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Ezrin, as encoded by the EZR gene, is a member of the Ezrin/Radixin/Moesin (ERM)
family. The ERM family includes three highly related actin filament binding proteins,
Ezrin, Radixin, and Moesin. These three members share similar structural properties
containing an N-terminal domain named FERM, a central helical linker region, and a
C-terminal domain that mediates the interaction with F-actin. Ezrin protein is highly
regulated through the conformational change between a closed, inactivate form and an
open, active form. As a membrane-cytoskeleton linker protein, Ezrin facilitates numerous
signal transductions in tumorigenesis and mediates diverse essential functions through
interactions with a variety of growth factor receptors and adhesion molecules. Emerging
evidence has demonstrated that Ezrin is an oncogene protein, as high levels of Ezrin are
associated with metastatic behavior in various types of cancer. The diverse functions
attributed to Ezrin and the understanding of how Ezrin drives the deadly process of
metastasis are complex and often controversial. Here by reviewing recent findings
across a wide spectrum of cancer types we will highlight the structures, protein
interactions and oncogenic roles of Ezrin as well as the emerging therapeutic agents
targeting Ezrin. This review provides a comprehensive framework to guide future studies
of Ezrin and other ERM proteins in basic and clinical studies.

Keywords: Ezrin, cancer, migration, invasion, metastasis

INTRODUCTION

Cancer is one of the most debilitating diseases worldwide. The molecular mechanisms of
carcinogenesis provide essential implications for potential prevention and treatment of cancers.
Extensive studies have been conducted on tumor invasion and metastasis, and multi-step
processes have been described. Previous research has shown that cell adhesion, migration, and
morphogenesis regulate tumor invasion and metastasis (Janiszewska et al., 2020). However,
adhesion complexes, reorganization of the cytoskeleton, and their underlying molecular
mechanisms are still poorly defined.

The Ezrin/Radixin/Moesin (ERM) family proteins regulate cell networks through linking actin
cytoskeleton to the cell membranes (Kong et al., 2013). ERM family members, actin cytoskeleton
and the cell membranes form highly dynamic domains including lamellipodia and filopodia
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(Baumgartner et al., 2006). ERM family proteins switch between
a closed (inactive) and an open (active) conformation to work
with their interacting partners, which is tightly regulated by
phosphorylation through different kinases (Matsui et al., 1998).

Ezrin, a member of ERM family, is phosphorylated by
threonine and tyrosine kinases (Srivastava et al., 2005). Ezrin
is a highly conserved protein through evolution, suggesting the
same regulatory mechanisms between organisms (Fouassier et al.,
2000). Ezrin mediates signal transduction, coordinates dynamic
cellular processes, and acts through cytoskeletal reorganization
(Bretscher et al., 2002). Genetic ablation experiments have
confirmed the pleiotropic effects of Ezrin including cell polarity,
adhesion, and invasion (Clucas and Valderrama, 2014). Ezrin
controls signaling transduction by interacting with adhesion
molecules and various growth factor receptors (Khanna et al.,
2004; Auvinen et al., 2013). In this review, we focus on Ezrin’s
distinct roles in tumor growth, metastasis, and morphogenesis in
cancer biology, because increased Ezrin expression is correlated
with poor prognoses in various cancers. In addition, we address
Ezrin’s signaling pathways in cancer development and prognosis.

STRUCTURE, FUNCTION, AND
SIGNALING PATHWAYS

Structure and Activation
Encoded by the EZR gene that locates at chromosome 6q25.2-
q26, the Ezrin protein is the most studied member of the
Ezrin/Radixin/Moesin (ERM) family, containing an FERM
domain (band 4.1 protein, Ezrin, Radixin, Moesin), a central
helical linker region and an ERM-associated domain (Figure 1A;
Yin et al., 2018).

The conformational change in Ezrin determines its activity.
When the NH2- and COOH-terminal bind to each other, full
length Ezrin is in a closed inactive form. The abolition of the
intramolecular head-to-tail interaction is required to expose the
actin binding sites, since the F-actin binding site at the C-terminal
domain is normally masked in the full length Ezrin (Gary and
Bretscher, 1995; Roy et al., 1997). Therefore, full length Ezrin
is inactive and cannot interact with actin (Fehon et al., 2010).
Activated Ezrin directly binds F-actin through a C-terminal
domain (Bretscher et al., 1997). Direct binding of F- and G-actin
occurs at the Ezrin N-terminal domain between residues 281 and
333 (Roy et al., 1997).

