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1  | INTRODUCTION

Hearing loss (HL) is one of the most common sensory defects in 
humans. The hearing system is complex and depends on the com-
prehensive functions of many types of tissues and cells in the inner 
ear. Therefore, mutations in various genes have been proposed to 
be the cause of HL. It is estimated that 1-3 of every 1000 newborn 
children are deaf, and in nearly half of these cases, HL can be at-
tributed to genetic factors.1 The well-known types of acquired HL 
are ototoxic drug-induced hearing loss (ODIHL), age-related hearing 
loss (ARHL) and noise-induced hearing loss (NIHL). The pathological 
characteristics of each type of HL are not the same. The main mech-
anism of ODIHL is hair cell loss.2 The loss of hair, spiral ganglion and 
vascular striated cells is involved in ARHL.3 Noise-induced hearing 
loss is caused by excessive exposure to noise.4 It involves two main 
mechanisms, namely mechanical damage and loss of hair cells and 
spiral ganglia.4

Programmed cell death (PCD) appears to play a critical role in 
the development and diseases of the inner ear. When the nucleus 
of a cell is affected by severe damage, the initiation of PCD leads 
to irreversible changes, such as metabolic arrest, structural damage 
and function loss that can balance cell death and normal cell sur-
vival. Several forms of PCD have been found in eukaryotes, including 
apoptosis, autophagy, programmed necrosis, entosis, ferroptosis, ly-
sosome-dependent cell death and parthanatos.5-9 The contribution 
of apoptosis in the development of hearing loss has been long stud-
ied. Several studies have been conducted to decipher the molecu-
lar mechanisms underlying the roles of them in HL. Apoptosis is an 
ATP-dependent, enzyme-mediated, inherently programmed death 
of cells that are no longer needed or are a threat to the organism.10 
Apoptosis occurs when DNA molecule in a cell is beyond repair, when 
a cell receives stress signals from other cells, or when misfolded or 
unfolded proteins accumulate in a cell. The morphological manifes-
tations of apoptosis include chromatin condensation, cell membrane 
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blebbing, cell shrinkage and apoptotic body formation.10 Autophagy 
is a conserved process of intracellular material turnover in eukary-
otes. It is a key mechanism in the response of cells to extracellular 
or intracellular stress that aid in their survival under certain circum-
stances; for instance, autophagy protects cells against NIHL by at-
tenuating oxidative stress.11 However, overactivation of autophagy 
may result in cell death.12 Specialized double-membrane vesicles, 
known as autophagosomes, encapsulate degenerating cytoplasmic 
organelles or cytosol and subsequently degrade them via the fusion 
with lysosomes.13,14 Necroptosis can be initiated by several factors, 
and receptor-interacting proteins (RIPs) 1 and 3 are two key pro-
teins involved in this process. Necroptosis can be morphologically 
characterized by increased cell volume, swollen organelles, ruptured 
plasma membrane and the subsequent intracellular content loss.14,15 
The contents of a ruptured necrotic cell in the interstitial space may 
trigger inflammation of the adjacent cells.

The pathology of HL has been studied extensively.16,17 Recent 
findings suggest that cellular death mediated via PCD is an important 
mechanism in HL. Apoptosis and programmed necrosis always lead 
to cell death, whereas autophagy can lead to cell survival or death. 
In normal cells, there is a delicate balance between apoptosis-in-
ducing and apoptosis-inhibiting factors, and it ensures the survival 
and proliferation of cells. However, under stress, this balance can be 
disturbed. The activation of autophagy may play a protective role 
in the early stages of disease progression. Nevertheless, when the 
imbalance mediated by pathogenic factors becomes prominent, cells 
may activate the apoptotic or necrotic death process or over-acti-
vate autophagy leading to cell death. Thus, PCD is important in the 
development and maintenance of multicellular organisms, and the 
loss of PCD regulation can lead to diseases. Here, we focused on var-
ious causes of HL and the well-characterized cell death mechanisms 
(apoptosis, autophagy and necrosis) involved in HL.

