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Abstract
Antimicrobial photodynamic therapy has become an important component in the treatment of human infection. This review 
considers historical guidelines, and the scientific literature to envisage what future clinical guidelines for treating skin 
infection might include. Antibiotic resistance, vertical and horizontal infection control strategies and a range of technolo-
gies effective in eradicating microbes without building up new resistance are described. The mechanism of action of these 
treatments and examples of their clinical use are also included. The research recommendations of NICE Guidelines on the 
dermatological manifestations of microbial infection were also reviewed to identify potential applications for PDT. The resist-
ance of some microbes to antibiotics can be halted, or even reversed through the use of supplementary drugs, and so they 
are likely to persist as a treatment of infection. Conventional PDT will undoubtedly continue to be used for a range of skin 
conditions given existing healthcare infrastructure and a large evidence base. Daylight PDT may find broader antimicrobial 
applications than just Acne and Cutaneous Leishmaniasis, and Ambulatory PDT devices could become popular in regions 
where resources are limited or daylight exposure is not possible or inappropriate. Nanotheranostics were found to be highly 
relevant, and often include PDT, however, new treatments and novel applications and combinations of existing treatments 
will be subject to Clinical Trials.
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1 Introduction

The aim of this review is to describe why antimicrobial 
Photodynamic therapy (aPDT) has become an important 
component in the treatment of human infection and to 
discuss what future guidelines for its clinical application 
might include. The emergence of antibiotic resistance has 
been considered, as have vertical and horizontal infection 
control strategies [1], and a range of technologies effective 
in eradicating microbes without building up new resist-
ance. The mechanism of action of these technologies is 
described and examples of their clinical use summarised. 
Finally, national and international clinical guidelines on 
the manifestations of microbial infection and the use of 
PDT have been studied, including their research recom-
mendations. While consensus on the use of antimicrobial 
PDT in humans is the ultimate focus of this review, it is 
first acknowledged that: the methods were developed in 
the laboratory; [2] many of the basic science investigations 
were done on murine cohorts; [3] current veterinary indi-
cations for PDT are broad ranging and include bacterial 
infection in domestic animals [4].

Antibiotics were clinically introduced during the Sec-
ond World War and the emergence of resistant strains of 
bacteria was described as early as 1959 [5] followed by a 
detailed study of the underpinning mechanisms revealing 
several modes of resistance. Innate immunity to specific 
antibiotics exists in microbes because of impenetrable cell 
membranes, active cell efflux, and/or the presence of cer-
tain gene alleles in specific positions on the chromosome 
creating a resistant phenotype [6]. These mechanisms pre-
date the use of antibiotic drugs [6]. Extrinsic resistance 
is an acquired property evolving via mutation, or during 
experimental recombination [7], when antibiotics are used 
at subinhibitory concentrations causing recombination [8], 
or via horizontal transfer of r-genes [9].

Methods of tracing the evolution of microbial strains 
have been described including phylogenetic trees [10]—
retrospective by nature—and prospective in-vivo measure-
ments of the natural course of the nosocomial bacterial 
infection becoming resistant to a series of antibiotics [11]. 
Nanotheranostics offers additional insights by allowing 
observation of microbes in-situ, [12] and during treatment.

During the Covid-19 pandemic, infection prevention 
and control in public places and healthcare has been 
enhanced [13–16] to minimise the proliferation of the 
virus. However, antimicrobial stewardship has dimin-
ished [17, 18] with the net effect likely to be a world-
wide increase in microbial resistance. In their 2010 paper, 
Davies and Davies [19] highlight the presence of multid-
rug-resistant bacteria in the biosphere with consequences 
aggravated by civil unrest, violence, famine, natural 