Ezrin dimers and higher oligomers present as inactive,
and monomers are considered active (Gautreau et al., 2000).
Multiple sites in ERM family proteins can be phosphorylated
by several kinases and exhibit various biological functions
(Table 1). Specifically, phosphorylation of the C-terminal
threonine residue (Thr567) is the key step to activate Ezrin,
which allows the actin filament binding domains to interact with
other proteins and break head-to-tail associations (Figure 1B;
Matsui et al., 1998). The threonine phosphorylation is a Rho-
dependent activation of Ezrin (Chen et al., 2011). Besides
threonine phosphorylation, tyrosine phosphorylation in Ezrin
(Tyr353) is linked to p85 interaction and Akt overexpression
(Cui et al., 2010). Together with Thr567, Tyr353 regulates Ezrin’s

transition to its active form (Jin et al., 2014). Phosphorylation
contributes to a plasma membrane mediated transition from
Ezrin oligomers and monomers in vivo (Gautreau et al., 2000).
The regulation of Ezrin phosphorylation is complex (McClatchey,
2003). It is also reported that in vivo phosphorylation of
Ezrin is required in its binding and recruiting to the plasma
membrane phospholipid phosphatidylinositol 4,5-bisphosphate
(PIP2) (Fievet et al., 2004; Hao et al., 2009). Ezrin interacts
with other kinases, including myotonic dystrophy kinase-related
Cdc42-binding kinase (Nakamura et al., 2000). Additionally, Src
kinases and RhoA/Rho kinase activities are required for ERM
activation, a key step in the growth of cone filopodia for axon
outgrowth (Antoine-Bertrand et al., 2011). Interestingly, Ezrin
mediates focal adhesion kinase activation independently from
external stimuli (Poullet et al., 2001). Although phosphorylation
of Ezrin is the most studied post-translational regulation,
the biological effects of the phosphorylation sites are largely
unexplored (Michie et al., 2019).

As discussed earlier, unphosphorylated/inactive Ezrin remains
in a folded conformation through head-to-tail interaction,
masking binding sites for other molecules. Phosphorylation on
the conserved threonine residue T567 causes conformational
changes, unmasking binding sites (Matsui et al., 1998; Figure 1B).
T567 keeps Ezrin open and active, and prolongs its lifetime
(Prag et al., 2007). Phosphorylated Ezrin is involved in
fiber formation, adhesion, and migration (Shiue et al., 2005;
Viswanatha et al., 2012; Antelmi et al., 2013). To regulate
cytoskeleton dynamics, the EMR family proteins directly
interact with actin filaments to link the cytoskeleton to the
plasma membrane (Figure 1C). The FERM domain is essential
for Ezrin’s binding partners including intercellular adhesion
molecules (ICAMs) 1–3, CD43/44, and NHE-1 (Denker et al.,
2000; Ivetic and Ridley, 2004). Importantly, anti-metastatic small
molecules NSC30587 and NSC668394 were identified that
directly target Ezrin T567 phosphorylation and inhibit Ezrin’s
actin binding (Bulut et al., 2012). Therefore, targeting Ezrin
phosphorylation and actin binding activity provides a new
therapeutic direction for clinical cancer interventions.

Ezrin’s Function
Physiological Roles
In normal cells, Ezrin protein is known to contribute to epithelial
morphogenesis, adhesion, and migration (Figure 2). Under
physiological conditions, Ezrin maintains the cytoskeleton and
normal shapes of epithelial cells. It mediates signaling pathways
to maintain an apical–basal cellular polarity, as well as normal
cell morphology, and binds to actin filaments to keep consistent
cell–cell contact. In cancer cells, Ezrin is significantly activated,
phosphorylated, and elevated, enhancing cancer cells’ invasive
abilities (Figure 2).

Cancer-Promoting Roles
During cancer development, the relative membrane localization
of Ezrin proteins is increased and cell–cell contact is disrupted.
Therefore, the activation of Ezrin proteins facilitates the process
of tumor progression and invasion. The effect of enhanced
Ezrin proteins in cancer metastasis takes different forms in
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FIGURE 1 | Structure and activation process of Ezrin. Schematic representation of domain structure, activation states and binding partners of Ezrin protein.
(A) Domain structure of Ezrin includes the N-terminal FERM domain (band 4.1 protein, Ezrin, Radixin, Moesin), the central α-helical linker region and the C-terminal
ERM-associated domain (C-ERMAD, green). The FERM domain comprises three subdomains, F1, F2, and F3 (blue, red, and yellow) and C-ERMAD contains the
F-actin-binding site. (B) The putative open state of Ezrin protein and its phosphorylation sites. (C) Various states and binding partners of Ezrin protein. (1) Ezrin is
phosphorylated at several sites (e.g., T567 in Ezrin, T564 in Radixin and T558 in Moesin); (2) Ezrin is recruited to PIP2; (3) Activated Ezrin monomer (or head-to-tail
dimer) binds with F-actin; (4) Ezrin binds with transmembrane receptors such as CD43/44, ICAM1/2 and NHE-1.