2  | APOPTOTIC PATHWAYS IN HL

Apoptosis is an active and highly ordered cell death process regu-
lated by genes (including Bcl-2, p53 and c-Jun) and a series of en-
zymes (including caspases and endonuclease G (EndoG)) through 
intrinsic (mitochondrial), extrinsic (death receptor (DR)) and endo-
plasmic reticulum (ER) pathways.18,19 Apoptosis plays an important 
role in maintaining the normal growth of an organism. The Bcl-2 
family members are important for the regulation of apoptosis, in-
cluding Bcl-2, Bcl-w, Bax, Bak, Bid and Bad.20,21 The initiation of ap-
optosis depends on the activation of a series of caspases. Caspases 
can be divided into the following three categories: initiator (caspases 
initiator 2, 8, 9 and 10), executioner (caspases 3, 6 and 7) and in-
flammatory (caspases 1, 4 and 5).22,23 When a cell is exposed to a 
fatal stress, apoptosis can be triggered by the initiator caspase 9 or 
8 via the mitochondrial or DR pathways. Furthermore, the execu-
tioner caspases 3 and 7 are activated, causing the fragmentation 
of DNA, destruction of nuclear proteins, cytoskeleton and protein 
cross-linking, and expression of ligands in phagocytic cells.24 In the 

caspase-independent pathway, apoptosis-inducing factor (AIF) and 
EndoG are released from the mitochondria, and they migrate to the 
nucleus to condense the chromatin (Figure 1).22

ER stress is characterized by the accumulation of misfolded 
and unfolded proteins, and disruption of calcium and redox bal-
ances.25 In multicellular eukaryotes, three upstream signalling 
proteins (IRE1, PERK and ATF6) act as pressure receptors, and 
they are activated by the level of unfolded proteins in the organ-
elle cavities.25 Cells can cope with ER stress by increasing the 
expression of chaperones and enhancing ER-associated degra-
dation of misfolded proteins.26 However, continued damage can 
lead to apoptosis (Figure  1). Studies have shown that oxidative 
stress can induce apoptosis via the DR and mitochondrial path-
ways.27 Reactive oxygen species (ROS) are oxygen free radicals 
and non-radical substances, including hydroxyl radicals (OH-), su-
peroxide anions (O2-), hydrogen peroxide (H2O2), ozone (O3) and 
singlet oxygen (1O2) species. Because these ROS contain unpaired 
electrons, they have a high chemical reactivity. Reactive oxygen 
species are considered toxic to cell metabolism. An increase in 
ROS production and the subsequent apoptosis are related to 
the development of various HL pathologies. These mechanisms 
suggest that all these factors individually or interactively lead to 
apoptosis and cochlear damage.

2.1 | Mutations of apoptosis-related genes leading 
to monogenic HL

The different chromosomal loci of nonsyndromic hereditary deaf-
ness are designated as deafness (DFN); letters A and B represent 
autosomal dominant inheritance (DFNA) and recessive inheritance 
(DFNB), respectively. Studies on mutant genes responsible for inher-
ited progressive HL have suggested potential mechanisms under-
lying hair cell apoptosis. Table 1 lists three mutations in apoptotic 
genes that cause monogenic HL.

2.1.1 | DFNA5

DFNA5 is one of the mutated genes related to PCD that leads to sen-
sorineural HL. So far, only intronic mutations have been reported to 
cause exon 8 skipping in patients with DFNA5-related HL.28-31 The 
protein encoded by DFNA5 belongs to the gasdermin superfamily as 
it contains a gasdermin domain. A previous study reported that wild-
type DFNA5 (wtDFNA5) had no effect on yeast cells, whereas mutant 
DFNA5 (mutDFNA5) led to cell cycle arrest.32 In mammalian cells, the 
transfection of mutDFNA5 led mutDFNA5 to cell death, whereas the 
transfection of wtDFNA5wtDFNA5 could not.33 Thus, HL caused by 
mutDFNA5 can be attributed to functional mutations. In a mutant 
DFNA5 cell line, the upregulation of different cytochrome c oxidase 
(COX) genes was found to be associated with cell death mechanisms 
under oxidative stress.34 In the same research model, the downregu-
lation of protein sorting- and folding-related mechanisms indicated 
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that ER stress has a potential role in cell death induced by DFNA5 
(Figure 2A).34

2.1.2 | DFNA51

DFNA51 is an inverted genomic duplication of 270-kb DNA, includ-
ing the entire wild-type TJP2 that encodes the tight junction pro-
tein (ZO-2). ZO-2 belongs to the membrane-associated family of 
guanylate kinase homologs, and it contains 3 PDZ domains, 1 SH3 
domain and 1 GUK domain.35 ZO-2 binds to the C-terminal of the 
connective transmembrane protein and then connects to the actin 
in the cytoskeleton and regulates the location of different subtypes 
of cells by interacting with the signal transduction pathway mole-
cules.36 TJP2 is mainly expressed between the hair and supporting 
cells in the organ of Corti, and helps maintain the barrier between 
ductus perilymphaticus and ductus endolymphaticus. Its expression 

