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Abstract: Although drug-induced liver injury (DILI) is a major target of the pharmaceutical industry,
we currently lack an efficient model for evaluating liver toxicity in the early stage of its development.
Recent progress in artificial intelligence-based deep learning technology promises to improve the
accuracy and robustness of current toxicity prediction models. Mask region-based CNN (Mask R-
CNN) is a detection-based segmentation model that has been used for developing algorithms. In the
present study, we applied a Mask R-CNN algorithm to detect and predict acute hepatic injury lesions
induced by acetaminophen (APAP) in Sprague-Dawley rats. To accomplish this, we trained, validated,
and tested the model for various hepatic lesions, including necrosis, inflammation, infiltration, and
portal triad. We confirmed the model performance at the whole-slide image (WSI) level. The training,
validating, and testing processes, which were performed using tile images, yielded an overall model
accuracy of 96.44%. For confirmation, we compared the model’s predictions for 25 WSIs at 20×
magnification with annotated lesion areas determined by an accredited toxicologic pathologist. In
individual WSIs, the expert-annotated lesion areas of necrosis, inflammation, and infiltration tended
to be comparable with the values predicted by the algorithm. The overall predictions showed a
high correlation with the annotated area. The R square values were 0.9953, 0.9610, and 0.9445 for
necrosis, inflammation plus infiltration, and portal triad, respectively. The present study shows that
the Mask R-CNN algorithm is a useful tool for detecting and predicting hepatic lesions in non-clinical
studies. This new algorithm might be widely useful for predicting liver lesions in non-clinical and
clinical settings.

Keywords: drug-induced liver injury; acute hepatic injury; deep neural network; mask region-based
convolutional neural network; artificial intelligence; deep learning

1. Introduction

In recent years, artificial intelligence (AI)-assisted digital pathology has made rapid
progress owing to the success of deep learning [1,2]. Some trials have applied deep-
learning techniques in clinical and non-clinical fields of digital pathology, as they may be
used to accomplish tasks that could not be automated using classical imaging analysis
methods [3,4]. Deep-learning-based techniques are being increasingly applied in many
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routine contexts [5]; in research, they have been used in toxicological pathology and good
laboratory practice (GLP) settings [6].

For digital pathology, convolutional neural networks (CNNs) are applied to build
decision-making workflows [7]. When provided with plentiful data on annotated training
images, CNNs can derive complex histological patterns by deconvoluting the image content
into thousands of salient features, selecting/aggregating the most meaningful features, and
then moving on to recognize the identified patterns in novel images [7]. Mask region-based
CNN (Mask R-CNN), which was developed from Faster R-CNN, is one of the best-known
detection-based segmentation models [8,9]. In Mask R-CNN, region of interest (ROI)
alignment is used to increase the number of anchors and mask branches to achieve instance
segmentation. Mask R-CNN has a faster detection speed and greater accuracy than Faster
R-CNN [10]. To date, Mask R-CNN-based approaches have been used to analyze multiple
organs, such as for heart, right-lung, and left-lung segmentation [9].

Acute hepatic injury can be caused by viral infection, alcohol, and/or drugs. The latter
injury is termed drug-induced liver injury (DILI) [11–13]. DILI is a major concern for drug
developers, regulatory authorities, and clinicians. However, we currently lack an adequate
model system for assessing drug-associated DILI risk in humans [14]. The observable
morphological patterns of acute hepatocellular injury include acute hepatitis, necrosis, and
resolving hepatitis. Acute hepatitis is characterized by portal and parenchymal inflamma-
tion, hepatocellular injury, and/or necrosis, in the absence of fibrosis. The necrosis can
be spotty or confluent; in some cases, such as that induced by acetaminophen (APAP),
it can be zonal [15]. The pathological findings characteristic of APAP overdose, which
include acute hepatitis with apparent centrilobular hepatic necrosis, have been targeted
to develop therapeutic pharmaceuticals [16]. Several published reports have used deep
learning models to predict liver injury or toxicity [17–21]. However, no previous study
has applied deep learning to detect acute hepatic injury for toxicological diagnosis in a
non-clinical study.

