
nutrients

Review

Breast Milk: A Source of Functional Compounds with Potential
Application in Nutrition and Therapy

Cristina Sánchez 1, Luis Franco 2, Patricia Regal 3 , Alexandre Lamas 3 , Alberto Cepeda 3 and Cristina Fente 3,*

����������
�������

Citation: Sánchez, C.; Franco, L.;

Regal, P.; Lamas, A.; Cepeda, A.;

Fente, C. Breast Milk: A Source of

Functional Compounds with

Potential Application in Nutrition

and Therapy. Nutrients 2021, 13, 1026.

https://doi.org/10.3390/nu13031026

Academic Editor: Mariona Palou

Received: 4 February 2021

Accepted: 18 March 2021

Published: 22 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Pharmacy Faculty, San Pablo-CEU University, 28003 Madrid, Spain; c.sanchez127@usp.ceu.es
2 Medicine Faculty, Santiago de Compostela University, 15782 Santiago de Compostela, Spain;

luisfrancofente@gmail.com
3 Department of Analytical Chemistry, Nutrition and Bromatology, Santiago de Compostela University,

27002 Lugo, Spain; patricia.regal@usc.es (P.R.); alexandre.lamas@usc.es (A.L.); alberto.cepeda@usc.es (A.C.)
* Correspondence: cristina.fente@usc.es; Tel.: +34-600942349

Abstract: Breast milk is an unbeatable food that covers all the nutritional requirements of an infant
in its different stages of growth up to six months after birth. In addition, breastfeeding benefits both
maternal and child health. Increasing knowledge has been acquired regarding the composition of
breast milk. Epidemiological studies and epigenetics allow us to understand the possible lifelong
effects of breastfeeding. In this review we have compiled some of the components with clear func-
tional activity that are present in human milk and the processes through which they promote infant
development and maturation as well as modulate immunity. Milk fat globule membrane, proteins,
oligosaccharides, growth factors, milk exosomes, or microorganisms are functional components to
use in infant formulas, any other food products, nutritional supplements, nutraceuticals, or even for
the development of new clinical therapies. The clinical evaluation of these compounds and their
commercial exploitation are limited by the difficulty of isolating and producing them on an adequate
scale. In this work we focus on the compounds produced using milk components from other species
such as bovine, transgenic cattle capable of expressing components of human breast milk or microbial
culture engineering.

Keywords: breast milk; infant formulas; functional compounds; milk fat globule membrane;
breastmilk proteins; oligosaccharides; growth factors; milk exosomes; milk microbiome; probiotics

1. Introduction

Breast milk is an unbeatable food that alone meets the requirements of babies up to
6 months of age. The exclusively breastfed infants tend to have a satisfactory nutritional
status. But the advantages of breastfeeding go beyond nutrition and are unanimously
defended by all health establishments [1]. Among the innumerable benefits we can mention,
in the neonatal period: lower mortality rates among breastfed infants exclusively during
the first six months of life and improvement in the most prevalent pathologies in the first
months of life (otitis media, asthma). As in the future life of the infant: babies who are
breastfed have a reduction in dental malocclusion, lower risk of obesity, and even higher
intelligence ratios [2].

According to the European Consensus on “Scientific Concepts of Functional Foods” [3]
a food can be considered as functional if it is satisfactorily demonstrated to affect beneficially
one or more target functions in the body, beyond adequate nutritional effects, in a way
that is relevant to either improved stage of health and well-being and/or reduction of
risk of disease. A functional food must remain food and it must demonstrate its effects
in amounts that can normally be expected to be consumed in the diet. It is not a pill or
a capsule, but part of the normal food pattern. The almost indisputable evidence scientist
endorse breast milk as the best functional food, source of benefits for the infant and for
the mother [4,5].
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Knowledge of the composition of breast milk has highly increased and this will help
understand the health benefits associated with breast feeding and to bring the composition
of the infant formulas as close as possible to this “gold standard” [6]. Omics technologies,
capable of detecting and identifying the set of molecules that exist in breast milk, have im-
proved the understanding of their composition. This helps us to explain their physiological
importance and their advantages from the point of view of infant health [7]. Moreover,
the results of epidemiological studies and the growing knowledge of epigenetics allow us
to understand the possible lifelong effects of breastfeeding [8]. Preventive medicine could
also benefit from knowledge of the mechanisms by which human milk improves human
development.

In this work we have compiled some of the components with clear functional activity
that are present in human milk, and the processes through which they promote infant
development and maturation as well as they modulate immunity. We summarize some of
these compounds used as functional components for the development and/or improve-
ment of infant formulas, any other food product, nutritional supplements, nutraceuticals
or even for the development of new clinical therapies. The clinical evaluation of these com-
pounds is limited by the difficulty of isolating and producing them on an adequate scale.
Components from other species such as bovine, transgenic cattle capable of expressing
components of human breast milk or microbial culture engineering, are used.