decreases with age. The pathogenic mutation gene is an inverted 
genomic duplication of TJP2 that results in the overexpression of 
TJP2, which leads to autosomal dominant nonsyndromic HL. The 
expression of TJP2 mRNA in patients with duplicate genes was ap-
proximately 1.7-fold higher than that in normal controls. The overex-
pression of TJP2 in vitro leads to a decrease in the phosphorylation 
and activation of glycogen synthase kinase 3β (GSK-3β). GSK-3β pro-
motes cell death via the mitochondrial intrinsic apoptotic pathway, 
but it inhibits the DR-mediated extrinsic apoptotic pathway.37 The 
results of real-time fluorescent quantitative polymerase chain reac-
tion showed that even a slight increase in the expression of Bcl-w al-
tered the expression of other Bcl-2 family members and the 18-kDa 
translocator protein (TSPO) may shift the overall steady-state bal-
ance towards apoptosis and thus result in HL.38 However, the com-
plete loss of TJP2 can lead to embryonic death; thus, TJP2 knockout 
was found to be lethal in mice (Figure 2B).39

2.1.3 | DFNB74

The mutations c.265 T > G and c.55 T > C in methionine sulfoxide 
reductase B3 (MSRB3) are related to autosomal recessive HL. The 
mutated gene is also known DFNB74. The gene has four isoforms. 
Isotype A is located in the ER, and the other three isotypes (B, C and 
D) are located in the mitochondria. MSRB3 encodes a methionine 
sulfoxide reductase that is involved in the repair of oxidative damage 
proteins. In the organ of Corti in mice, the expression of MSRB3 is 
upregulated in the inner and outer hair cells, but it is downregulated 
in the supporting cells. MSRB3 mutations lead to the disruption of 
protein functions. This in turn leads to the accumulation of oxidative 

F IGURE  1 Apoptotic signalling pathways. Factors such as ototoxic drugs, ageing and noise exposure, which lead to hearing loss, damage 
the antioxidant defence system of the cochlea and cause imbalance of oxidation-reduction in the inner ear. Reactive oxygen species (ROS) 
can directly induce the intrinsic apoptosis of cells. Moreover, they can induce the production of cell death ligands to mediate the extrinsic 
apoptosis process. ROS-induced intracellular protein damage can cause endoplasmic reticulum stress, which can lead to apoptosis

TABLE  1 Genetic forms of hearing loss (HL)

Molecular function
Gene 
symbol

Chromosomal 
locus

Locus 
name

Nucleus GSDME 7p15 DFNA5

Tight junctions TJP2 9q21.11 DFNA51

Mitochondria MSRB3 12q14.2-15 DFNB74

Note: DFNA5 is targeted at chromosome 7p15 as the fifth DFNA 
site that leads to progressive HL, which starts at high frequencies. 
DFNA51 is caused by a tandem inverted genomic duplication of 270 kb 
at chromosome 9q21.11. DFNB74 is a novel locus on chromosome 
12q14.2-15 that is responsible for autosomal recessive nonsyndromic 
hearing impairment.
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damage-related proteins and ROS, activation of caspase and initia-
tion of apoptosis or programmed necrosis. MSRB3 deficiency can 
also increase the level of cytosolic calcium. The disruption of calcium 
homeostasis can trigger ER stress and activate Bcl-2-like protein 11 
(also known as BIM) molecules that promote apoptosis, and thus 
lead to HL (Figure 2C).40,41

2.2 | Ototoxic drug-induced hearing loss (ODIHL)

2.2.1 | Aminoglycoside antibiotics

Aminoglycosides are broad-spectrum antibiotics, but their poten-
tial ototoxicity needs to be closely monitored.42 The ototoxicity of 

aminoglycosides is irreversible because the hair cells of the coch-
lea cannot proliferate and recover. Aminoglycosides may damage 
the hair cells of the cochlea and type I sensory cells of the vesti-
bule by triggering different apoptotic signals, thus resulting in HL 
and vertigo.43 Mitochondrial pathways play a key role in amino-
glycoside-induced apoptosis and may be the main target of these 
drugs. Aminoglycosides tend to accumulate in the mitochondria of 
hair cells.44 Gentamicin directly inhibits protein synthesis in mito-
chondrial ribosomes and triggers the opening of mPTP that leads 
to the release of apoptotic factors.44,45 In addition, L-carnitine 
promotes mitochondrial function, which can prevent the damage 
of the outer hair cells after the administration of gentamicin.46

ROS has been identified as the main cause of HL mediated by 
aminoglycosides.47 ROS induces mitochondrial damage, thereby 