Here, we applied a deep-learning algorithm in developing a more efficient diagnostic
tool for toxicity screening, based on the pathological characteristics of APAP-induced
acute hepatic injury. We applied a Mask R-CNN segmentation network to detect the
lesions of acute hepatitis, with a particular focus on lymphocyte/histiocyte infiltration
and necrosis. We evaluated model performance by comparing the whole-slide image
(WSI)-level detection of lesions by the model versus the annotation results generated by an
accredited toxicologic pathologist.

2. Materials and Methods
2.1. Animal Experiments

Sprague-Dawley (SD) rats (Crl:CD; 9 weeks of age, both males and females) were
obtained from Orient Bio, Inc. (Republic of Korea) and allowed to acclimate for 2 days prior
to the beginning of the study. Throughout the experiments, the rats were maintained under
controlled conditions (23 ± 3 ◦C, 30–70% relative humidity, 12 h light/12 h dark cycle of
150–300 lux, 10–20 cycles/h ventilation). A standard rat pellet diet (gamma-ray irradiated;
5053 PMI Nutrition International, San Francisco, CA, USA) was provided ad libitum. The
animals had free access to municipal tap water that had been filtered and UV-irradiated.
This water was analyzed for specific contaminants every 6 months by the Daejeon Regional
Institute of Health and Environment (407, Daehak-ro, Yuseong-gu, Daejeon, Korea). The
experiment was approved by the Assessment and Accreditation of Laboratory Animal Care
International (AAALAC) and Institutional Animal Care and Use Committee (IACUC).

Animals were randomly assigned into the following three groups (n = 10 per group,
5 males and 5 females): (1) control group; (2) single dose APAP (2500 mg/kg) group;
(3) repeated dose APAP group (1000 mg/kg) group. Liver from each animal was divided
into 5~6 different pieces, and they were paraffin-embedded. In total, about 200 liver
sections were H&E-stained and digitalized into whole-slide images (WSIs) by slide scanner.
For dataset establishment, images of necrosis, inflammation, infiltration, and portal triad
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were cropped and labeled from 7, 16, 30, and 132 whole-slide images. Thirty-two WSIs,
which were not used for model training, were left to check the performance of the trained
AI model.

Acetaminophen (APAP; A7085, 99.0% purity; Sigma-Aldrich, MO, USA) was adminis-
tered orally to induce acute liver injury in 10-week-old SD rats using two dosing systems: a
single dose of 2500 mg/kg or a 6-day repeated dose of 1000 mg/kg. Doses of APAP were
chosen from previously published reports [22,23]. Immediately prior to administration,
2500 mg or 1000 mg of APAP was dissolved in 10 mL of sterile distilled water. Admin-
istration was performed at 10 mL/kg per dose. Sterile distilled water was administered
as a vehicle control. The day of the starting dose was regarded as Day 1. Single-dosing
animals and six-day repeated animals were sacrificed on Day 3 and Day 7, respectively.
Liver tissues were collected in 10% formaldehyde. Hematoxylin and eosin (H&E) staining
was performed as previously described [24].

2.2. Data Preparation

Whole-slide images (WSIs) of liver sections were scanned using a Panoramic 250
Flash III (3DHistech, Hungary) with a 20× objective and bright-field illumination. The
scan resolution was 0.24 µm per pixel, and the images were saved as TIFF stripes with
JPEG2000 image compression. The data preparation for segmentation of portal triad, necro-
sis, infiltration, and inflammation was performed as previously described [8]. Briefly, the
20×-magnified WSIs were cropped into 448 × 448 pixels of tile images, and all lesions were
labeled using a VGG image annotator 2.0.1.0 (Visual Geometry Group, Oxford University,
Oxford, UK). The annotated lesions were confirmed by an accredited toxicologic patholo-
gist before the algorithm training was initiated. A total of 8,291 image tiles were obtained
from 201 WSIs. The lesions identified on these images were labeled and used to train and
test the Mask R-CNN algorithm. The train_test split function embedded in the scikit-learn
package was used to split the annotated image tiles into the training, validation, and test
data sets (ratio, 7:2:1, respectively). Data augmentation was conducted to improve the
training dataset; this was performed eight times using a combination of image-augmenting
techniques (reverse, rotation, and brightness). A total of 46,312 images were used for
training, while 1659 and 843 images were used for validation and testing, respectively
(Supplementary Material Table S1).