2. Methods

Web of Science—WOS—(CCC, DIIDW, KJD, MEDLINE, RSCI, SCIELO), PubMed,
Cochrane databases, SCOPUS and Google Scholar were used as search engines for lit-
erature review, conducted for the period from January 1990 to January 2021. We in-
cluded clinical trials, cohort studies, systematic (and non) reviews, and meta-analysis.
The following keywords were used: breast milk, human milk, infant formulas, functional
compounds, bioactive components, milk fat globule membrane, breastmilk proteins, hu-
man milk oligosaccharides, growth factors, milk exosomes, milk microbiome, probiotics,
and their combinations. The search was not limited to title and abstract because our desired
outcomes might have been mentioned in the full text of articles.

3. Functional components of the Breast Milk Fat Globule (MFG)
3.1. The Functional Structure of the MFG

Until recently, the concern of infant formula manufacturers had focused on mimicking
as possible the energy and nutritional composition of human milk. However, the better
characterization of human milk lipids and their interaction with other components, have
driven current innovations in lipids in infant formulas [9]. Breast milk is a natural o/w
emulsion in which lipid droplets, called fat globules, are biological entities secreted by
mammary epithelial cells covered by a biological membrane, rich in bioactive substances,
which is the interface with the intestinal tract. The secretion of MFG by the mammary
epithelium comes within a diverse collection of proteins and lipids bound to the membrane
in milk [10]. There is a broad scientific consensus that recognizes the importance of
human milk fat globules in infant nutrition. The physical structure of the fat droplets
may affect digestion, postprandial metabolism [11], and could even prevent from fat
accumulation in adults [12]. Therefore, the knowledge of MFG microstructure serves
as the basis for the adaptation of bioinspired functional emulsions in breast milk [10].
Baumgartner et al. developed an infant formula in which small lipid droplets are larger and
have been emulsified with a polar lipid–protein interface that simulates MGF membrane
(MFGM). These emulsions improve fat digestion compared to lipid droplets wrapped
solely in proteins [11]. Preclinical studies suggest possible long-term benefits on body
composition. Although the mechanisms remain unclear, animal studies showed that early
nutrition is associated with sustained effects on obesity in later life (Ronda et al., 2020).
A clinical trial is currently underway to test Nuturis® (NCT01609634; trial of new infant
formula in healthy subjects on growth, body composition, tolerance and safety).



Nutrients 2021, 13, 1026 3 of 32

The interactions and possible synergies between the different components of MFGM
are still not well understood, but the best results in preclinical and clinical trials, particularly
with regard to infections and neurodevelopment, indicate the joint addition as MFGM
is more interesting. The addition of MFGM to infant formula is a safe and justified
improvement strategy for infant formulas, bringing them closer to the nutritional profile of
human milk [13]. The membrane fraction is an inherent component of all mammalian milk,
however its biological value is lost in infant formula due to the use of vegetable oils to
adjust the fat composition. The addition of this enriched milk fraction may be closing a gap
that was lost in the switch to vegetable oils for infant formulas [14]. Different commercial
preparations of bovine MFGM, from serum or cream concentrates, with considerable
variations in their composition, are available for infant formulas [15,16]. Clinical trials have
demonstrated the benefits of its introduction in these commercial preparations. Table 1
shows some of the different commercial alternatives and the improvements that their
addition seeks.

3.2. MFGM Lipids

Glycerolipids (phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol,
phosphatidylserine) and sphingolipids (sphingomyelin and gangliosides) are complex
lipids with amphipathic nature and are present in not so important quantity in MFGM,
but they are structural components with very interesting functional properties [14].

The phospholipids of MFGM are a source of choline, an essential nutrient involved
in various biological processes, mainly metabolism, but also in the construction of mem-
branes in the brain and nervous tissue. Newborns require large amounts of this compound
for the quick growth of organs and the biosynthesis of cell membranes [17]. EFSA considers
that 130 mg per day is the adequate intake of choline for the first six months of life [18].

About half of the complex lipids in the fat globule membrane are sphingolipids.
The digestion of the main sphingolipid in breast milk, sphingomyelin, generates ceramide,
sphingosine, and sphingosine-1-phosphate, with numerous signaling functions mediated
by intracellular pathways, whose effects are related to the regulation of cell growth, differ-
entiation, apoptosis, and the migration of immune cells [19].

Gangliosides consist of a hydrophobic ceramide and a hydrophilic oligosaccharide
chain that carries one or more sialic acid residues, in addition to various sugars such as glu-
cose, galactose, N-acetylglucosamine, and N-acetylgalactosamine. Although gangliosides
were initially isolated from the brain and are especially abundant in neural tissues, they
are widely distributed in most vertebrate tissues and fluids. Breast milk, very rich in these
compounds, significantly increases total gangliosides in the intestinal mucosa, plasma and
brain. Therefore, they possibly play an important role in the development of the infant’s
tissues, especially the small intestine, improving their oral tolerance [20]. Clear differences
in the concentration and type of gangliosides have been observed in mothers of prema-
ture babies and also during lactation: disialoganglioside is abundant in colostrum while
monosialoganglioside accounts for 85% of total gangliosides in mature milk. These changes
suggest different functionalities according to the moment of the child’s development [21].
The importance of gangliosides in immunity and protection against infection has been
extensively studied. Some studies suggest a contribution in the processes of prolifera-
tion, activation and differentiation of immune cells, and the immunomodulatory effect
could be more prevalent in early lactation when the milk contains the highest amount of
disialoganglioside [22,23]. These compounds are true probiotics, the growth-promoting
effect of bifidobacteria and lactobacilli is well-known, [24]; as well as the protective effect
against Giardia muris and Giardia lamblia [25]. The benefits of these sialic compounds
in the development and maturation of the newborn have recently been summarized [26].
Besides, the modification of the physical properties of the brush border membrane in-
duced by gangliosides in breast milk could lead to an improvement in the absorption of
polyunsaturated fatty acids Ñ3 and Ñ6 in contrast to saturated fatty acids [27].
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3.3. MFGM Proteins