F IGURE  2 Schematics of three mutations that lead to monogenic hearing loss. A, DFNA5: the apoptosis-inducing region of DFNA5 is 
located in exons 2 and 6 of the N-terminal domain. Skipping exon 8 can change and shorten the C-terminal domain of DFNA5, reveal the 
apoptosis-inducing region and lead to apoptosis. B, DFNA51: overexpression of TJP2 induces apoptosis by activating glycogen synthase 
kinase 3β (GSK-3β). C, DFNB74: malfunctioning MSRB3 leads to the accumulation of oxidative damage proteins and reactive oxygen species 
(ROS), ultimately leading to endoplasmic reticulum stress and subsequent activation of endogenous apoptotic pathways
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leading to the activation of various pathways that lead to apopto-
sis. Aminoglycosides can accelerate the nonenzymatic formation of 
ROS by redox active iron complex, and induce the intracellular en-
zymatic reaction.48 Additionally, a previous study demonstrated that 
dexamethasone, melatonin (MLT) and tacrolimus decrease the levels 
of ROS in GM-exposed explants.49 Interestingly, the c-Jun-NH-ter-
minal kinase (JNK) cascade reaction combines oxidative stress with 
apoptosis.50 Through in vivo experiments, it has been shown that ad-
ministration of an aminoglycoside leads to the activation of the JNK 
pathway, which triggers the apoptosis of cochlear cells. Accordingly, 
JNK cascade inhibitors, such as CEP-1347 and estradiol, can reduce 
the loss of hair cells after the administration of gentamicin.51,52 
However, Kalinec et al reported that gentamicin ototoxicity is me-
diated by the inhibition of the JNK pathway.46 Evidently, there is no 
consensus on whether the signalling enzyme is activated by genta-
micin ototoxicity.

Hair cells are not the only drug targets. Aminoglycosides also 
have effects on stria vascularis, including thinning of the tissue and 
reduction of marginal cells.53,54 The degeneration of spiral ganglion 
cells after aminoglycoside treatment may be attributed to the loss of 
hair cells innervated by the ganglion cells.55 However, some studies 
have shown that the spiral ganglion can be affected without obvi-
ous damage to the hair cells.56,57 This suggests the complexity of the 
damage pattern of aminoglycoside antibiotics.

2.2.2 | Cisplatin

The ototoxicity of cisplatin is well known.58 The ototoxic effects of 
cisplatin can be divided into two categories. The first is the reversible 
inhibition of conduction current, voltage-dependent calcium current 
in hair cells and the current response in stria vascularis.59 Another 
persistent toxic reaction induces irreversible changes in cochlear 
morphology, thus resulting in irreversible, bilateral, high-frequency 
HL.60 Compared with the inner hair cells, the outer hair cells,61 vas-
cular marginal cells and spiral ganglion cells are more easily degen-
erated.62,63 Cisplatin ototoxicity occurs through the formation of 
ROS in the cochlear tissue, accompanied by changes in potassium 
conductivity, which lead to cell death.64,65 The cochlea has an effec-
tive antioxidant defence system. This system includes antioxidants, 
such as vitamin C, vitamin E and glutathione (GSH), as well as several 
antioxidant enzymes that are expressed in the cochlea, such as su-
peroxide dismutase (SOD), GSH peroxidase and catalase. Cochleas 
extracted from cisplatin-treated animals demonstrated consumption 
of GSH, reduction of antioxidant enzyme activity and an increase in 
lipid peroxidation.66,67

Cisplatin increased the production of ROS in the inner ear.68 
It seems that one of the important sources of these ROS is nic-
otinamide adenine dinucleotide phosphate (NADPH) oxidase 3, 
which is a type of superoxide that produces NADPH oxidase. It is 
highly expressed in the Corti organ,69 and its level increases after 
cisplatin treatment.69,70 Other NADPH oxidases are also import-
ant in the production of ROS in response to cisplatin ototoxicity.71 

Excessive ROS production may damage the antioxidant defence 
capacity of cochlear cells. p53 is activated in response to oxi-
dative stress to regulate the expression of genes (eg Bax) that 
control DNA repair and cell death.72 Bax can interact with volt-
age-dependent ion channels in mitochondria, which mediate the 
release of cytochrome c and have the effect of apoptosis.70,73 The 
corresponding targeted drugs have been proved to be suitable for 
the protection of cisplatin ototoxicity. For example, antioxidant 
administration in the early stage of cisplatin-mediated ototoxicity 
can prevent ROS from having an additional downstream role in 
the cell death cascade reaction and in the function of reagents. 
Many of these antioxidants are mercaptan compounds with 
high-affinity for platinum, such as N-acetylcysteine (NAC),74 so-
dium thiosulfate75 and D-methionine.75,76 Other antioxidants that 
are resistant to cisplatin include ebselen, lipoic acid, diethyldith-
iocarbamate and 4-methylthiobenzoic acid.77 The application of 
the p53 inhibitor pifithrin-α in cisplatin-exposed cochlear organo-
typic cultures decreased hair cell injury. This was related to the 
decreased expression of p53 and caspase 3.78 Specific caspase 
9 and caspase 3 inhibitors can protect auditory hair cells from 
cisplatin-induced apoptosis and HL.79

