642 Up Axonogenesis, blood coagulation,

F12 Coagulation factor XII 0.625 Up Blood coagulation, fibrin clot formation

A2M Alpha‐2‐macroglobulin 0.624 Down Blood coagulation, fibrin clot formation

S100A9 S100 calcium binding protein A9 0.622 Up Fatty acid binding, humoral immune response

COL4A4 Collagen type IV alpha 4 chain 0.618 Down Basement membrane, collagen trimer

PLOD2 Procollagen‐lysine,2‐oxoglutarate
5‐dioxygenase 2

0.616 Up Intermolecular collagen cross‐links

VCAN Versican 0.600 Up Extracellular matrix structural constituent

CD1C CD1c molecule 0.600 Down Peptide binding

PLAU Plasminogen activator, urokinase 0.588 Up Blood coagulation, cell adhesion mediated by integrin,

PTPN13 Protein tyrosine phosphatase nonreceptor
type 13

0.588 Down Glycerolipid biosynthetic process, glycerophospholipid
biosynthetic process

COL1A2 Collagen type I alpha 2 chain 0.584 Up Blood coagulation, coagulation,

CPB2 Carboxypeptidase B2 0.570 Down Blood coagulation, coagulation,

S1PR1 Sphingosine‐1‐phosphate receptor 1 0.569 Down Lamellipodium organization

IL7R Interleukin 7 receptor 0.570 Down Cellular response to chemical stress, extracellular matrix
organization

MMP9 Matrix metallopeptidase 9 0.540 Up Cellular response to chemical stress, extracellular matrix
organization

PIK3R1 Phosphoinositide‐3‐kinase regulatory subunit 1 0.505 Down Axonogenesis, blood coagulation

FYN FYN proto‐oncogene, Src family tyrosine
kinase

0.504 Down Axonogenesis, blood coagulation

Abbreviations: MDD, major depressive disorder; NSCLC, nonsmall cell lung cancer.
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IL‐7R, S1PR1. In the GSE19804 (lung cancer) dataset, we validated

lung cancer and Control patients. Compared with the control group,

lung cancer patients had significantly decreased in COLA2, EPHB2,

F12, MMP9, PLAU, PLCO2, VCAN and increased in A2M, COL4A3,

CPB2, FCER1A, IL7R, PIK3R1, S1PR1, S100A9, SPTBN1. We were

unable to demonstrate a difference among different genes, the

implication is that certain genes might not be suitable as predictive

target genes.

4.4 | Validation of TFs

Compared with the healthy group, MDD patients had significantly

decreased in HDAC1. Lung cancer patients exhibited significant

downregulation of CEBPB, NFKB1, STAT3, RELA, CIITA, FOS,

CEBPB, ETS1, JUN, and SP1 expression levels compared to the

control group. Conversely, HDAC1 and TP53 were significantly

upregulated. Although we saw some evidence of change in EP300,

SIRT1, SRF, and YY1 genes, differences between groups did not meet

conventional levels of statistical significance (Figure 9).