TABLE 1 | Ezrin phosphorylation sites and kinases.

Phosphorylation
sites

Kinases Functions References

Y145 Hepatocyte growth factor (HGF) receptor, Lck Activate Ezrin, enhances migration and
tubulogenesis; T cell activation

Crepaldi et al., 1997;
Autero et al., 2003

T235 Cyclin-dependent kinase 5 Induce the release of Rho GDP dissociation
inhibitor, increase interaction with Rac1

Yang and Hinds, 2006

Y353/354 Hepatocyte growth factor receptor Activate Ezrin, enhances migration and
tubulogenesis; Responsible for the interaction with
p85, required for PI3-kinase and Akt activation
mediated cell survival; Nuclear localization

Crepaldi et al., 1997;
Gautreau et al., 1999; Di
Cristofano et al., 2010

Y477 Src Not related to head-to-tail conformational opening,
is associated with kelch-repeat superfamily
protein; Regulates invasion and metastasis

Heiska and Carpen, 2005;
Mak et al., 2012

T567 in Ezrin (T564 in
Radixin and T558 in
Moesin)

Rho-associated kinase, protein kinase B2/Akt2, atypical
protein kinase C-iota (aPKCι), mammalian Sterile 20
(Ste20)-like kinase-4 (Mst4), lymphocyte-oriented
kinase (LOK) and Ste20-like kinase (SLK)

Interferes with the intermolecular head-to-tail
association, activates Ezrin and is positively
associated with invasive growth

Matsui et al., 1998; Shiue
et al., 2005; Wald et al.,
2008; Gloerich et al., 2012;
Viswanatha et al., 2012;
Antelmi et al., 2013

various cancers. For example, in osteosarcoma, Ezrin allows
metastatic tumor cells to overcome a number of stresses as cells
from the primary lesion are able to break loose and effectively
initiate the growth of secondary lesions by generating additional

ATP from a variety of sources (Ren and Khanna, 2014; Zhang
et al., 2014). In pancreatic cancer cells, Ezrin translocates into
plasma membranes, binds to increasing amounts of cortactin,
and formes a highly ordered structure called a podosomal rosette,
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FIGURE 2 | Ezrin change between normal cells and cancer cells. Physiological function and pathological effect of Ezrin protein in normal cells versus cancerous
cells. Under physiological conditions, Ezrin proteins arrange the cytoskeleton of epithelial cells, mediate signaling pathways to generate an apical–basal polarity,
normal cell morphology and consistent cell–cell contacts. Under pathological conditions, Ezrin proteins are upregulated and activated to promote cancer progression
and metastasis in various types of epithelial cancers (breast, lung, and prostate). The relative membrane localization of Ezrin protein is increased, cell–cell contacts
disrupted and therefore facilitates the process of cancer invasion.

which enables epithelial cancer cells to adhere to the underlying
substrate and modify their cytoskeletal behaviors (Kocher et al.,
2009). Moreover, Ezrin is responsible for cellular polarization in
pancreatic cancer associated macrophages (Chang et al., 2020).
Enriched Ezrin expression has been detected in salivary gland
carcinomas, which was significantly correlated with the levels
of other cancerous molecular markers such as Ki67, HER2,
p53, male sex, high-grade histopathology, and distant tumor
metastasis (Hashimoto et al., 2017). Additionally, in lung cancer
cells, activated Ezrin facilitates mechanical transduction from
the cytoskeleton to the membrane and regulates the malignant
process in a tension-dependent manner (Zhang et al., 2019).

Ezrin’s Signaling Pathways
Ezrin Interacts With Multiple Signals Through Spatial
and Temporal Regulation
Activated Ezrin regulates key events and interacts with different
proteins in a variety of cancer types. The precise spatial and
temporal activation of Rho GTPases establishes cell polarity
and morphology (Haga and Ridley, 2016). The antagonistic
relationships between different Rho GTPases regulate migration
and adhesion, consistent with their opposing effects on ERM
family proteins (Ivetic and Ridley, 2004). Ezrin recruits Cdc42,
and the conformational active (phosphorylated) Ezrin brings
Rho/Cdc42 specific guanine nucleotide exchange factor Dbl to
the membrane. A precise spatial Dbl activated Cdc42 is crucial for
directional cell migration in breast cancer cells (Prag et al., 2007).
Dysfunction and loss of cell adhesion has been recognized as a
pro-tumorigenic step, which enables the cancer cell to migrate
and metastasize.