More than 100 different MFGM proteins have been identified. All of them are secreted
by a process that is unique to mammary epithelial cells [28]. Some will be weakly adhered
to the membrane, like in the case of lactoadherin; others, like mucin, have a peripheral
distribution; while butyrophylin is more integrated in the fat globule. The more peripheral
proteins can account for a significant percentage of the membrane weight when the fat globule
size is small, in the early infancy, or longer in time when birth is premature [29]. Butyrophylin,
on the other hand, is more abundant when the size of the globule increases. Moreover, most
of the proteins of the fat globule are highly glycosylated and, probably, this is the reason
why they are not altered by the low pH and the activity of pepsin in the baby’s stomach,
thus maintaining their functionality in the baby’s intestine. Thereby, for example, mucin
and lactoadherin are important for intestinal development, as they help stimulate the health
of the intestinal epithelium showing antiviral and antibacterial activities in the infantile
gastrointestinal tract; butyrophyllins have been related to the regulation of the immune
response; and activated lipase by bile salts is related to the digestion of lipids [4].

3.4. Fat Globule Nucleus’ Lipids

The nucleus of the MFG is made up of triglycerides (TAG) containing more than 200
different fatty acids. Most are found in very low and variable concentrations in mothers and
throughout lactation, but always presenting a high content of palmitic, oleic and linoleic
acids [30]. These three fatty acids occupy highly conserved positions in the TAG. The first,
strongly concentrated in the sn-2 position, oleic in the sn-1 position and in the sn-3 position,
the linoleic. The different fatty acids present in human milk can come from the synthesis
of new fatty acids in the liver or breast tissue, from the mobilization of endogenous fats,
or from the diet [31]. With a low-fat, high-carbohydrate diet, there are higher amounts of
medium chain saturated fatty acids in breast milk, as a result of their increased synthesis
in breast tissue [32]. The variety of fatty acids consumed in the diet during pregnancy and
lactation are key factors, as they determine the transfer of fatty acids through the placenta
and then through breast milk. It has been shown that it changes during the lactation
period and reflects the diversity of food situations around the world and even the different
body conditions of mothers. We can conclude that the fatty acid pattern directly relates
the maternal eating pattern with that of the child [33]. The specific β position of palmitic
acid, the most common saturated fatty acid in breast milk, improves their absorption and
prevents the formation of soaps. This improves absorption of macroelements such as
calcium and magnesium, reduces constipation, and improves the intestinal well-being
of the breastfed infant [34]. But the benefits of β-palmitate also include homeostasis
of intestinal mucosa, intestinal microbiome, and the newborn’s immune response [35].
However, the TAG structure is different in the vegetable oils used in infant formulas. Given
its benefits, it seems logical to include TAGs in which palmitic is occupying the position of
most difficult hydrolysis (β position). This improvement have clinical evidence [36] and is
included in most infant formulas (see Table 1).

The essential α−linolenic and linoleic acids, very important for the growth and matu-
ration of the baby’s brain, are also present in breast milk. The long-chain polyunsaturated
fatty acids (PUFA), synthesized from them, represent approximately 15% of the total lipids
in breast milk and must be of great importance in child development, since during the peri-
natal period they accumulate in considerable quantities in certain tissues such as the central
nervous system, particularly in the synaptic neuronal membranes, and in the photoreceptor
retina cells. They have been studied for their benefits in development, their cardioprotec-
tive role, and their biological anticancer, anti-inflammatory, and antioxidant functions [37].
However, the enzyme systems in the young child are still immature and the degree of
synthesis may not be sufficient to meet the high needs during this stage, so these fatty acids
become, in practice, essential. Fatty acid profiles in blood with an excess of linoleic acid
and a deficiency of whole blood docosahexaenoic acid (DHA) and arachidonic acid (ARA)
have been associated with an increased risk of developing bronchopulmonary dysplasia,
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retinopathy of prematurity, and sepsis [38]. Supplementation of infant formulas with ARA
and DHA is a common practice. Intervention studies have shown that PUFA supplementa-
tion has positive developmental outcomes and causes formula-fed infants to show results
regarding cognitive function, visual clarity, and immune response similar to those given
breast milk (Table 1).