5 | DISCUSSION

5.1 | The interaction between NSCLC and MDD is
influenced by multiple factors

Presently, depression and lung cancer are significant health concerns

that impact millions of individuals with unpredictable and severe

consequences for their physical and mental well‐being.37 Despite

appearing unrelated, these two topics exhibit intricate interactions

and influences on multiple levels.9,10 Patients with lung cancer often

experience feelings of sadness, despair, helplessness, and immense

stress associated with the illness, which can lead to depression.38

NSCLC tumor indirectly impact the nervous system due to its

proximity to neural structures.39 These resulting depression may

cause patients to neglect or refuse treatment, thereby impacting their

ability to combat the disease.40 Conversely, the World Health

Organization has ranked MDD as the third leading cause of disease

burden, with projections indicating that it will emerge as the foremost

cause by 2030.41 MDD refers to a prevalent and debilitating

condition characterized by profound physiological, biological, and

psychosocial alterations that have detrimental consequences such as

persistent feelings of profound sadness, extreme fatigue, self‐blame

and even suicidal thoughts or attempts that can pose significant

harm.42,43 The prevalence of depression in cancer patients has been

reported to be 3–5 times higher than the rate observed in the general

population, ranging from 15% to 29%. Furthermore, lung cancer

demonstrated a promotive effect of psychological distress on tumor

hallmarks via stress‐related crucial neurotransmitters and hor-

mones.14 The co‐occurrence of MDD and lung cancer in patients

gives rise to a detrimental cycle that adversely affects treatment

adherence and compromises the effectiveness of multiple therapeu-

tic interventions. Thus, identification of key co‐target site and

improves the therapy management of MDD and NSCLC patients

are crucial for the rehabilitation of lung cancer patients. However,

none of these studies have provided insights into the underlying

pathways and key genes linking MDD and lung cancer.

F IGURE 5 PPIs network of the 20 hub‐genes target networks. The networks and their functions are explained, emphasizing their potential
contributions to various biological processes. The PPIs network of the 20 hub‐genes target network was constructed utilizing the GeneMANIA
database, with edges color‐coded to represent a plethora of bioinformatics methods such as co‐expression, website prediction, shared protein
domains and co‐localization. Furthermore, nodes in the network were color‐coded based on functional enrichment analysis of the query gene
list. PPI, protein–protein interaction network.
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5.2 | The shared genes and pathway targets are
present between MDD and NSCLC

In our study, this article aims to investigate the gene correlation

between MDD and NSCLC, while analyzing the related signaling

networks implications for MDD as well as NSCLC. Consequently,

bioinformatic mining was conducted, the GSEs of microarray data

obtained from MDD and NSCLC, which were evaluated using a series

of bioinformatic methods. We found that there have overlapping

DEGs between MDD and NSCLC. The presence of common shared

F IGURE 6 Results of GO term and KEGG pathways enrichment. The GO term revealed a predominant enrichment of hub genes in four
distinct biological processes. The KEGG enrichment analysis demonstrated a remarkable enrichment of the hub genes in four specific pathways.
(A) Bar chart depicting GO enrichment analysis results for hub genes. (B) Bubble plot illustrating GO signaling pathway enrichment analysis
results for hub genes. (C) Circlize diagram displaying GO enrichment analysis results for hub genes. (D) Bar chart and KEGG pathway map
showing KEGG enrichment analysis results for hub genes. (E) Bubble plot presenting KEGG enrichment analysis results for hub genes. (F) Circlize
diagram demonstrating KEGG signaling pathway enrichment analysis results for hub genes. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of
Genes and Genomes.
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DEGs between MDD and NSCLC suggests their potential involve-

ment in both disorders, making them critical targets for developing

effective strategies.

5.3 | The signaling crossed pathways establish a
significant association between MDD and NSCLC

Functional annotation implied that these DEGs were primarily

associated with cell development, collagen‐containing ECM, cytokine

binding and axon guidance. The canonical pathways of MDD patients

usually include ensheathment of neurons, PTEN signaling, and axonal

guidance signaling in brain.44 While a dynamic, bidirectional interac-

tion between the nervous system and cancer can modulated the

neural stem/precursor cell population, cellular membrane potential

and depolarization to impact neurons and axonal, driving the growth

of cancers.45 On the other hand, the involvement of NSCLC related

to ECM organization, CCs containing collagen within the ECM, and

MFs as constituents of ECM structure.46 And matrix metalloprotei-

nase 8 (MMP8) and FRAS1‐related ECM protein 3 are related with

MDD.47 Some cytokines, such as interferon (IFN)‐α, tumor necrosis

factor‐α, and interleukin (IL)‐6 is closely associated with MDD.48,49 It

has been discovered that the synergistic effect of elevated levels of

IL‐1β and IFN‐γ induces maximal PD‐L1 expression in NSCLC

cancer cells. The IL‐1β‐MAPK axis presents a promising therapeutic

target for attenuating PD‐L1‐mediated suppression of antitumor

immunity.50 Besides, the axon guidance signaling pathway displayed

the most prominent level of enrichment, consistently observed across

all stress models and individuals diagnosed with MDD,44 linked to

changes in axon guidance molecules and their receptors, which

could contribute to abnormalities in neural connectivity and

communication.51 Whereas, the interaction of the axon guidance

factor Sema4D assumes a pivotal role in the formation of

vasculogenic mimicry in NSCLC by activating the RhoA/ROCK

pathway and regulating tumor cell plasticity and migration.52 The

collective findings indicate that both MDD and NSCLC contribute to

disease progression and development via shared pathways.