disaster and poor hospital practices; and so the net long-
term effects of Covid-19 on bacteria, and indeed other 
microbes, has yet to be realised. Multiple and extreme 
(a lack of susceptibility to four or more drugs) antibiotic 
resistance has necessitated the use of alternative treatment 
methods for microbial infection including electroporation 
[20]; antimicrobial peptides (AMPs) [21]; photodynamic 
therapy (PDT) [22]; photothermal therapy [23]; nitrous 
oxide (NO) releasing nanoparticles [24]; cannabidiol 
[25]; or combinations of therapies. Electroporation is a 
technique where 30–100 V pulses are used for a fraction 
of a second to create local aqueous permeable regions in 
between lipid membranes by destabilisation [26], however, 
its clinical importance have yet to be tested. Accessibility 
and limitations on sensitivity and specificity of PDT has 
been addressed by conjugation of known photosensitisers 
to cationic molecules, AMPs, antibodies, targeted anti-
biotics or nanomaterials [27–32]. Gold nanorods conju-
gated with antibodies or AMPs then introduced into the 
bloodstream and irradiated externally achieve both Pho-
todynamic and Photothermal effects [33, 34]. Polyvalent 
ligand strategies optimise the yield of any exogenous agent 
[35] and have been used to achieve simultaneous light-
controlled drug release, Photodynamic and Photothermal 
treatments. The field of nanotheranostics takes the use 
of nanomaterials a step further by utilising agents with 
luminescent properties, allowing diagnostic imaging and 
treatment to be achieved concurrently [36]. Transdermal 
Iontophoresis is a system for the controlled delivery of 
pharmaceuticals using small electric currents, and works 
particularly well for small lipophilic molecules [37]. It has 
previously been used to facilitate PDT [38] and allow ther-
apy at lower anti-inflammatory drug concentrations than 
localised injections [39]. For the photosensitising agents 
of PDT, iontophoresis facilitates a much shorter incuba-
tion time before illumination [40]. Even without light, the 
electrical activation of silver ions (oligodynamic iontopho-
resis) has shown broad-spectrum antimicrobial activities 
against bacteria, fungi and viruses [41]. The technique 
uses a much smaller current than electroporation, therefore 
reducing the electrical hazards involved [42].

Photodynamic Therapy is immune to resistance, and has 
been used clinically since the 1970’s to treat a range of can-
cers and precancerous skin lesions [43], Age-related Macu-
lar Degeneration (AMD) [44, 45], Artherosclerosis [46], 
Arthritis [47], Barrett’s Oesophagus [48], Psoriasis [49], and 
Restenosis [50]. The treatment of Infectious disease using 
PDT is a relatively recent application that does not discrimi-
nate between strains that are and are not resistant to antibiot-
ics [51, 52]. PDT requires a photosensitiser or pro-drug to 
be applied topically, intravenously or by an expanding range 
of other routes including oral, intra-auricular injection and 
transvaginal fibre [53]. In wound infection and healing, it 
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is vital that the photosensitiser is applied topically to maxi-
mally preserve vasculature to the site [54]-residual product 
in the proximal capillaries and arterioles following systemic 
delivery could lead to their destruction during illumination 
of a site with deeply penetrating light. On absorption of a 
photon, one of the photosensitisers (PS) two singlet state 
electrons is temporarily elevated to an excited singlet state 
creating fluorescence or heat on its return. Alternatively, the 
electron may have its spin inverted (parallel to its counter-
part) creating a new excited triplet state in a process called 
intersystem crossing. From here, one of two things can hap-
pen: (1) The particle reacts directly with the surrounding 
tissue (substrate) forming a radical anion or cation which 
then reacts with oxygen in the air to produce reactive oxygen 
species (ROS); (2) All of the electron's energy is transferred 
to oxygen from the air forming singlet oxygen. Both these 
outcomes result in cell death by necrosis or apoptosis, and 
the specific substrate, photosensitiser and level of oxygen 
will influence the ratio of type 1 and 2 reactions [55].

Photosensitisers can be grouped by their chemical com-
position and Table 1 highlights relevant features of different 
groups. Protoporphyrin IX is a naturally occurring photosen-
sitiser, whose localised production can be stimulated from 
the pro-drug aminivulinic acid (ALA). However, the derived 
hematoporphyrin Benzoporphyrin monoacid ring A (BPD-
MA) is thought to be ten times as effective [56]. Xanthenes 

stand out from the table as being versatile, and when used 
in combination have been shown to greatly reduce biofilms 
of Stapphylococcus mutans at low concentrations and with 
short illumination times [57]. Phenothiazines appear equally 
versatile and their hydrophilicity allows them to conquer the 
rigid cell wall of funghi [58]; incidentally, where candida 
infection is localised to the stratum corneum, then illumina-
tion with blue light is preferable. The addition of inorganic 
salts potentiates microbial killing [59] in either type 1 or 2 
reactions; azide and potassium iodide have been used with 
phenothiazines and cationic fullerenes and bromide along-
side titanium dioxide nanoparticles [60]. In clinical practice 
this facilitates the same outcome with a smaller light fluence, 
further reducing the damage to healthy tissue.