Table 1. Examining lipid breast milk components used in health applications, summary of evidences
(clinical trials, cohort studies, and meta-analysis).

Component Utilization Health Effects References

MFG structure
(Nuturis®) Infant formula

Improves lipids’ postprandial
digestion and metabolism. Prevents

from fat accumulation in adults.
[11,39]

Bovine serum derived
MFGM (Lacprodan-10

and other not specified)
Infant formula

The MFGM supplemented formula can
decrease the artificial nutrition’s

metabolic firm.
General phenotypes observed to be

more similar to BF group.
Similar results to natural lactation as to

fecal metabolome and microbiome.
Better cognitive results than the control

group at 12 months.
Lesser incidence of Acute Otitis Media

and lesser use of antipyretic drugs.
Similar results of febrile and diarrhea

episodes to natural lactation.
Lower levels of HDL cholesterol and

homocysteine.

[13,28,40–47]

Bovine serum derived
MFGM

Complementary
nutrition

Lower diarrhea prevalence.
Lower levels of IL-2 proinflammatory

cytokine.
Higher serum levels of choline.

Higher levels of circulating amino
acids and better anthropometry.

[48,49]

Bovine serum derived
MFGM (Lacprodan-10)

and lactoferrin
Infant formula

Significantly improved performance
in Bayley’s test at 12 months of age.
Long-lasting effects of nutritional

intervention at 18 months.
Lesser incidence of respiratory and

gastrointestinal adverse effects.

[50]

Non specified MFGM
and other bioactive

components
Infant formula

Visual function (measured through
latency and amplitude) was

significantly improved.
[51]

Bovine milkfat derived
MFGM

(Inpulse® and other not
specified)

Infant formula

Lowers incidence of febrile episodes
and reduces the number of days with

fever of children between 2.5 and
6 years.

[52]

Complex milk lipids Whole added milk
Lower duration of diarrhea caused by

rotavirus in infants between 8 and
24 months.

[53]

β-palmitate Infant formula Increases bioavailability of palmitate
and calcium. Softening of stool. [36]

ARA and DHA Infant formula

Lower incidence of upper and lower
respiratory tract infections.

Lower incidence of diarrhea. Beneficial
effects on immune system of

developing infants.
Lower incidence of allergies and

asthma.
Improves visual and cognitive

functions.

[54–62]

MCFAs Infant formula for
premature babies

Lesser intestinal colonization by
Candida [63]
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Finally, the short and medium chain fatty acids (MCFA) found in breast milk may
have nutritional advantages due to their absorption (directly into the portal circulation)
and faster metabolism. Absorption is almost complete at different concentrations, so they
would have benefits in conditions of limited fat absorption, for example, in premature
babies [64]. At present, formulas are being prepared with structured lipids which contain
essential fatty acids and medium chain fatty acids with easy absorption characteristics and
that mimic the structure of the TAGs of the breast milk [65].

4. Human Milk Oligosaccharides (HMOs)

In recent years, non-nutritive carbohydrates in human milk have attracted consid-
erable attention: they are the third component in percentage after lactose and lipids,
practically equal to proteins, and are being investigated for their use as functional com-
ponents. A baby that consumes 800 mL of milk would take 10 g of oligosaccharides per
day [66]. The synthesis of HMOs is very energy-expensive for the mother and this can only
be understood taking into account the human reproductive strategy of a large contribution
from the parents to raise relatively few babies for a long period. Breast milk is unique in its
diverse and complex composition of HMOs.

Up to 200 different HMOs have been identified, which can contain five different
monosaccharides (glucose, galactose, N-acetylactosamine, fucose, and sialic acid). They
all carry lactose at their reducing end, which can be fucosylated or sialylated into small
HMOs, or elongated with disaccharides to form larger HMOs ranging in size from 3 to 32
sugars [5]. They are different from those found in the milk of any other mammal; bovine
milk, the base for most infant formulas, is 1000 times lower in concentration [67].

The structures of HMOs vary according to maternal genetics, consequently, the com-
position of HMOs in the milk of women varies significantly [68]. In addition to genetics,
other maternal factors such as age or diet cause different composition profiles in HMOs.
These differences have been related to the microbiome of breast milk, which could even be
predicted by knowing its HMOs [69].

Since the oligosaccharide composition orchestrates the development of the infant’s in-
testinal microbiota, it could be related to short-term infant health outcomes, but it could also
have long-term consequences for health status and risk of disease later in life (Bode 2015).
HMOs can be considered as constituents of an innate immune system by which the mother
protects her baby through breastfeeding [70].

Once ingested, the HMOs from breast milk reach the distal area of the small intestine
and colon practically intact. They are recognized probiotic agents (the first in the human
diet) that stimulate the growth of beneficial microorganisms, mainly of the genus Bifi-
dobacterium (dominant species in breastfed infants) and, to a lesser extent, some strains of
Bacteroides and Lactobacillus. As these bacteria specifically express sialidases and fucosi-
dases, it is believed that HMOs select these strains, since other bacteria are not capable of
using them [71]. On the other hand, maternal HMOs increase the adhesion of the selected
strains to the intestinal mucosa, improving their persistence in the mucosa and increasing
the anti-inflammatory effects on the human intestine [72].