Ezrin Mediates E-Cadherin-Catenin Complex
Maintenance
The E-cadherin-catenin adhesion complex maintains tissue
architecture and is critical for intercellular adhesiveness.
Ezrin suppression promotes the expression of E-cadherin and
β-catenin. Both E-cadherin and β-catenin play a key role in
epithelial cell adhesion. Co-precipitation experiments suggests

Ezrin associates with E-cadherin and β-catenin (Hiscox and
Jiang, 1999). The modulation between Ezrin and E-cadherin
is mediated by IL-1β and TGF-β1, suggesting that cytokine
regulation in tumor invasion is governed by alteration in cell-cell
interactions (Karmakar and Das, 2004).

Other Signaling Molecules
Ezrin mediates cell growth and survival through Akt signaling,
but not the mitogen-activated protein kinase (MAPK) pathway
in certain cancers, which is essential for cancer proliferation,
invasion, migration and survival (Krishnan et al., 2006; Hu et al.,
2016; Quan et al., 2019). Ezrin is correlated with poor prognoses
in these cancer patients (Quan et al., 2019). In addition, Ezrin is
associated with the p85 subunit, activating phosphatidylinositol
3-kinase (PI3K)/Akt in regulating tumorigenesis, metastasis,
cell survival, and invasion in epithelial cells (Gautreau et al.,
1999; Cui et al., 2010).

EZRIN’S ROLES IN CANCERS

As an important member of the ERM family of proteins, Ezrin
has been well studied in many cellular events. As summarized
earlier, Ezrin plays a vital role in molecular signaling, including
cell proliferation, cell polarity establishment, cell motility, and
cell adhesion (Ren and Khanna, 2014; Kawaguchi et al., 2017).
Since these processes are crucial in invasion, and metastasis
in a variety of solid tumors, the pathophysiological roles of
Ezrin protein were extensively studied and discussed (Kawaguchi
et al., 2017). Although Ezrin is known associated with poor
prognosis in several cancers, the predictive value of Ezrin and
its relationships with clinicopathological features or prognostic
parameters remain controversial (Cihan, 2018). It is interesting to
note that the Ezrin expression was associated with bad prognosis
in a cancer type-specific manner (Li et al., 2015). In few cases
such as bladder cancer, higher Ezrin expression indicates better
prognosis rather than worse. In order to draw a most recent
conclusion from the up-to-date work, below we summarized
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the specific roles of Ezrin in various cancers, highlighting
the special signaling cascades and pathophysiological roles
(Figure 3 and Table 2).

Ezrin in Lung Cancer
Highly expressed Ezrin has been detected in lung cancer
cell lines and primary lung cancer tissues. Ezrin has been
found to be primarily distributed in the cytoplasm of lung
cancerous tissue and metastatic foci (Wang et al., 2008;

Lee et al., 2012; Zhang et al., 2012; Jin et al., 2014; Kolegova
et al., 2020). Ezrin expression correlates to the degree of
lymphatic metastasis, malignant phenotype, and advanced
TNM staging of lung cancer patients significantly (Lee et al.,
2012; Li et al., 2012). Not surprisingly, downregulation of
Ezrin was observed to reverse these aggressive biological
behaviors (Chen et al., 2012; Lee et al., 2012). The underling
molecular mechanism of Ezrin activation in lung cancer
involves Ezrin modifications (such as phosphorylation and

FIGURE 3 | Ezrin mediated signaling pathways and its pharmacological inhibitors.

TABLE 2 | Selective Ezrin interacting proteins in various cancers.

Cancers Interacting proteins Roles References

Lung cancer EGFR, ROCK1/2, RhoA, Akt
signaling

Promotes cell migration and invasion Lee et al., 2012; Li et al., 2012; Chen et al., 2013;
Hata et al., 2016; Saygideger-Kont et al., 2016;
Moodley et al., 2020

Breast cancer and
ovarian cancer

miR-183, Akt signaling Promotes cancer progression and enhances metastasis Lowery et al., 2010; Horwitz et al., 2016; Ghaffari
et al., 2019; Li et al., 2019

Cervical cancer LGALS1, Galectin-3,
E-cadherin, MAPK JNK/p38
and Akt/ERK1/2 signaling

Controls cell adhesion and enhances invasion. Serves
as the cervical cancer marker for non-invasive detection

Elliott et al., 2005; Saito et al., 2013; Kong et al.,
2016; Fadiel et al., 2017; Li et al., 2017;
Zacapala-Gomez et al., 2018; Chetry et al., 2020

Gastric cancer miR-183 Antagonizes mi-183 actions, and is correlated with
tumor size, invasion lymph node and metastasis