Combining a bioprecursor (prodrug), coumarin and tri-
phenlyphosphonium then incorporating them onto carbon 
dots allows mitochondria to be targeted and the achievement 
of highly localised PDT with limited damage to surrounding 
cells [61]. Omitting the incubation period may lend itself to 
specific settings and applications. Treatment of leg ulcers 
and wounds with methylene blue and an 810 nm diode laser 
(fluence 60 J/cm2) did not require any incubation time and 
was shown to be much more successful than just using the 
laser; two-thirds of ulcers showed partial improvement, 
while 83% of split skin sites showed a very good response 
[62]. Similar chemical and physical parameters and a 

Table 1  Photosensitisers used in antimicrobial PDT studies by a range of methods

Photosensitiser First author Year Type of study Absorption Attributes

Porphyrins Merchat [101] 1996 Animal lab 610-630 nm Cationic versions are suited to killing of bacteria
Pthalocyanines Ng [102] 2014 Clinical 670-700 nm Absorbs at low energies. High production of 

ROS and low skin toxicity in ambient light 
support their topical use

5-Aminovulinic acid Ibbotson [103] 2002 Clinical 503-628 nm Rapid action reduces the risk of photosensitivity
Chlorins De Annunzio [104] 2019 Clinical review 650-660 nm Has a high quantum yield of singlet oxygen
Xanthenes Yin [105] 2015 Animal lab 532 nm Kills viruses, bacteria and protozoa
Phenothiazines Wison and Mia [106] 1993 Biological lab 625 nm, 656 nm Kills both Gram-positive and Gram-negative 

bacteria and some funghi
Triarylmethanes Noimark [107] 2016 Theoretical 

and materials 
lab

700 nm Kills both Gram-positive and Gram-negative 
bacteria

Phyto-therapeutic agents Nardini [108] 2019 Dental lab 405 nm
460 nm
660 nm

Significant reduction of plactonic and biofilm 
manifestations of E. faecalis in Bovine dentin 
samples

Cyanines Delaey [109] 2000 Biological lab 545 nm-824 nm High degree of photosensitisation in vitro
Fullerenes Tegos [110] 2005 chemical lab Visible light Kills Gram-positive bacteria, Gram-negative 

bacteria, and funghi
Vitamin B derivatives Baier [111]

Maisch [112]
2006
2014

Biological lab UV Greatly reduces multi-resistant bacteria

Curcumin Qiong-Qiong Yang [113] 2020 Biological lab 470 nm Destroyed Staphylococcus aureus and prevented 
it’s regrowth

Curcumin Qiong-Qiong Yang [113] 2020 Animal lab 470 nm Reduced Streptococcus mutans in dental sam-
ples
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minimal incubation period (15 min) were used by Morley 
and co-authors [63] in a Phase IIa placebo-controlled Ran-
domised controlled trial (RCT). They demonstrated com-
plete clearance of half (four out of eight) of the treated leg 
ulcers by 3 months, with less conclusive results on a cohort 
with diabetic foot ulcers (DFU's). A development of this 
DFU work [68] recommended PDT to target gram-positive 
cocci in cellulitis therapy.  The surface area of leg ulcers 
was reduced by three in those receiving ten high-fluence 
treatments of ALA PDT, compared to a halving in size of 
placebo groups lesions [64].

As the total annual cost of diabetic foot ulcer complica-
tions in the UK is £252 million [65], the ability to eradicate 
a range of bacterial species across large areas and volumes of 
tissue is paramount. In the longer term, prevention of DFU's 
is desirable and a recent systematic review [66] identified 
bespoke orthotics, antifungal nail lacquer and elastic com-
pression stockings as appropriate methods in those at risk. A 
2017 International consensus statement on the treatment of 
DFU's [67] appealed for strategies appropriate to a resource-
limited setting. Daylight PDT depends only the availability 
of a characterised photosensitising ointment, opaque dress-
ings and knowledge of the relationship between real-time 
solar irradiance and fluence (J/cm2) given a geographical 
location.