But in addition, HMOs can protect infants by reducing the incidence of bacterial, viral,
or parasitic intestinal diseases, acting as antiadhesives in interactions with the host, in two
ways: selectively binding to pathogens or their toxins, then inhibiting its adherence to
glucan ligands on the mucosal cell surface [73] or they can bind themselves to glucocalyx
on the surface of epithelial cells [5]. These effects are complemented by their ability to
compete with viruses for C-lectin antigen uptake receptors on dendritic cells [74]. En-
tamoeba histolytica (a very common protozoan parasite in many areas of the world) also
expresses a lectin, which is an important virulence factor involved in binding to intestinal
epithelial cells. Only HMOs with a terminal galactose are able to compete and therefore be
active [5].

The partial metabolization of HMOs gives rise to “postbiotic” compounds that stimu-
late the growth of other types of butyrate- and propionate-producing flora. These short-
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chain fatty acids have a trophic effect on the intestinal barrier, stimulating mucin release
and modulating the immune system, promoting immune tolerance [75]. These strains also
keep the growth of potentially pathogenic bacteria under control by reducing the nutrients
available for potentially harmful bacteria. A direct action of HMOs in breast milk on
common bacteria in pregnant women and young children has been postulated. This bacte-
riostatic action has been demonstrated in the case of group B Streptococcus, which cannot
proliferate in a medium with sialylated HMOs. This action is synergistic with antibiotics
and extends the therapeutic utility of these molecules [76].

But HMOs not only affect directly the microorganisms, they also act by altering
the host cell responses, causing changes in the glucocalyx of epithelial cells [77] or modu-
lating the maturation of the intestinal epithelium. In addition, they affect immune cells,
reducing the expression of pro-inflammatory cytokines [78] or showing different effects
of activation and inhibition of Toll-like receptor (TLR) signaling pathways. Thus, some
maternal HMOs can inhibit TLR receptors involved in pathologies such as cystic fibrosis or
systemic lupus erythematosus. This could be the basis for the use of some of these com-
pounds for the therapeutic approach of these pathologies with nutritional contribution [79].

Although most of the benefits of HMOs are due to their local effects in the intestines
of babies, in recent years it has been shown that some are absorbed, as such or partially
metabolized, and pass into the systemic circulation. In this way they could exert their effects
beyond the intestinal lumen and the mucosal surfaces of the intestine. Thus, the blocking
of the binding of microbial pathogens to cell surface receptors has been described not
only in the intestine, but also in other sites such as the urinary tract [80] or the respiratory
tract [81].

The benefits of HMOs extend beyond the lactation period. Some studies suggest that
they could improve cognitive function. Sialic acid residues that come from these HMOs
improve brain development in animal models [82,83]. Other studies show a significant
association with decreased allergy risks [84]. Regarding benefits of the most predominant
HMOs, correlations have been established between their concentration and the incidence
of diseases such as diarrhea, necrotizing enteritis, or respiratory or urinary infections [85].

Knowing the benefits that HMOs provide to the infant, they have begun to be intro-
duced as functional components in infant formulas. However, human milk contains up
to 200 very different oligosaccharides, in monosaccharide components and in size [67].
Introducing one or even more HMOs into formulas is unlikely to be sufficient to fully mimic
all the beneficial effects associated with the complexity of the composition of human milk.
Furthermore, we must not forget that human milk is not a static fluid and the expression
of HMO changes with the stage of lactation, maternal genetic or anthropometric factors,
and even with geographical location, among other factors [86,87].

Since the beginning of this century, complex oligosaccharides such as galactooligosac-
charides (GOS), inulin-type fructans or their combination, or with mixtures of polydextrose
(PDX), and acid oligosaccharides (AOS) have been introduced into infant formulas [88].
The benefits, but also some negative aspects, of this supplementation have been high-
lighted [89,90]. Therefore, the EFSA Panel considers that there is insufficient evidence of
beneficial or adverse effects on infant health of these types of fiber added to infant and
follow-on formulas [6,91].

The oligosaccharides in the serum permeate of cow and goat milk, although less
diverse and in less quantity than HMOs [92], represent attractive alternatives [90]. To ap-
proximate its composition to HMOs, especially in terms of fucosylated oligosaccharides,
chemoenzymatic processes have been used on these by-products of the dairy industry [93].
Chemoenzymatic techniques, together with microbial metabolic engineering processes, are
currently used to produce HMO in sufficient quantities to be able to address the design of
functional and nutraceutical foods, in addition to preclinical and clinical studies to evaluate
them [94,95]. However, to emulate the biological function of HMOs, structure–function
relationships must be taken into account, which is a major challenge for the biotechnology
industry [96]. Although the synthesized HMOs show a structural identity with the natural
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ones, the introduction of these ingredients requires the evaluation and approval of the dif-
ferent administrations in the world. In Europe they must be designated as novel foods by
EFSA and in the US they must receive the GRAS rating from the Food and Drug Adminis-
tration (FDA). There are several of these synthetic HMOs already approved on the market
and some of them (2′-fucosillactose (2′-FL) and lacto-N-neotetraose (LNnT)) incorporated
in commercialized infant milk, with good results in terms of safety, tolerance, and intestinal
benefits in intervention studies [97–99]. They are also beginning to be incorporated into
products for a wider audience [96]. More HMOs are expected to be added to the interna-
tional market as the different administrations authorize them. This will improve pediatric
nutrition but may also be an opportunity to expand its use in nutraceutical applications
and improve health in human populations. Table 2 shows some of the products that are
already being used.