2.3. Generation of the Mask R-CNN Algorithm

All procedures related to algorithm training, including the data distribution, were
performed as previously described in detail [8]. Briefly, the training was performed using an
open-source framework for machine learning (Tensorflow 2.1.0 with a Keras 2.4.3 backend)
powered by an NVIDIA RTX 3090 24G GPU. The Matterport Mask R-CNN 2.1 package
(Sunnyvale, CA, USA) was used for training. The Mask R-CNN algorithm consisted of two
stages: (1) the region proposal network (RPN), which proposed candidate object-bounding
boxes; and (2) RoIAlign, which was used to extract features for the prediction of pixel-
accurate masks. RoIAlign uses bi-linear interpolation to compute the exact values of the
input features at four regularly sampled locations in each RoI bin and aggregates the results
using max pooling. A schematic of the procedure is shown in Figure 1.
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2.4. Model Training, Validation, and Testing for Acute Hepatocellular Injury
2.4.1. Hyperparameters

A total of 48,814 images were used to train, validate, and test the model on lesions of
acute hepatic injury in SD rats. The hyperparameters used during the training are described
in Table 1. All configurations were set as the defaults defined by the Matterport package
with the exception of the five parameters that were customized to fit the hepatic injury
dataset. Four images were simultaneously analyzed using IMAGE_PER_GPU, and four
GPUs were used during the training. The image size was determined as 448 × 448 by
IMAGE_MAX_DIM and IMAGE_MIN_DIM according to the tile image size. The threshold
of instance classification accuracy, DETECTION_MIN_CONFIDENCE, was adjusted to 0.5.
Stochastic Gradient Descent (SGD) was selected as the optimizer.

Table 1. Hyperparameters used in Mask R-CNN training.

Hyperparameter Value

IMAGES_PER_GPU 4
GPU_COUNT 4

STEPS_PER_EPOCH 10
IMAGE_MAX_DIM 448
IMAGE_MIN_DIM 448

LAYER_1 60
LAYER_2 120
LAYER_3 200

DETECTION_MIN_CONFIDENCE 0.9
LEARNING_RATE 0.001

LEARNING_MOMENTUM 0.9
WEIGHT_DECAY 0.0001

DETECTION_MAX_INSTANCES 100

2.4.2. Loss

To calculate the training losses, the class (label), mask, and bounding box (bbox) losses
observed during the training were serialized using the tf. Summary module and visualized
using a tensorboard. To calculate class loss, we used the multi-class cross-entropy loss.
Since the mask network uses the sigmoid to predict whether a given pixel belongs to the
class, the mask loss was determined by binary cross-entropy. For the bounding box loss,
we used a smooth L1 loss, which calculated the error between the prediction and ground
truth. Finally, to determine the Mask R-CNN loss (total loss), we calculated the sum of the
losses (i.e., the sparse softmax cross-entropy loss for the label, the smooth L1 loss for the
bounding box, and the binary cross-entropy loss for the mask).

2.4.3. Metrics for Model Performance

To verify model performance, we calculated the mean average precision (mAP), which
is derived from the intersection of the union (IoU), precision, and recall values. The IoU
value was calculated as previously described [8], and generally reflected the ratio of the
area overlaid by the union of the predictions and the ground truth. The mAP value reflects
the accuracy of the model; here, we used the transformed mAP, which takes on a value of
0 when an image is found to contain any misprediction. We used this transformation to
perform a more detailed analysis of the error cases, investigate the causes of correct and
incorrect predictions, and more strictly evaluate the model performance.