AMPS are cationic and combat infection through their 
direct microbicidal properties and/or by influencing the 
host’s immune responses [68]. The former property targets 
the cytoplasmic membrane or the peptidoglycan cell wall 
both of which are robust structures that do not change easily 
meaning resistance does not develop. Identifying and har-
vesting naturally occurring AMPs is labour intensive, how-
ever, equipment and protocols have now been developed to 
synthesise them artificially, [69, 70] and peptide libraries of 
the increasing number of known organic and synthetic ver-
sions also emerging [71]. DRAMP 2.0 is perhaps the most 
detailed database which identifies just 76 AMPs in clinical 
use (less than 1% of the total) [72] and only seven AMPS 
with FDA approval [27]. These small numbers imply that 
both scientific and administrative constraints exist on the 
transition from the laboratory to clinical practice- and more 
research could be focused on these areas.

In vitro studies have demonstrated that commonly 
prescribed antidepressants Citalopram and Venlafaxine 
enhance the effect of antibiotics [73]. Moreover, Citalopram 
increased susceptibility of Cefixime-resistant Escherichia 
coli and Cloxacillin-resistant Pseudomonas aeruginosa 
when used alongside these antibiotics. Likewise, Venlafax-
ine increased the susceptibility of resistant P. aeruginosa to 
the same drugs. The underlying mechanism is thought to be 
blocking of de novo efflux pumps formed during the resist-
ance process [73]. However, this does not apply to all SSRI 

and SNRI drugs; fluoxetine, has been shown to increase 
the mutation frequency of E. coli to a series of antibiotics 
[74]. There are many other drugs and supplements thought 
to inhibit the effect of antibiotics and ultimately exacerbate 
AMR [79] and consideration of these specific interactions 
during prescribing is a necessary step in antimicrobial 
stewardship.

The original 2002 European Guidelines for topical PDT 
[75] provided a review of its historical use, concluding that 
both coherent and non-coherent light sources were suitable 
and acknowledging 5-ALA as the most prevalent photosen-
sitiser. It also highlighted the antimicrobial applications of 
PDT for acne and warts. By 2008 [76] Acne, warts and Cuta-
neous Leishmaniasis (CL) were given a B strength of recom-
mendation for treatment with PDT, secondary to first-class 
evidence according to the GRADE system [77] (Tables 2, 3). 
In the 2012 revision [78] the only antimicrobial application 
assigned ‘A’ strength of recommendation given the high-
est quality of evidence was Acne. Cutibacterium acnes is a 
gram positive, anaerobic, slow-growing bacterium, and the 
resulting vesicles are one of the most common skin diseases. 
While there was no approved treatment protocol in the 2012 
document, it was acknowledged that low drug concentra-
tions, short incubation times and low blue light doses (13 J/
cm2) achieve short-term antimicrobial and immunomodu-
latory effects, while higher doses (150 J/cm2) of red light 
also destroy sebaceous glands. Enhanced epidermal turnover 
is the likely effect of all PDT leading to reduced follicu-
lar obstruction and decreased sebum excretion [79]. Warts 
(refractory viral hand and foot warts, genital warts) and CL 

Table 2  Gradings used for the quality of evidence used for clinical 
recommendations

Quality of Evidence Symbol Letter

High  A 
Moderate  B 

Low      C 
          Very Low                     D 

Table 3  Terminology and symbols used to communicate the strength 
of a clinical recommendation

Strength of Recommendation Symbol Number Letter

Strong for Intervention 
 1 A 

Weak for Intervention   ? 2 B 

Weak against Intervention ? 2 B 

Strong against Intervention 
 1 A 
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were also mentioned as they had top quality evidence with 
a ‘B’ strength of recommendation. For warts, ALA followed 
by a pulsed dye laser or LED source gave clearance rates of 
up to 100% [80]. In CL, ALA with red light illumination 
was found to be effective, with no relapses at 6 months [81]. 
Finally, the use of PDT for the fungal infection Onychomy-
cosis was introduced cautiously.