Table 2. Examining human milk oligosaccharides (HMOs) breast milk components used in health
applications, summary of evidences (clinical trials, cohort studies, and meta-analysis).

Component Utilization Health Effects References

2′FL Infant formula

Comparable growth to babies that
were given natural lactation.

Lower incidence of respiratory and
intestinal diseases.

[100,101]

2′FL/LNnT Nutritional
supplement for adults

Improves intestinal flora
(Bifidobacterium spp.) in patients
with Irritable Bowel Syndrome.

[102]

2′FL/LNnT Infant formula

Softened stool.
Lesser nocturnal awakenings.

Lesser bronchitis, lower respiratory
tract infections, use of antipyretics
and antibiotics. Similar metabolic

firm to babies that were given
natural lactation.

[97,98]

5. Breast Milk Proteins

Human milk proteome is very complex, with more than 1500 different compounds,
524 of which had not been previously described and their functions are unknown [103].
In addition to the lower proteolytic capacity and the higher permeability of the infant’s in-
testinal tract epithelium, as we see, the proteins in breast milk not only support the infant’s
growth, but also fulfill many other functions that ensure the maturation of the organs and
systems and provide protection against specific deficiencies and pathogens. Of the total
proteins, 83 are differentially abundant. Furthermore, some of the peptides released in their
partial digestion also show bioactivity [104,105]. In the following section, we summarize
some of these compounds used as functional components.

5.1. Caseins

As for caseins, their concentration is the lowest of all species, corresponding to the slow
growth rate of human infants [106]. We can find small amounts of αS1-casein and, to
a greater extent, β- and κ-casein, but not αS2-casein, present in bovine milk [4]. K-casein
stabilizes insoluble α- and β-caseins, forming a colloidal suspension (the casein micelle).

K-casein, as well as its glycomacropeptide hydrolyzate (GMP), are bound to complex
oligosaccharides that, similar to mucosal glucans, can bind to pathogens [105]. GMP
contains very low levels of phenylalanine and is used in food products for the nutri-
tional management of children with phenylketonuria [107,108]. Beyond its nutritional
utility, GMP has been tested to reduce glycemic response with good results in adults [109].
On the other hand, GMP can act as a bifidogenic factor [110].
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The digestion of caseins produces peptides with a wide variety of relevant proper-
ties. The inhibitory effect of the angiotensin-converting enzyme by various casein-derived
peptides is known, including the peptide known as C12 (FFVAPFEVFGK), which demon-
strated a significant reduction in systolic and diastolic blood pressure [111]. It is currently
available commercially by the company DMV International (Veghel, The Netherlands), for
the elaboration of nutraceuticals.

Angiotensin II, generated by angiotensin converting enzyme (ACE), can promote ox-
idative stress and neuroinflammation, leading to neurodegeneration and brain aging [112].
Centrally active ACE inhibitors and angiotensin receptor blockers have been suggested to
reduce the risk of Alzheimer’s or delay its progression, regardless of their blood pressure
lowering effect [113–115]. The antihypertensive tripeptide Met-Lys-Pro (MKP), derived
from bovine casein, has been tested in animal models showing potential as a therapeutic
agent for cognitive function [116]. Recently, the study by Yuda et al. [117] showed that
MKP supplementation may have the potential to improve cognitive function in adults
without dementia, with good tolerability and no treatment-related side effects, during
the 24 weeks of treatment and 2 weeks after treatment. Other peptides derived from casein
and with a high proportion of proline, such as Colostrinin®, present in human, bovine,
and caprine colostrum, modify the expression of the genes involved in the synthesis of
the b-amyloid protein, increase the expression of proteases that eliminate the accumulation
of the b-amyloid protein and improve inflammatory and oxidative damage. Colostrinin®

has shown a psychostimulatory effect in animals and humans. This peptide has been
successfully tested in Alzheimer’s patients, showing demonstrable clinical effects without
side effects [118–122]. A Colostrinin® nutraceutical (ReGen Therapeutics Ltd., London,
UK) is currently available for use in neurology and degenerative diseases. See Table 3.

5.2. Serum Proteins

Serum proteins include, but are not limited to: α-lactalbumin, lactoferrin, secretory
immunoglobulin A, lysozyme, and osteopontin.