2.5. Model Performance Confirmation at the WSI Level

Thirty-two WSIs that were not used during the training were applied as the confirma-
tion set. All WSIs were obtained from APAP-treated animals. These WSIs were scanned
using a 20× objective and bright-field illumination. Before confirmation, the hepatic lesion
(including the connective tissue) of each WSI was annotated by an accredited toxicologic
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pathologist as the ground truth to be compared with the prediction of the algorithm. Af-
ter annotation, the area of the annotated region was calculated and transformed into a
percentage of the liver-section area. WSI annotation and the annotated area calculation
were conducted using Aperio Image Scope version 12.4.0 (Leica Biosystems, Richmond,
IL, USA) and 20× magnification-scale images. Each magnified WSI was divided into
448 × 448 pixels of tile images, and each hepatic lesion was inferred by the trained algo-
rithm. Following the prediction, the prediction mask-bearing cropped images were merged
into a WSI. The prediction mask areas were calculated and compared to the annotated
lesion by linear regression

3. Results
3.1. Training and Validation of the Mask R-CNN Algorithm for Acute Hepatic Injury Lesions

To train the Mask R-CNN network for identification of acute hepatic injury lesion, a
total of 46,312 annotated tile images, including the augmented samples, were used. Three
hepatic lesion types, namely necrosis, inflammation, and infiltration, were trained for the
identification of hepatic lesions. To improve the performance of the trained model, we also
annotated portal triad, which we found could be confused with infiltration of mononuclear
cell and histiocytes. Total losses, including class, mask, and bbox losses, decreased steadily
during the training (Supplementary Material Figure S1). As shown in the right panels of
Figure 2, the algorithm successfully distinguished between all trained lesions and normal
liver cells in the image tiles. Moreover, the predicted hepatic lesions overlapped well with
the labeled lesions, as shown in the middle and right panels of Figure 2.

During training and validation, we found that some of the detection results did not
match the corresponding annotated lesion. Further assessment revealed that inflamma-
tory findings in the annotation were incorrectly recognized as infiltration findings in the
algorithm-based prediction (Supplementary Material Figure S2).

After training, we tested the model performance by generating mAP values for a
total of 843 image tiles. The overall mAP was 96.44%, and the results obtained for portal
triad, necrosis, inflammation, and infiltration were 95.10%, 100%, 96.35%, and 94.29%,
respectively (Table 2). This model performance was considered to be outstanding, despite
the confusion between inflammation- and infiltration-related lesions.

Table 2. Mean average precision (mAP) in Mask R-CNN training.

Portal Triad Necrosis Inflammation Infiltration Total

mAP 95.10% 100% 96.35% 94.29% 96.44%

3.2. Model Performance Confirmation Using WSI

To test the performance of our trained algorithm in a real-world setting, we tested its
ability to predict hepatic lesions from 32 WSIs. The test was operated at 20× magnification.
Portal triad (blue), necrosis (white), inflammation (yellow), and infiltration (green) were
presented in different colors, as shown in Figure 3. The true annotated lesion was reported
by the square micrometer (µm2), and the algorithm-estimated pixels were converted to the
same units (µm2). Our results showed that the lesions annotated for portal triad, necrosis,
inflammation, and infiltration were comparable to the images predicted by the model
(Figure 3A). Using magnified WSI images, the AI algorithm successfully identified each
lesion of necrosis, inflammation, and infiltration, as compared to the annotated lesions
(Figure 3B).



Diagnostics 2022, 12, 1478 6 of 12Diagnostics 2022, 12, x FOR PEER REVIEW 6 of 12 
 

 

 
Figure 2. Representative segmentation for training and testing of hepatic lesions. The left panels 
show the original image tiles before labeling; the middle panels show labeled images for training of 
portal triad, necrosis, inflammation, and infiltration; the right panels show the predicted area for 
each lesion, as determined by Mask R-CNN. 

During training and validation, we found that some of the detection results did not 
match the corresponding annotated lesion. Further assessment revealed that inflamma-
tory findings in the annotation were incorrectly recognized as infiltration findings in the 
algorithm-based prediction (Supplementary Material S3). 