In the 2019 update of the European guidelines for topi-
cal PDT [82], Acne, CL, Onychomycosis and refractory 
warts all achieved a B strength of recommendation given 
high-quality evidence. Similar outcomes for ALA-PDT 
and MAL-PDT were reported for acne, however, MAL had 
fewer side effects [83]. Blue and red-light illumination were 
reported to provide similar results, despite the earlier asser-
tion that longer wavelengths (red) are more penetrating, pro-
viding permanent results. Daylight PDT was also successful 
for treating acne, when fractional laser-assisted [84]. For 
warts, evidence of excellent results using ALA was reported 
[85] with low recurrence rates relative to CO2 laser treat-
ment [86]. New data for the Leishmania major and Leish-
mania tropica species causing CL revealed optimal results 
using multiple red-light PDT treatments with high fluences 
(up to 100 J/cm2) [87], with repeat daylight PDT proving 
reasonably effective [88]. For Onychomycosis, methylene 
blue PDT was very effective, especially with prior abrasion 
of the nail with fluconazole [89].

The British Association of Dermatologists (BAD)/British 
Photodermatology Group (BPG) published their recommen-
dations in 2018 based on the available evidence, as well as 
consensus and specialist experience [90]. The four pertinent 
recommendations of the British group were: (1) Consider 
PDT for CL, particularly in cosmetically sensitive sites; (2) 
Consider daylight PDT for CL, bearing in mind that several 
treatments may be required; (3) Consider PDT as a treatment 
option for recalcitrant viral warts; (4) Do not offer PDT as a 
treatment option for fungal infections. Notably, this guide-
line does not mention Acne in its recommendations, and it 
concurs with the contemporaneous European guideline on 
viral warts, and essentially for CL. Both documents align 
on the use of serial daylight PDT for CL and a less onerous 
method is also likely to be popular with patients.

The first-ever UK NICE clinical guideline on the manage-
ment of Acne Vulgaris will be published in 2021 and lists 
topical medicines and antibiotics in various combinations as 
first and second-line treatments, with referral to a consultant 
dermatologist and the use of oral isotretinoin and predniso-
lone as third-line treatments [91]. There is a risk that the C. 
acnes and commensal microflora of patients using topical 
antibiotics, and their close contacts, will develop antibiotic 
resistance, however, concurrent use of topical retinoids or 
Benzoyl peroxide negate this [92, 93]. PDT is highlighted 
for consideration in adults with moderate to severe acne if 
other treatments are contraindicated, ineffective or poorly 

tolerated. Similarly, it is not contraindicated for children. 
Pertinently to this review, one of its recommendations for 
research is the investigation of light devices in the treatment 
of acne vulgaris and it's persistent scarring.

There are no active NICE guidelines on CL, Onycho-
mycosis, warts, Leg ulcers (LU), or diabetic foot ulcers 
(DFU). However NICE technology appraisal of Urgostart 
dressings mentions their suitability for both types of ulcer 
[94] with antibiotics only necessary if the lesion becomes 
clinically infected. Offloading is the reduction, redistribution 
or removal of detrimental forces applied to the foot [95] and 
is a primary treatment for foot ulcers alongside control of 
ischaemia and wound debridement. Technology appraisal of 
Ambulight PDT for small non-melanoma skin cancer sup-
ports its use and highlights that the relatively low irradiance 
is less painful than conventional PDT [96]. While it is more 
expensive to implement, it would certainly have an antimi-
crobial application in circumstances where conventional 
PDT is unavailable and daylight PDT is inappropriate. Clini-
cal trials would establish the optimum doses and treatment 
regimens for different types of ulcer (Table 4).

Table three ranks the outcome of PDT in Clinical Anti-
microbial PDT studies. As this parameter was often reported 
qualitatively, I have shown how I converted each outcome 
into a percentage and acknowledge the subjectivity involved. 
It can be surmised that 100% eradication of warts and acne is 
possible, and very good results for leg ulcers is achievable. 
Porphyrin or very long incubation periods after ALA appli-
cation were specifically beneficial for warts. In acne, the best 
results were achieved with ALA and a very small light flu-
ence. Leg Ulcers responded to the combination of methylene 
blue and infrared light with standard fluence and incubation; 
but when the latter was reduced, results were poor. CL was 
consistently improved rather than resolved completely and 
this applied to a range of photosensitiser/λ combinations.