5.2.1. α-lactoalbumin

The α-lactalbumin is a serum protein that makes up more than a third of the total
protein in human milk, unlike cow’s milk in which it is found in much lower amounts [123].
It has prebiotic activity on Bifidobacterium [124]. Furthermore, its partially digested pep-
tides also have biological activity. They bind to calcium, iron, and zinc, which increases
their absorption and exerts an antimicrobial action mainly against Gram-positive bacte-
ria [125]. These biological activities have also been verified with bovine α-lactoalbumin
added to infant formulas [126].

But most uses for α-lactalbumin stem from its amino acid composition. Tryptophan,
is a precursor to the neurotransmitter serotonin that has been linked to central nervous
system functions such as appetite, sleep, memory and learning, regulation of temperature,
mood, behavior, and maturation of neurons and synaptic connections. Cysteine, a sulfur
amino acid that stimulates the production of glutathione that plays an important role
in protecting cells against oxidative stress; and the branched-chain amino acids. Leucine,
isoleucine and valine, stimulate postprandial anabolism of muscle proteins [123]. For all
this, its addition to infant formulas makes them more similar to breast milk and supports
infant development and growth. But it is also used in adult supplements to protect muscle
mass in older adults or athletes and to modify neurological or behavioral outcomes such as
sleep and mood [127–130].

In addition, it may have clinical applications in cancer therapy or to improve immune
function. Beyond its functional activity in pediatric nutrition, the α-lactoalbumin in human
milk, known as HAMLET (α-lactoalbumin made lethal to tumor cells), exhibits anticancer
activity in around 50 different types of cancer cells for which it has been tested [131].
Microbial cultures [132] and transgenic animals [133] are used for large-scale production of
the human variant of α-lactoalbumin. HAMLET has been used successfully in oncology:
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instilled in situ before resection of tumors in the bladder, improving the prognosis of this
type of cancer [134]; in topical application in papillomas, achieving complete remission of
lesions in more than 90% of treated patients and without significant side effects [135].

Another possible therapeutic application of α-lactoalbumin is in the treatment of
epilepsy. This protein has been shown to be effective in some animal models of epilepsy
and epileptogenesis [136–138] and in patients with epilepsy [139,140].

5.2.2. Lactoferrin

Lactoferrin is a multifunctional glycoprotein that occurs in high concentrations in
colostrum and, although in lower concentrations, in mature milk. It plays a very impor-
tant role in protection against pathogens (bacteria, fungi, and viruses) and in immune
regulation [139,140].

The antimicrobial effect was the first protective activity of lactoferrin to be identified.
It is a protein of the transferrin family that has a low degree of iron saturation, which makes
it retain the necessary iron as a growth factor for pathogens, hence its bacteriostatic effect.
Iron sequestration has also been related to the prevention of biofilm formation [141] and
its activity against fungi [142]. Its bactericidal action does not depend on iron but on its
direct interaction with the lipoteichoic acid of Gram-positive bacteria or the liposaccharides
of Gram-negative bacteria. The action of lactoferrin against Gram-negative bacteria is
synergistic with lysozyme, which is also present in breast milk in relatively high concentra-
tions. Complexes formed with the bacterial lipopolysaccharide (negatively charged) create
holes in the outer membrane through which lysozyme penetrates the outer membrane,
thus gaining access to and degrading the proteoglycan matrix, resulting in bactericidal
action [143]. The amebicidal action of lactoferrin is also explained by its binding to the lipid
membrane of the parasite, which causes its alteration and damage [144]. The antiviral
activity of lactoferrin has also been studied a lot, but above all these are in vitro studies
and not so many clinical trials. Some of the mechanisms have been identified, such as
the inhibition of viral adhesion to the host cell, preventing the virus from entering the cell,
through direct binding to the virus surface or the removal of iron [145]. But lactoferrin
has also been found in the cell nucleus, so its action could also be intracellular [146]. Early
breastfeeding has recently been postulated, due to its high lactoferrin content, as protection
against coronavirus infection [147].

The direct antimicrobial properties of lactoferrin are complemented by immunomodu-
latory properties due to its ability to interact with numerous cellular and molecular targets.
At the cellular level, it modulates the migration, maturation, and functions of immune
cells. At the molecular level, in addition to iron binding, interactions with the cell surface
explain its modulating properties [148]. Lactoferrin has shown to be a promising agent for
reducing prevalent pathologies in neonates [149].

Being an iron-binding glycoprotein, it is hypothesized that lactoferrin plays a key role
in the homeostasis of this mineral. A specific receptor for lactoferrin has been detected
in brush border cells, which would explain the greater efficiency in the absorption of this
mineral [150].