Other potential apoptotic pathways in the stria vascularis later-
alis or spiral ganglia include increased Bax levels, decreased bcl-2 
expression,61 activation of NF-κB,80,81 formation of inducible nitric 
oxide synthase,62,82 activation of the high-mobility group 183 and 
production of 4-hydroxynonenal (4-HNE).84

2.3 | Age-related Hearing Loss (ARHL)

The prevalence of ARHL is expected to rise with the increase in the 
ageing population.85-87 Although many factors have been studied, in-
cluding environmental, genetic and medical factors,88,89 the precise 
mechanism of ARHL is unclear. At present, it is generally believed 
that ARHL is the result of a combination of genetic predispositions 
and various insults to the inner ear that accumulate during daily ac-
tivities. ARHL is not the first mock examination in histopathology and 
pathophysiology. It may be accompanied by the degeneration and 
loss of sensory hair cells, spiral ganglion cells, stria vascularis cells 
and basement membrane with age.90 Apoptosis in ARHL is mediated 
via exogenous and endogenous pathways. Exogenous pathways are 
triggered by ligands that bind to cell surface receptors and may be 
related to environmental and medical factors.91,92 The endogenous 
pathway is mitochondrial-dependent and is triggered by the loss of 
the mitochondrial membrane potential. The prevention of ARHL 
after the deletion of mitochondrial apoptotic gene (eg Bcl-2 family 
member Bak) indicates that the endogenous apoptotic pathway is 
necessary for progression of ARHL.93 It has been demonstrated that 
in ARHL models of mice, rats and gerbils, apoptosis occurs through 
the caspase-dependent pathway, and involves the Bcl-2 family pro-
teins.94-96 Immunohistochemical analysis of the cochlea of ageing 
CBA/J mice showed an increase in the phosphorylation (ie activa-
tion) of JNK and p38 MAPK in outer hair cells.94 In addition, the same 
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study also proved the release of cytochrome c, activation of caspase 
9 and translocation of Endo G in the hair cells of ageing mouse.

ROS play an important role in ARHL.97 They may cause DNA 
damage that leads to the upregulation of p53, which, in turn, leads 
to the chronic activation of the mitochondrial Bak pathway, finally 
resulting in apoptosis.98 Consistent with this process, in all cell types 
of Corti organs, levels of antioxidant defence factors such as mito-
chondrial SOD 2 (SOD2) have been observed to decrease signifi-
cantly with age, thus indicating that oxidative imbalance leads to 
ARHL.99 Therefore, the role of antioxidant supplementation in ARHL 
has been studied. In Fischer 344 rats, vitamin C, vitamin E, MLT and 
lazaroid treatment yielded better results in the maintenance of audi-
tory sensitivity and reduction of the number of mitochondrial DNA 
(mtDNA) deletions compared to those observed with the placebo.100 
In addition, C57BL/6J mice provided an antioxidant diet (α-lipoic 
acid, coenzyme Q10, NAC) had a much lower ABR hearing thresh-
old than that of control mice.93 Nevertheless, Sha et al kept CBA/J 
mice on a long-term diet from 10 to 22 months of age and claimed 
that foods rich in vitamins A, C, E and alpha lipoic acid did not delay 
or reduce ARHL.94 Accordingly, Keithley et al found that transgenic 
mice expressing SOD2 yielded outcomes that were contrary to ex-
pectations, while the HL in mice who were 20 months old was more 
prominent than that in the parent strain of B6 mice.101 These results 
suggest that mitochondrial ROS may be a factor in ARHL, but there 
are other factors involved as well.

Mitochondria are particularly susceptible to the accumulation 
of genetic or environmental damages because—unlike the nucleus—
mtDNA is regularly replicating independent of cell cycle replication 
and lacks an effective DNA repair system and protective histones. 
Therefore, the total number of its DNA mutations is higher than that 
of the accumulation of mitochondrial DNA mutations are thought to 
cause age-related degenerative diseases,102 and an increase in mito-
chondrial DNA mutations in human cochlear tissue has also been ob-
served.103 The same mechanism was proposed in the mouse ARHL 
model.104,105 The main mutation of mitochondrial DNA occurs in the 
gene encoding the mitochondrial oxygen phosphorus complex and 
leads to abnormal oxygen phosphorus activity and mitochondrial 
dysfunction, and increases in intracellular free calcium. Calpain and 
cathepsin are released from lysosomes in response to the increased 
intracellular calcium. They are calcium-dependent proteases that 
activate downstream pathways through the proteolysis of target 
proteins. They are part of cell death signals that are independent 
of cystatin and are involved in apoptosis and necrotic cell death.94 
However, the exact pathway of apoptotic activation caused by ARHL 
has not been clearly defined. In fact, it is possible to activate multiple 
pathways at the same time because ARHL is the product of a multi-
factorial process.