Li et al., 2011; Cao et al., 2014

Osteosarcoma miR-183, Akt and MAPK,
Akt/mTOR

Promotes tumor metastasis. High expression is
correlated with poor prognosis

Khanna et al., 2004; Krishnan et al., 2006

Hepatocellular
cancer

Rho kinase, cytokeratin 19 Positive expression is correlated with a smaller tumor
size and higher frequency of tumor dedifferentiation

Okamura et al., 2008; Yeh et al., 2009
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S-nitrosylation), epidermal growth factor receptor (EGFR), and
EGFR-mediated signaling pathways in non-small cell lung cancer
(NSCLC) cells (Saygideger-Kont et al., 2016; Zhang et al., 2019).
Downregulation of Ezrin in lung cancer cells has resulted in
actin cytoskeleton rearrangements, reduced EGFR activity and
phosphorylation levels of downstream signaling pathways, as well
as a substantial reduction in cell migration and invasion (Chen
et al., 2013; Saygideger-Kont et al., 2016). Ezrin also mediates
downstream signaling pathways, including the activation of
RhoA-GTPase and the signaling of ROCK1/2 and Akt in lung
adenocarcinoma (Hata et al., 2016; Moodley et al., 2020).
Interestingly, Ezrin serum levels were negatively correlated with
serum IL-13 levels (which are believed to play an important role
in lung function) (Jia et al., 2019).

Ezrin, Breast Carcinoma, and Ovarian
Carcinoma
Similar to observations in other carcinomas, Ezrin is elevated in
breast carcinoma and ovarian carcinoma. Ezrin plays a critical
role in extracellular matrix remodeling and tumor dissemination
in a 3-dimensional model (Horwitz et al., 2016). Since both breast
and ovarian carcinomas exhibit a similar ability to disseminate
due to malignant effusion formation, the significant increase of
Ezrin serves as a future therapeutic intervention target. Ezrin
mediates cell migration and invasion in lung and breast cancers
that can be inhibited by the overexpression of miR-183 (Lowery
et al., 2010). Ezrin promotes breast cancer progression and
enhances metastasis through Akt signaling (Li et al., 2019).
Elevated Ezrin expression increases the risk of relapse in
node-positive and high-risk node-negative breast cancer patients.
Pharmacological inhibition of Ezrin has significantly reduced
cancer cell migration and invasion into the lymph nodes and
lungs in vivo in real time (Ghaffari et al., 2019).

Ezrin in Cervical Cancer
Cervical cancer is the fourth most common cause of cancer-
causing death in women. Cervical cancer originates from
an epithelial neoplastic transformation in the uterine cervix.
Cervical cancer is generally caused by an infection of the
human papillomavirus (HPV) (Saavedra et al., 2012). As a
migration-related protein, Ezrin is upregulated in cervical cancer
(Zacapala-Gomez et al., 2018; Chetry et al., 2020) and its
expression level is associated with advanced metastasis and poor
prognosis. Specifically, Ezrin is increased in cervical cancer cells
(SiHa and C33A) when Galectin-1 (LGALS1) is overexpressed.
Ezrin expression is significantly suppressed when LGALS1 is
downregulated. LGALS1 belongs to the carbohydrate-binding
protein family and exhibits a high affinity for β-galactoside-
containing glycol-conjugates (Chetry et al., 2020). Although
multiple signaling pathways linked to LGALS1 have been
reported, the underlying mechanisms of how LGALS1 affects
Ezrin levels have not been fully elucidated. LGALS1 may interact
with Ezrin through the MAPK, JNK/p38, and Akt/ERK1/2
pathways in the regulation of invasion and migration (Elliott
et al., 2005; Chetry et al., 2020). Another lectin family member,
Galectin-3, is also overexpressed along with Ezrin in cervical

cancer and both are predictors of poor prognosis in cervical
cancer patients (Li et al., 2017). Ezrin down-regulation induces
Akt phosphorylation, and Ezrin regulates both epithelial-
mesenchymal transitions and metastasis in cervical cancer
(Kong et al., 2016). Ezrin promotes cell proliferation through
phosphorylation on residue Y145 (Gautreau et al., 1999; Saito
et al., 2013), cell mobility, and migration in cervical cancer cells
(Kong et al., 2016).