5.4 | Hub genes related function in both NSCLC
and MDD

Subsequently, we identified 20 core genes from the pool of DEGs,

namely PIK3R1, FYN, MMP9, COL1A2, EPHB2, IL7R, VCAN, A2M,

F12, COL4A3, CPB2, FCER1A, COL4A4, PLOD2, SPTBN1, CD1C,

PLAU, COMP, and S1PR1. Notably, they are primarily involved in

ECM signaling pathway, immune response as well as regulation of

inflammation and vascular system integrity and functionality. For

example, the modulation of MMP9 expression was predominantly

achieved through the inhibition of signaling pathways involving

transforming growth factor‐β and SMAD family members 2/3

(Smad2/3).53 The PLOD2 enzymes play a pivotal role in the

posttranslational modification and folding of collagen, culminating

in the formation of an inflexible ECM that triggers the expression of

genes associated with EMT and cancer stem cells, leading to

metastatic dissemination of cancer.54 The IL‐7R receptor licenses a

population of memory CD8+ T cells that exhibit superior efficacy

in antitumor responses.55 FCEIRIA involved in allergic airway

inflammation.56 The levels of B‐lymphocyte subsets and the IgG1‐

to‐IgG2a ratio exhibited a significant increase in PLAU negative mice

subsequent to membranous nephropathy induction.57 COLA3 dis-

played distinct characteristics in terms of the infiltration of immune

cells and polarization of tumor‐associated macrophages.58 Addition-

ally, COL4A3 as a specific susceptibility gene for the development of

polypoidal choroidal vasculopathy.58 Among these genes, PIK3R1

was foremost expressed between MDD and NSCLC, followed by

FYN, MMP9 and COL1A2. Hub genes PIK3R1 in the ACC were

identified in MDD of mice.59 Similar study demonstrated that miR‐

486‐5p directly targets the PIK3R1 gene, and a negative correlation

exists between the expression levels of miR‐486‐5p and PIK3R1 in

tumor tissues.60 The interaction between Fyn and Src with a Gαq‐

coupled mGlu5 receptor was observed in striatal neurons of mice

with depression.61 The upregulation of FYN impedes the EMT

process in lung cancer cells by suppressing the PI3K/AKT signaling

pathway.62 Furthermore, the diagnostic accuracy for bipolar disorder

was significantly enhanced by incorporating PIK3R1 and FYN into the

Support Vector Machine model.63 Emerging evidence suggests that

there is a decrease in the overall balance between excitatory and

inhibitory activity in the cortex of individuals with MDD. The

presence of MMP9 in plasma, lung tissue, and tumor extracts can

F IGURE 7 Network of hub genes and transcription factors (TFs).
The 9 core genes were associated with a total of 15 TFs, with MMP9
exhibiting the highest number of associations. In the network analysis
diagram of hub genes and TFs, and orange color represents gene and
green color represents transcription factor. MMP9, matrix
metallopeptidase 9.
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F IGURE 8 Verified of hub genes from differential analysis. The expression of A2M, COLA2, COL4A3, CPB2, EPHB2, F12, FCER1A, IL7R,
MMP9, PIK3R1, PLAU, PLCO2, S1PR1, S100A9, SPTBN1, and VCAN in GSE19804 dataset of NSCLC (A) and in GSE76826 dataset of MDD (B),
p < .001 was denoted as “***”, p < 0.01 as “**”, p < 0.05 as “*”, and p > 0.05 as “ns.”
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facilitate the early detection and diagnosis of lung cancer64 and it has

been shown to augment the migratory, invasive, and EMT properties

of NSCLC cells.65 As a result of neuronal activity, MMP9 has been

found to contribute to the antidepressant effectiveness of venlafax-

ine, a serotonin/norepinephrine reuptake inhibitor, in male mice.66

COL1A2 plays a significant role in the underlying mechanisms of

comorbidity between heart failure and depression.67 The overall

survival times of lung cancer patients with high expression of

COL1A2 were found to be significantly inferior compared to those

with low expression.68 These shared genes provide novel targets for

further mechanistic investigations into the pathogenesis and treat-

ment of both MDD and NSCLC.