2.4 | Noise-induced HL (NIHL)

Noise is also the main cause of HL.106 After noise exposure, there 
are two main mechanisms that cause cochlear damage. The first 

is direct mechanical damage that leads to the loss of hair cells 
through the mechanical destruction of cilia, and to the damage 
of supporting and sensory cells.107 Another mechanism involves 
the biochemical pathway that leads to cell death through ap-
optosis or necrosis. It has been shown that apoptosis is the key 
mediator of noise-induced HL. After noise exposure, an increase 
in chromatin condensation and levels of apoptosis markers108-112 
such as caspase 3, 8 or 9,113 tumour necrosis factor receptor,111 
and Bcl-2-associated death promoters (Bad)114 was observed in 
cochlear cells of guinea pigs, chinchillas and rats models. Wang 
et al showed that the application of riluzole (inhibitor of apoptosis 
and necrosis) in the cochlea can protect the cochlea from hearing 
impairment.115,116 These results indicate the importance of the 
apoptotic pathway in NIHL.

Several ways of inducing apoptosis in NIHL have been studied in 
animal models. After noise exposure in a guinea pig model, AIF and 
EndoG entered the cytoplasm of the cochlear cell117 and were then 
transferred to the nucleus, triggering apoptosis in a caspase-inde-
pendent manner. Noise exposure triggers the activation of caspase 
8 and caspase 9 by exogenous and endogenous pathways, and both 
apoptosis markers are associated with signalling pathways that lead 
to caspase 3 activation.113 A variety of agents can attenuate NIHL, 
including iron chelators, antioxidants and vasoactive factors.118,119 
However, these factors individually have limited protective efficacy. 
These observations are consistent with the suggestion that noise 
may induce cell death via both caspase-dependent and caspase-in-
dependent apoptosis.117

After noise exposure ends, ROS or other similar reactive species 
levels are generally increased.120 ROS were observed to be present 
in the cochlea for an extended period of time following noise ex-
posure.121 These species were responsible for the morphological 
observations of delayed and sustained damages.121 Consistent with 
the hypothesis of ROS formation, antioxidant molecules can be used 
for protection, such as water-soluble coenzyme Q10,122 NAC,119,123 
D-methionine124 and GSH,125 which will decrease the amount of 
apoptosis in hair cells after noise exposure. ROS formation can acti-
vate the JNK signalling pathway.126 In the noise-damaged guinea pig 
model, JNK mediates apoptosis,110 and blocking of the JNK pathway 
has a protective effect on noise. Mice exposed to noise contained 
fewer apoptotic cells than those in the control group, when they 
were fed with JNK inhibitors such as all transretinoic acid and CEP-
1347 (small molecules derived from indole-carbazole K252a).127-129 
Another study reported that blocking the JNK pathway with locally 
delivered D-JNK-1 through the round window membrane can pre-
vent hair cell death and permanent NIHL.110

In addition, the increase of free Ca2+ in the outer hair cells, or 
the activation of Ca2+ and calmodulin-controlled calcineurin may 
trigger the apoptosis or necrosis pathway without ROS.130,131 
Calcium metabolic disorders and free radicals can also cause ER 
stress. Severe ER stress is more likely to induce the expression of 
CHOP132 and would lead to ER stress-related apoptosis based on 
the downregulation of the expression of antiapoptotic proteins 
such as Bcl-xL.133 Glucocorticoid-induced leucine zipper protects 
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the cochlea from ER stress-induced apoptosis following noise ex-
posure by reducing chop and regulating ER stress-related apoptosis 
proteins.134

3  | AUTOPHAGIC PATHWAYS IN HL

Autophagy is a protective mechanism triggered to limit patho-
logical changes. In all eukaryotic cells, autophagy processes un-
necessary or dysfunctional cell components such as damaged 
organelles and misfolded proteins135 through highly regulated pro-
cesses.136,137 Autophagy is a process that mediates the formation 
of a bimembrane autophagic body that surrounds the damaged 
organelle or other cytoplasmic components.138 The core molecule 
of autophagy regulation is the rapamycin kinase mammalian target 
(mTOR). The pathways activating mTOR such as the Akt and MAPK 
signalling pathways inhibit autophagy, while the pathways nega-
tively regulating mTOR such as the adenosine 5’-monophosphate 
activated protein kinase (AMPK) and p53 signalling pathways pro-
mote autophagy.139 Under adverse conditions, AMPK is activated 
and mTOR is inactivated to enter the autophagy pathway. Multiple 
autophagy-related (ATG) proteins are involved in this process 
(Figure 3).