Ezrin plays a key role in cervical cancer invasion and
is a potential prognostic immunomarker. Interestingly, Ezrin
expression is correlated with HPV associated lesions (Auvinen
et al., 2013; Zacapala-Gomez et al., 2018), suggesting that Ezrin
can be used to distinguish between transient and persistent
HPV integration. More than 80% of cervical cancer samples
exhibit high Ezrin expression and a decrease in E-cadherin levels,
which can be detected using immunohistochemistry and cervical
smears (Zacapala-Gomez et al., 2018). Consistent with this
study, the overlapping of Ezrin and estrogen receptor expression
during cervical carcinogenesis raises the possibility that Ezrin
is associated with the penetration of the basement membrane
(Fadiel et al., 2017). Therefore, Ezrin controls adhesion and the
invasiveness of cancer cells through the interactions between
cell adhesion molecules, suggesting a role in developing cervical
neoplasia and cancer. Due to the high expression of Ezrin, a
non-invasive testing method can serve as a milestone for cervical
cancer detection, which is crucial for early treatment and a
better prognosis in patients with squamous intraepithelial lesions.
In addition to cervical cancer, enhanced Ezrin expression is a
new, independent prognostic marker in endometrioid carcinoma
and is correlated with endometrioid carcinoma stages (FIGO)
(Kobel et al., 2006).

Ezrin and Gastric Cancer
Gastric cancer is the second most prevalent cause of cancer death.
The Ezrin protein is up-regulated in gastric cancer lesions. Ezrin
expression is correlated with tumor size, tumor location, lymph
node invasion and metastasis, and shortened survival in stages
I, II, and III (Li et al., 2011). Specifically, Ezrin can be used
as an early diagnostic marker and to predict later metastasis in
gastric cancer using meta-analysis (Jin et al., 2012; Liang et al.,
2017). Decreased miR-183 and elevated Ezrin have been reported
in gastric cancer cells and tissues. The 3′UTR region of Ezrin’s
mRNA is a direct target of miR-183. miR-183 antagonizes Ezrin
and acts as a tumor suppressor in gastric cancer (Cao et al., 2014).

Ezrin and Osteosarcoma
Dysregulation of miR-183 through Ezrin targeting promotes
osteosarcoma tumor metastasis. Ezrin is required for metastasis
in osteosarcoma and its high expression is associated with poor
outcomes in pediatric osteosarcoma patients. Khanna et al.
(2004) has reported that suppression of Ezrin deceases Akt and
MAPK phosphorylation, but Ezrin induced metastatic survival
is mediated partially by MAPK instead of Akt. Interestingly,
Khanna et al. (2004) have reported that Ezrin-mediated growth
and survival in Ewing sarcoma is dependent on Akt/mTOR,
but not MAPK (Krishnan et al., 2006), suggesting that Ezrin
acts through different signaling pathways in different cancers.
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Ezrin’s roles in Ewing sarcoma are distinct from its roles in
other sarcomas. A majority of Ewing sarcoma samples express
Ezrin, but the intensity and expression pattern of Ezrin is not
correlated with clinical characteristics. In contrast to Ezrin’s
roles in promoting carcinogenesis, Ewing sarcoma patients with
high Ezrin intensity had a superior 5-year event-free survival
compared to patients with low or no Ezrin expression (Cash et al.,
2017). However, other factors, including diagnosis time, tumor
size, therapeutic treatment, and larger sample size should be
considered to validate the correlation between Ezrin and Ewing
sarcoma clinical outcomes.

Ezrin and Hepatocellular Cancer
As discussed earlier, Ezrin phosphorylation
regulation contributes to Ezrin’s molecular plasticity.
Hyperphosphorylation at the C-terminal threonine residue
(T567) is significantly correlated with an invasive clinical
hepatocellular carcinoma (HCC) (Chen et al., 2011). Therefore,
blocking Rho kinase-mediated Ezrin phosphorylation can inhibit
liver tumor metastasis. Ezrin staining in HCC is dramatically
associated with cytokeratin 19 expression. Ezrin-positive patients
had increased serum α-fetoprotein, shortened recurrence-
free periods, and shortened overall survival (Okamura et al.,
2008). Ezrin is expressed in hepatic progenitor cells, and some
cases of HCC are derived from hepatic progenitor cells. Ezrin
overexpression is involved in the dedifferentiation and invasion
of hepatitis B virus-associated HCC (HBV-HCC). Surprisingly,
patients with positive Ezrin expression had smaller tumor
sizes and a higher frequency of tumor dedifferentiation and
vascular invasion. Ezrin expression is independently associated
with tumor size, poor differentiation, and vascular invasion in
HBV-HCC (Yeh et al., 2009).

Ezrin and Bladder Cancers
Inconsistent with most of cancers mentioned above,
membranous expression of Ezrin is significantly lower in
high grade bladder cancer and significantly associated disease-
specific overall survival (Palou et al., 2009; Athanasopoulou
et al., 2013). Ezrin is an independent predictor of muscularis
propria invasion and increased progression. Unlike its role
in other cancers, reduced membranous Ezrin expression is
related with unfavorable clinicopathological characteristics and
an impaired survival (Andersson et al., 2014). Although these
reports collectively suggested the prognostic value of Ezrin in
bladder cancer, its immunohistochemical expression level failed
to predict therapy effect (Malmstrom et al., 2017).