F IGURE 9 The violin map of TFs of severe specific genes. The validation of alterations in MDD (A) and NSCLC (B) across the following TFs:
CEBPB, NFKB1, STAT3, RELA, CIITA, FOS, HDAC1, CEBPB, EP300, ETS1, JUN, SIRT1, SP1, SRF, TP53, and YY1 in GSE19804 dataset of NSCLC
(A) and in GSE76826 dataset of MDD (B), p < 0.001 was denoted as “***”, p < 0.01 as “**”, p < 0.05 as “*”, and p > 0.05 as “ns.” MDD, major
depressive disorder; NSCLC, nonsmall cell lung cancer; TF, transcription factor.
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5.5 | The identification and comprehension of
crossed biological process in proteins

Further PPIs network results showed that these 20 genes could

enriched in pathways targeted to tumor and depression, such as

inflammatory and immune response pathways, angiogenesis and

ECM. The MDD‐trait was also found to be associated with genes

implicated in inflammatory processes, immune system activation, and

impaired bioenergetics.69 Therapeutic strategies harnessing the

immune system and inflammatory burden index70 to eliminate tumor

cells have been successfully used for lung cancer.71 Besides,

angiogenesis is a fundamental biological process that involves the

sprouting and growth of new blood vessels from pre‐existing ones,

playing a pivotal role in both the development and progression of

lung cancer. Significantly, the levels of Angiopoietin‐1, Angiopoietin‐

2, and Angiopoietin‐4 underscore their profound impact on the

intricate processes involved in the development, progression, and

metastasis of lung cancer.72 Whereas, there have increased

angiotensinogen levels in MDD patients.73 Moreover, subtype‐

specific ECM signatures linked to tumor initiation and predictive of

premalignant progression activate distinct matrix remodeling pro-

grams in both tumor and stromal cells, thereby reinforcing resistance

and promoting progression through intracellular signaling path-

ways.74 ECM regulates cell communication, modulates neuronal

function, and plays a role in stress‐induced changes.75 Therefore,

comprehending these pathways is imperative for comprehending the

functionality in both NSCLC and MDD.

5.6 | The vital function of MMP9 in NSCLC
and MDD

MMP9 is an enzyme protein belonging to the MMP family that plays

a crucial role in collagen degradation, basement membrane degrada-

tion, inflammation regulation, cell migration and invasion. Despite

limited research on hub gene‐related pathways such as regulation of

coagulation and the relaxin signaling pathway in NSCLC and MDD,

there is a wealth of studies on interacting TFs. MMP9 serves as the

site of action for multiple TFs in our study, plays a pivotal role in

collagen degradation,76 basement membrane degradation, inflamma-

tion regulation. The MMP9 has been extensively studied and its close

association with proliferation, migration, and invasion has been well‐

documented, primarily implicated in the metastasis of NSCLC.77–79 In

microvasculitis, the entry of monocytes and T cells into the blood

vessel wall is elegantly regulated by MMP9. T cells rely on MMP9‐

producing monocytes to gracefully traverse the basement membrane

containing collagen‐IV.80 The activation of the fibrinolytic system

contributes to the development of colitis by inducing the activation

of MMP9 or other proteolytic enzymes, thereby promoting tissue

degradation and inflammation.81 The collective findings indicate that

MMP9 exhibits diverse functional roles in both MDD and NSCLC.

In conclusion, bioinformatics analysis has identified key genes

and networks associated with MDD and NSCLC, providing valuable

insights into the biology of these diseases and their connections to

inflammation and the immune system. These findings offer essential

clues for identifying novel therapeutic targets and personalized

treatment strategies for patients with MDD or NSCLC. Additionally,

comprehensive support and treatment are crucial in managing these

patients. By combining specialized targeted therapy with strength-

ened mental health services, we can effectively assist them in

overcoming lung cancer and depression, improving their quality of

life, and enhancing rehabilitation success rates.
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