Autophagy is a common cell response to starvation or other 
stresses. Basic autophagy is important in controlling the cyto-
plasmic composition and homeostasis of various mitotic cells.140 
Autophagy is involved in the development of normal cochlea. Based 
on real-time PCR, Rodríguez et al found that the peak timepoints of 

ATG4b, ATG5, ATG9a and Beclin1 in the mouse cochlea were the 
same as that at which the cochlear was fully functional.141 Basic 
autophagy plays an important role in the maintenance of hair cell 
morphology and hearing ability. Chisato et al found that ATG5 
knockout in mice resulted in the degeneration of auditory hair cells 
and severe congenital HL. In the hair cells of autophagy-deficient 
mice, accumulation of polyubiquitin and p62/SQSTM1 (autoph-
agy matrix) as inclusion bodies was observed at the first week of 
life.140 Therefore, impaired autophagy function can have adverse 
effects on auditory hair cells. Tsuchihashi et al used low-dose H2O2 
to construct an auditory cell model; increased phosphorylation of 
4EBP1 following H2O2 treatment led to impaired autophagy func-
tion, which in turn resulted in oxidative stress-induced premature 
ageing.142

Some studies showed that autophagy plays a role in the pre-
vention of hearing impairment, such as NIHL and ODIHL.11,143 
Previous studies have shown that ROS has the ability to induce 
autophagy in auditory cells.11,144 Yuan et al reported that auto-
phagy reduced NIHL by reducing oxidative stress.11 Rapamycin 
can increase autophagy activity, inhibit ROS accumulation and 
prevent cell death induced by H2O2. It significantly increased the 
expression of microtubule-associated protein 1 light-chain 3Ⅱ 
(LC3Ⅱ), decreased the levels of 4-HNE and 3-nitrotyrosine (3-NT) 
and reduced NIHL and loss of hair cells. In contrast, LC3B reduc-
tion by the autophagy inhibitor 3-methyladenine (3-MA) or LC3Ⅱ 
small interfering RNA increased the levels of 3-NT in outer hair 
cells and promoted hair cell loss and NIHL. He et al found that au-
tophagy activity was significantly increased, including enhanced 

F IGURE  3 Signalling pathway of autophagy in HL. Unc-51-like autophagy activating kinase 1 (ULK1) is phosphorylated upon the 
activation of AMPK and inactivation of mTOR. The activated ULK1 complex and class III phosphoinositide 3 kinase (PI3K) complex form 
phosphors. Microtubule-associated protein 1 light-chain 3 (LC3) protein can be coupled with phosphatidylethanolamine to form LC3Ⅱ. 
The complex of ATG5, ATG12, ATG16L and LC3Ⅱ can stimulate the elongation of phagocytes, which provide a platform for the formation 
of phagosomes. On approaching the ubiquitin protein binding to p60 and LC3Ⅱ, the phagosome closes to form autophagosomes. Further, 
autophagosomes fuse with lysosomes to form autolysosomes in which the contents are degraded
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autophagosome-lysosome fusion, in both cochlear hair cells and 
HEI-OC-1 cells after neomycin or gentamicin injury, suggesting 
that autophagy might be correlated with aminoglycoside-induced 
cell death.144 Rapamycin treatment reduced ROS levels and hair 
cells death induced by aminoglycosides (including cisplatin, gen-
tamicin and neomycin),144-146 while 3-MA treatment or ATG5 
deletion increased ROS levels and apoptosis.144 Chika et al demon-
strated that oral administration of low-dose rapamycin induced 
autophagy activation in cochlear outer sulcus cells, suggesting 
that rapamycin could be a feasible drug to manipulate inner ear 
cells.147 Phosphatase and tensin homolog-induced putative kinase 
1 also protected hair cells from cisplatin-induced ototoxicity fol-
lowing induction of autophagy.148

Yin et al found that autophagic activation of HEI-OC1 cells 
increased the expression of the nuclear binding domain and leu-
cine-rich repeat containing family member X1 (NLRX1) in cispla-
tin-induced injury.12 NLRX1 overexpression led to the amount 
of accumulation of autophagosomes in HEI-OC1 cells in normal 
condition and a higher activation of autophagy concurrent with 
cell injury in HEI-OC1 cells treated with cisplatin. These findings 
suggest that decrease the activation level of autophagy concur-
rent with increased cell viability in HEI-OC1 cells treated with 
cisplatin, while overactivation of autophagy can lead to patho-
logical changes in response to cisplatin exposure.12 MicroRNA-96 
is the first microRNA mutation that has been reported to be 
related to human deafness.149 The decreased expression of mi-
croRNA-96 may directly upregulate the expression of ATG7. 
Excessive activation of autophagy induces degeneration and 
death of neurons.150