After training, we tested the model performance by generating mAP values for a total 
of 843 image tiles. The overall mAP was 96.44%, and the results obtained for portal triad, 
necrosis, inflammation, and infiltration were 95.10%, 100%, 96.35%, and 94.29%, respec-
tively (Table 2). This model performance was considered to be outstanding, despite the 
confusion between inflammation- and infiltration-related lesions. 
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In individual WSIs, the annotated lesion areas of necrosis, inflammation, and infil-
tration tended to be comparable to (albeit slightly larger than) those determined by the
accredited toxicologic pathologist (Figure 4). Our combined evaluation revealed that the
inflammation-plus-infiltration findings tended to show greater agreement with the anno-
tated images, compared to either alone (Figure 4B,D,E). Correlations between the annotated
and predicted lesions are shown in Figure 5. The predicted areas of portal triad and hepatic
lesions showed very high correlations with the annotated dimensions; all R2 values were
above 0.9, with the exception of that of infiltration (Figure 5).
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4. Discussion

The development and integration of digital pathology and AI-based approaches
to identify lesions from slide images can offer substantial advantages over traditional
methods, such as by enabling spatial analysis while generating highly precise, unbiased,
and consistent readouts that can be accessed remotely by pathologists [25]. In pre-clinical
studies, CNN has been used to achieve quantitative and rapid assessment of pathological
findings during drug discovery and development.

In the present study, we sought to use deep learning to implement an AI algorithm
for the assessment of toxicological pathology in a non-clinical study. The model was
built through training and validation for several hepatic lesions and used to predict one
lesion. Going forward, training and testing with different hepatic lesions could be used
to allow this algorithm to efficiently differentiate multiple hepatic lesions. The trained
algorithm exhibited a total mAP of 96.44%, which is an outstanding result compared to
those obtained in previous efforts to detect hepatic lesions [26,27]. Finally, we compared
the annotation results assigned by an accredited toxicologic pathologist with the model
prediction to evaluate model performance. The predicted lesions of portal triad, necrosis,
and inflammation showed high correlations with the annotated lesions.

In several previous studies, deep-learning CNN-based algorithms were developed for
detecting hepatic lesions. Heinemann et al. reported that automated deep-learning-based
scores obtained using CNNs showed good agreement with the findings of a human pathol-
ogist [28]. In the CCl4- or CDAA-induced rodent models of non-alcoholic steatohepatitis
(NASH), four histological features were scored (i.e., ballooning, inflammation, steatosis,
and fibrosis). In another published report, a deep learning-based algorithm using CNN
enabled the construction of a fully automated and accurate prediction model for scoring the
stages of liver fibrosis [29]. However, although these previous studies evaluated the use of
deep-learning algorithms for lesion scoring, this is the first work to use such an algorithm
to predict the areas of hepatic lesions in an APAP-induced acute hepatic rat model.
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APAP is widely used as an analgesic and antipyretic drug in the United States [30].
APAP-induced liver toxicity has been reported, and APAP is regarded as one of the most
common pharmaceutical products capable of causing DILI. The mortality rate in APAP
overdose patients is ~0.4%, which translates to 300 deaths annually in the United States [31].
New efforts to detect biomarkers of injured and necrotic hepatocytes seem promising, as it
is important to identify APAP-induced acute liver injury patients at an early stage when
lifesaving medical and surgical therapies can be provided. Going forward, AI approaches
to predicting DILI could improve our understanding of the underlying mechanisms and
our ability to anticipate hepatotoxicity for clinical applications [32].