The overall results for aPDT are more variable than those 
seen for skin cancers [40, 43], where an average efficacy of 
82% was found. Cancer research has a long and relatively 
well-funded history with more focus on the optimal techni-
cal combinations and so further methodological research in 
aPDT may yield improved clinical results. The variation in 
findings for aPDT is echoed by the subset of clinical appli-
cations unrelated to cancer or microbes ([45, 46, 48–50], 
table Ibbotson).

The long-term impact of the clinical guidelines discussed 
here and the broader WHO strategy for reducing antimicro-
bial resistance [97] can be monitored on antibiotic footprint.
net and eucast.org. The former shows antibiotic use across 
countries and industries, and the latter lists minimum inhibi-
tory concentrations (MICs) of a range of antibiotics for the 
eradication of a variety of microbes. Increasing MIC val-
ues for a specific drug-pathogen combination indicates that 
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resistance is developing over time and so maintenance may 
be the desirable outcome.

So, in conclusion, combinations of treatments for micro-
bial infection will optimise outcomes in the future and more 
clinical trials are necessary to demonstrate the ideal mix 
and delivery methods of agents and illumination for spe-
cific conditions and patient cohorts. Nanotheranostics will 
be subject to broad clinical evaluation and may include PDT 
for antimicrobial indications. Reported uses of this emergent 
technology include: the delivery of AMPs [98] and anti-
biotics [31]; with adjunct illumination to modulate antibi-
otic function or monitor progress in bacterial eradication 
[12]; simultaneous PDT, PTT and bioluminescence [99]; 

the management of sepsis [100]. Conventional PDT will 
undoubtedly play a part given its large evidence base and 
existing healthcare facilities and infrastructure—It may be 
the only treatment necessary for some cases of Acne vulgaris 
and related scarring. Daylight PDT and the use of ambula-
tory devices could become more popular in regions where 
resources are limited, with a broader scope than just CL and 
Acne Vulgaris—subject to high-quality evidence. In theory, 
the resistance of microbes to antibiotics is reversible, and in 
practice it is possible that new resistance could at least be 
halted by the use of supplementary drugs. Antibiotics are 
therefore unlikely to become obsolete.

Table 4  Antimicrobial applications of PDT and their clinical efficacy

Typical technical parameters are a 4 h incubation period after photosensitiser application and a light fluence of 37 J/cm2; significant variations 
from this are noted

References Pathology Photosensitiser Light Additional facilitation Reported efficacy (%) Estimated 
efficacy 
(%)

[104] Viral warts Porphyrin Red – 100 100
[103] Recalcitrant viral warts ALA Broadband visible Quadruple incubation 

period
100 100

[103] Acne ALA Broadband visible Small fluence 100 100
[103] Acne ALA Red Very small fluence 100 100
61 Leg ulcers Methylene blue Infrared – 83 83
[103] Recalcitrant viral warts ALA Broadband visible Large fluence 75 75
[103] Recalcitrant viral warts ALA Broadband visible – 73 73
75b Warts ALA Broadband – 58 58
[103] Recalcitrant viral warts ALA Broadband visible Prior paring to blood 

vessels, Large flu-
ence

56 56

75c Warts ALA Broadband – 56 56
62a Leg ulcers Methylene Blue Infrared Reduced incubation 

period
50 50

[104] Cutaneous leishmaniasis Porphyrin Red – Reduced parasitic 
load

50

[104] Cutaneous leishmaniasis Phthalocyanine Red – Reduced parasitic 
load

50

[104] Cutaneous leishmaniasis Chlorine Blue – Reduced parasitic 
load

50

[104] Acne Porphyrin Red – Reduced number of 
lesions

50

Acne Chlorine Red – Reduced microbial 
load

50

Acne ALA Broadband visible Large fluence Clinical improvement 50
75a Acne ALA Red – All improved 50
[103] Recalcitrant viral warts ALA Red – 42 42
63 Cellulitis ALA Red – 40 40
[103] Recalcitrant viral warts ALA Blue – 28 28
62b Diabetic foot ulcers Methylene blue 810 nm Reduced incubation 

period
Inconclusive 0
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