4  | THE PROGRAMMED NECROSIS 
PATHWAYS IN HL

Programmed necrosis is a type of regulatory cell death caused by 
microenvironmental disorders inside and outside the cells and is de-
tected by specific DRs. The DR is usually a type-1 tumour necrosis 
factor receptor,151 besides suicide-related factors (eg Fas) and path-
ogen recognition receptors (eg toll-like receptors 3), that can also 
mediate programmed cell necrosis.152,153 RIP1 and RIP3 can mediate 
the activation of programmed necrosis pathway through physical 
and functional interactions154-157 (Figure 4).

Zheng et al reported that the pan caspase inhibitor ZVAD 
blocked noise-induced caspase 8 activation and reduced apopto-
sis in outer hair cells but stimulated the accumulation of RIP1 and 
RIP3 levels, resulting in the depletion of adenosine triphosphate 
and necrosis of cells.158 These findings suggest that a balance be-
tween apoptosis and necrosis is required for noise-induced death 
of outer hair cells, which is regulated by caspase 8 and RIP kinase. 
Choi et al found that treatment with Nec-1, a selective RIP1 inhibitor, 
significantly inhibited cisplatin-induced cell death in HEI-OC1 cells, 
while the use of ZVAD did not change cisplatin-induced cell death in 
HEI-OC1 cells.159 Their results suggested that RIP3-dependent cell 
necrosis may mediate cisplatin ototoxicity.159 Douglas et al studied 
the ototoxicity of aminoglycosides and cisplatin in a murine model160 
and suggested that the main form of hair cell death induced by ami-
noglycosides and cisplatin in vitro was mediated by caspase-depen-
dent apoptosis, without any effects from necrosis. In vivo, Nec-1 
was used to inhibit RIP1-mediated necrotic disease and reduce HL 
induced by kanamycin and cisplatin.160 These results suggest that 

F IGURE  4 Signalling pathway of programmed necrosis in hearing loss. When a ligand binds to tumour necrosis factor receptor (TNFR), 
a combination of TNFR-associated death domain (TRADD) and receptor-interacting protein (RIP) 1 increases the level of RIP3 and induces 
self- and transphosphorylation, which is followed by the oligomerization of phosphorylated RIP3. Active RIP3 catalyses the phosphorylation 
of the mixed lineage kinase domain-like protein (MLKL), thus resulting in the formation of MLKL oligomers and in translocation to the 
plasma membrane. Through the reversal mechanism, specific phosphatidylinositol phosphates are combined that lead to plasma membrane 
permeability and eventually cell necrosis
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the harmful factors (ototoxic drugs, ageing and noise exposure) can 
induce cell death via different PCD pathways. However, the cross-
talk between these types of death pathways need to be investigated 
in future studies.

5  | CONCLUSIONS

The auditory system is a complex system in which the failure of one 
component may lead to HL. HL is the most common disease associ-
ated with sensory defects, and it affects daily communications, the 
quality of life of patients and their psychological and mental activi-
ties. Although the pathology of HL is very complex, extensive ge-
netic and molecular biological studies have provided considerable 
insights into the mechanisms underlying hair cell death. PCD involves 
the traditional death module apoptosis and various other cell death 
pathways, including autophagy, programmed necrosis, entosis, fer-
roptosis, lysosome-dependent cell death and parthanatos. The goal 
of this review is to provide a general overview of the current knowl-
edge relating to the contribution of PCD in the pathology of hear-
ing impairment, including apoptosis, autophagy and programmed 
necrosis. This will provide researchers with a summary of the three 
forms of PCD in HL and allow them to compare and contrast between 
them. The substantial increase in studies related to PCD, especially 
those focusing on apoptosis pathways, has contributed to a wealth 
of knowledge that can facilitate a better understanding of HL patho-
genesis and therapeutics. An increased understanding of autophagy 
and programmed necrosis in recent decades has led to the develop-
ment of clinical therapies for HL. The occurrence of different types of 
HL may involve different PCD pathways. Audiological biologists have 
been trying to understand how these pathways could be mapped and 
integrated with each other, what global properties are beginning to 
emerge from interactome network models, and how these proper-
ties may relate to HL and its treatment. Therefore, in-depth studies 
on the interconnected pathway network comprising the three main 
functional modules (apoptosis, autophagy and programmed necrosis) 
are warranted to better understand the pathogenesis and treatment 
of HL. It is anticipated that with the research conducted on the effect 
of related target genes, related gene therapy will become the current 
research hotspot. All these provide new insights to improve global HL.
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