We encountered several issues when developing our model to identify hepatic lesions.
In the early stage of model establishment, portal triad was not included in the training
process. However, our early results revealed that portal triad was often mistaken for
inflammation or infiltration (Supplementary Material Figure S3). In the three-class model,
the algorithm was trained in inflammation, infiltration, and necrosis. In this model, before
training on the portal triad, confusion with the portal triad was observed with inflammatory
or infiltration findings. This prompted us to include portal triad in further training, with
the goal of increasing lesion recognition. Indeed, this addition, called the four-class model,
improved the accuracy of lesion recognition (Supplementary Material Figure S3). We also
found that some regions annotated as inflammation lesions were incorrectly predicted
by the algorithm as infiltration lesions. This could lead the algorithm to over-estimate
infiltration lesions relative to those identified by the accredited toxicologic pathologist.
That said, there was a relatively low incidence of infiltration lesions in the studied model,
so this error is not expected to significantly affect the overall prediction result. Indeed, our
combined evaluation of the inflammatory and infiltration findings showed a greater agree-
ment with the annotated findings. Simple mononuclear cell infiltration has been typically
reported as inflammatory in the hepatic parenchymal tissues of normal rats [33]. It was
slightly different from APAP-induced inflammation, which was characterized by histiocyte
infiltration of an activated form with fluent cytoplasm around necrosis (Figure 2). A dataset
of two different categories was prepared to prove whether two histological findings can
be distinguished through the AI model. The dataset was divided into training, validation,
and test set for model training and accuracy testing. The test result of the AI model for
the infiltration was good and showed about 94% accuracy under the dataset environment.
However, its test result in the WSI was not good and the correlation determinant (Figure 5E)
was very low between the annotation and the result analyzed by AI model under the WSI,
real world environment. The figures of infiltration and inflammation seemed confused
because they have shared similar cellular components to some extent [34], and more diverse
and complex figures would exist in the real world than in a dataset environment [35]. This
categorization of infiltration and inflammation did not seem advisable in this study. The
two findings are commonly inflammatory and were not confused with the other findings
such as necrosis or portal triad. Therefore, it is thought to be more desirable to merge the
values of infiltration and inflammation to evaluate the degree of inflammatory changes
(Figure 5B). Finally, in WSI, connective tissue was often recognized as necrosis (Supplemen-
tary Material Figure S4). Since connective tissue was not included in our training for model
establishment, WSIs including connective tissue were excluded from our evaluation of the
model’s performance. Careful consideration and further study will be needed before this
model algorithm can be translated to real-world use.

As result of prediction using WSIs, liver injury including trained lesions might be
identified. However, due to the limitations of artificial intelligence, untrained patterns or
images could not be accurately distinguished. If there are untrained lesion patterns, addi-
tional dataset training will be required to identify the lesion efficiently. The presented AI
algorithm efficiently predicted trained lesions, such as inflammation/infiltration, necrosis
and portal triad in acute hepatic injury of rats. Further analysis of patient samples will be
required to validate for human application.
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Modern advancements in digital pathology mean that large quantities of quality
digitized data are available for algorithm developers, scientists, and pathologists world-
wide. Collaborations across the fields of digital pathology, machine learning, and big data
acquisition are paving the way to revolutionize medical pathology [36,37]. Within this
setting, novel approaches have been employed for image analysis in digital pathology;
an example of such an approach is deep learning, which involves multi-layered neural
network architectures. Some deep-learning algorithms involve a slow and hierarchical
process of learning data abstractions and representations between layers and can become
computationally expensive when dealing with high-dimensional image data. This can be
addressed by the use of convolutional neural networks (CNNs), which effectively scale up
high-dimensional data [38]. In the present study, we applied the Mask R-CNN algorithm
to evaluate hepatic lesions in an APAP-induced acute hepatic injury rat model. The study
results suggested that this algorithm can be used to implement diagnosis and prediction of
hepatic lesions. In the future, this strategy could potentially be deployed in clinical practice.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics12061478/s1. Supplementary Material Table S1. Num-
ber of cropped tile images used for the model training, validation, and testing. Supplementary
Material Figure S1. Training loss during model establish-ment. Supplementary Material Figure S2.
Discrepancy in inflammation detection between annota-tion and algorithm prediction. Supplemen-
tary Material Figure S3. Comparison of portal triad de-tection between 3 class model and 4 class
model. Supplementary Material Figure S4. Discrepancy in connective tissue detection between
annotation and algorithm prediction.
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