Ezrin and Other Cancers
Ezrin expression negatively correlated with renal cell carcinoma
(RCC) metastasis, and the inhibition of Ezrin expression
suppressed the invasive abilities of RCC cells (Yu et al., 2015).
Using immunohistochemical approaches, Ezrin reactivity was
observed mainly in conventional, papillary, and mucinous
tubular spindle cell carcinoma subtypes of RCC, suggesting
that the Ezrin protein might be beneficial as an additional
diagnostic marker in the differential diagnosis of RCC subtypes
(Tuna et al., 2009).

In colorectal cancer (CRC), Ezrin binds with a cell-neural
adhesion molecule (L1CAM) and mediates the phosphorylation
of NF-κB as well as the activation of NF-κB signaling (Gavert
et al., 2010). It has also been reported that increased expression
of Ezrin (phosphorylated on T567) was seen in liver metastasis in
an insulin-like growth factor type 1 receptor (IGF1R)-dependent
CRC xenograft model as compared to primary CRC. The Ezrin
protein induces CRC cell survival through the modulation of
apoptosis protein inhibitor XIAP, which was dependent on T567
(Leiphrakpam et al., 2014). Several studies have confirmed that
Ezrin may serve as a promising biomarker in estimating the
prognosis, outcome, and differential status of CRC patients
(Patara et al., 2011; Lin and Chen, 2013; Fathi et al., 2017; Slik
et al., 2017; Aikawa et al., 2019).

In glioblastoma, Ezrin interacts with and delocalizes the
cytoskeletal-related protein neurofibromatosis type 2 (NF2),
which carries out opposite activities in tumor growth (Morales
et al., 2010). Notability, Ezrin, in a complex with NF2, enhances
glioblastoma growth independent of its molecular conformation
or subcellular localization. Using medulloblastoma cell lines and
athymic mice as models, a study reported that Ezrin is localized
to filopodia in medulloblastoma cells and promotes filopodia
formation as well as in vitro invasion in medulloblastoma
(Osawa et al., 2009).

In primary melanomas of the skin and metastatic tumors,
Ezrin expression correlates with tumor progression and suggests
worsening clinical disease behaviors. The molecular mechanism
involves molecules related to metastatic functions such as
CD44, merlin, and Ras signaling (Ilmonen et al., 2005; Federici
et al., 2009; Riecken et al., 2016). Consistent with findings
in osteosarcoma, Ezrin was found to be highly expressed
in pancreatic cancer tissues and to positively regulate cell
proliferation and invasion through the activation of the
Akt/mTOR pathway (Meng et al., 2010; Quan et al., 2019; Chang
et al., 2020). Ezrin and Rho-A expressions in squamous cell
carcinoma suggest a cooperative participation of these proteins in
cell movement and invasion (Assao et al., 2017). A tumorigenic
role of Ezrin in skin cancer has also been demonstrated using
immunohistochemical staining specimens from epithelial skin
tumors, together with squamous carcinoma cell lines (Abdou
et al., 2011; Wu et al., 2011). A similar result was seen in
nasopharyngeal carcinoma as phosphorylated Ezrin expression
was dependent on increased Rho kinase and protein kinase
C activity (Tang et al., 2011). The oncogenic role of Ezrin
is not limited to solid tumors as it has also been seen in
blood cancers, such as diffuse large B-cell lymphoma, where
the knockdown of Ezrin attenuated chemotherapy resistance
(Pore et al., 2015; Sun et al., 2018).

EZRIN AS A PHARMACOLOGICAL
TARGET

The above sections are not meant to recap all the latest important
findings in Ezrin research but rather to provide an overview of
the evidence showing the oncogenic roles and prognostic value
of Ezrin in a wide range of cancer types. One of the questions that
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remain to be answered is what the clinical implication of Ezrin
is. As described above, high levels of Ezrin are observed in many
cancers with lung metastasis, indicating poor survival and bad
prognoses. Ezrin as an essential prognosis predictor of various
cancers has been demonstrated to be a key modulator of tumor
metastasis. All the existing studies, taken together, highlighted
the fact that Ezrin may serve as a potential therapeutic target
in cancer (Hoskin et al., 2019). This prompts the next question
whether or not pharmacological regulators with a high affinity
to Ezrin would exhibit encouraging results for cancer treatment.
Despite various downstream pathways (Figure 3) of Ezrin been
identified in cancers, it is expected that identification of small
molecule inhibitors of Ezrin would lead to the discovery of
anti-metastatic and anti-invasion drugs.

Small Molecular Inhibitors
Over the past decade, many studies have attempted to develop
targeted cancer treatment strategies using small molecule
inhibitors of Ezrin (Table 3). For the first time, Bulut et al.
(2012) identified two compounds (NSC305787 and NSC668394)
from small molecule libraries, which can directly bind to Ezrin,
reduce phosphorylation on T567 and block its functional activity.
These two inhibitors effectively reduced tumor metastasis in lung
cancer and osteosarcoma (Celik et al., 2015, 2016). Following
that, more and more studies attempted to extend the anti-
metastatic activity of these two small molecule inhibitors in
other cancers. Surprisingly, although Ezrin showed widely
pro-metastatic capacity in many cancers, the anti-metastatic
effect of its inhibitors was only seen in a few cancer types
(Table 3). To date, NSC305787 and NSC668394 are undergoing
investigation through animal models but not yet included in any
clinical trials.

Activator
Because of the oncogenic role of Ezrin, studies investigating
Ezrin activator are rare. Ezrin activation has been linked to
CDK5 in the senescent phenotype as CDK5 is able to activate

Ezrin by phosphorylating T235 of Ezrin (Yang and Hinds,
2003). Interestingly, CDK5 mediated activation of Ezrin prevents
the intermolecular interactions with/within cell membranes and
cooperative with phosphorylation of another site T567, allowing
Ezrin to participate in cytoskeleton-related signaling.

CONCLUSION AND FUTURE DIRECTION

In the literature, the oncogenic roles of Ezrin were intensively
studied but there are a limited number of studies investigating
the predictive performance of Ezrin expression level. In this
review, we summarized not only the oncogenic roles of Ezrin but
also its pathophysiological roles and potential pharmacological
regulators in a wide range of cancer types. Our understanding
of Ezrin as a potential drug target is strongly influenced by
the idea that Ezrin is commonly proved to promote tumor
metastasis and predicts poor prognosis in different types of
cancers. Therefore, direct inactivation of Ezrin by the small
molecule inhibitors should provide a new strategy for metastatic
treatment in many cancers. While this hypothesis is indeed
supported by a few lines of evidence in a couple of cancer types
such as lung cancer, this rule seems failed to expand in many
other cancer types.

Many fundamental questions in the roles of Ezrin remain
to be answered. From this work, some basic understanding of
Ezrin protein may be challenged. For example, the expression
level of Ezrin in bladder cancer is reduced while it is
commonly up-regulated in many other cancer types. The
predictive value of Ezrin in bladder cancer is also found
opposite to the other cancer types. Given metastasis is a
complicated process that involves many steps that are poorly
understood at this time, some of which may include tissue
type-specific mechanism involving Ezrin. This mechanism may
not be shared within ERM family proteins as the other ERM
protein Mosin was found enriched in bladder cancer and
consistent with its oncogenic role in invasion process. Future

TABLE 3 | Pharmacological inhibitors and activators targeting Ezrin.

Name Target site and modification Experiment models References

Inhibitor

NSC668394 and NSC305787 Inhibition of T567 phosphorylation Zebrafish, osteosarcoma cell culture, Xenopus
embryonic development, mouse lung organ culture
and in vivo lung metastasis models

Bulut et al., 2012

Compounds 21k and 21m, as
analogs of NSC668394

Inhibition of T567 phosphorylation In vitro binding assays Paige et al., 2014

NSC668394 and NSC305787 Inhibition of T567 phosphorylation Mouse lung metastasis cell culture model Celik et al., 2015, 2016

NSC668394, drug-like compounds
MMV020549 and MMV666069

Inhibition of T567 phosphorylation Zebrafish, osteosarcoma cell culture, and Xenopus
embryonic development models

Celik et al., 2015

NSC668394 Inhibition of T567 phosphorylation Diffuse large B-cell lymphoma cell line and tumor
Xenografts mice models

Pore et al., 2015

NSC668394 Inhibition of T567 phosphorylation Tumor-bearing lymphatic reporter mice model Ghaffari et al., 2019

NSC305787 Inhibition of T567 phosphorylation Lung cancer cell model Moodley et al., 2020

NSC668394 Inhibition of T567 phosphorylation Japanese encephalitis virus mouse infection model Liu et al., 2020

Activator

Cyclin-dependent kinase 5, CDK5 Activation of T235 phosphorylation RB-transfected osteosarcoma cell model Yang and Hinds, 2003
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work is needed to uncover new pharmacological inhibitors and
to explore the in vivo activity of the existing small molecule
inhibitors as potential tools in cancer therapeutics.
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