Lactoferrin is very similar between species, and the homology between human and
cow’s milk is 77%. The purification of bovine lactoferrin [151] has allowed the use of
bovine lactoferrin in infant formulas and this supplementation provides multiple benefits
in the prevention of infections in newborns, premature and term, as well as in the reduction
of morbidity and mortality [141]. As examples of benefits shown in clinical trials in infants,
we can cite: the content of total body iron and the intestinal absorption of iron in the intes-
tine in babies increases significantly when they are fed with formula milk fortified with
bovine lactoferrin [152]; it was effective in reducing the risk of infection during the first
12 months of life [153]; it reduced the incidence of bacterial sepsis in very underweight
preterm infants in the first 45 days of life by 70% compared to placebo treatment in a large
randomized study [154]; also the incidence of fungal sepsis in premature infants was
reduced with supplementation with bovine lactoferrin [155]; prophylactic administration
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reduced both the duration and severity of diarrhea for 6 months [156]; more recently,
the consumption of bovine lactoferrin in the first 10 days of life has been directly associated
with less late-onset sepsis, less necrotizing enterocolitis, and lower mortality [157].

Large-scale production of recombinant human lactoferrin, in Aspergillus awamori
(Agennix, Houston, TX, USA), rice (Ventria Bioscience, Sacramento, CA, USA), and trans-
genic cows (Pharming, Leiden, The Netherlands), has allowed the performance of multiple
clinical trials that demonstrate its potential as an antimicrobial agent with clinical effi-
cacy in the treatment of infectious diseases in humans. Recombinant human lactoferrin
has been shown to act in vitro against pathogens such as E. coli, Staphylococcus aureus,
Pseudomonas aeruginosa, Helicobacter pylori, Bacillus subtilis, Vibrio cholerae, and Candida al-
bicans [158]. But it also inhibits the in vitro replication of human cytomegalovirus, HIV,
herpesvirus, hepatitis B and C, hantavirus, human papillomavirus, rotavirus, adenovirus,
and influenza A [146]. Preterm infants who receive it, show a trend toward lower infec-
tious morbidity and changes in the fecal microbiome [159,160]. However, more trials are
needed to demonstrate the efficacy of lactoferrin supplementation for the treatment of
sepsis and necrotizing enteritis in preterm infants [161,162]. The efficacy of recombinant
human lactoferrin supplementation was also demonstrated in adults: reducing mortality
in adults in intensive care due to severe sepsis [163]; increasing the efficacy of H. pylori
eradication therapies [164], decreasing postantibiotic diarrhea in elderly patients [165];
increasing the efficacy of standard interferon (IFN) and ribavirin therapy in hepatitis C
and other viral infections [166] or reducing the symptoms and duration of the common
cold [167].

Anti-inflammatory, antioxidant, immunomodulatory, and antitumor activities are
known in vitro [168] and in animal studies [169]. Additionally, it can be internalized into
the cell nucleus, the site of action of most anticancer drugs, and has been used as a targeting
ligand to achieve active delivery of anticancer drugs to tumor tissue [170]. Regarding clini-
cal trials: oral consumption of 3 g/day bovine lactoferrin significantly affected the growth
of adenomatous polyps in the colon [171]; administration of human recombinant lacto-
ferrin increased survival, in a randomized double-blind placebo-controlled study, in an
average of 65% of patients with advanced stage non-small cell lung carcinoma [172]; it also
showed marked improvements in overall survival as an adjunct to standard chemotherapy
in patients with newly diagnosed lung cancer [173] and with breast cancer [174].

5.2.3. Human Milk Secretory Immunoglobulin A (IgAs)

For IgAs and lysozyme, protection of the infant against pathogens is the only sig-
nificant bioactivity [175]. Human colostrum can contain antibody concentrations of up
to 12 g/L. In mature milk, this ability to provide robust protection against pathogens is
preserved with approximately 1 g/L of milk immunoglobulin [176]. IgAs present in hu-
man milk is resistant to protein digestion and is found intact in the intestines of breastfed
babies. Its action against pathogens is based on immune exclusion that mainly involves
T-cell-dependent monoclonal antibodies with high specificity toward the pathogen’s sur-
face antigens. But also, it has a non-specific antipathogenic activity promoting the initial
development of the newborn’s microbiota. Although the intestinal mucosa is capable of
producing IgAs, the amount found in the intestine of naturally fed children exceeds that
of formula-fed children. In addition, the infant receives antibodies against the antigens to
which her mother has been exposed [105,177].

Repeated inoculation of an antigen into gestating dairy cows can stimulate increased
production of high levels of colostral immunoglobulin against that target antigen, result-
ing in hyperimmune bovine colostrum (HBC). HBC has been used successfully to treat
diarrhea in children [178] and for specific antimicrobial prophylaxis in a cohort of healthy
adults [179]. It has also demonstrated its efficacy in the treatment, or as a preventive
element of potentially fatal pathogens, in vitro and with animal models, such as C. difficile,
Cryptosporidium, E. coli, Shigella, rotavirus [180–182], and AIDS virus [183]. HBC is avail-
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able in Australia as a tablet (Travelan®) for the prevention of traveler’s diarrhea (Anadis,
Campbellfield, Victoria, Australia).

5.2.4. Osteopontin

It is a highly glycosylated and phosphorylated protein whose concentration in breast
milk is relatively high (140 mg/L) [184] and its role has been studied not only in bone
remodeling, but also in the modulation of inflammation and immune function [104].

Osteopontin may act as a carrier for lactoferrin and thus cause other immunomodula-
tory proteins to further enhance immune competence [185].

Although it is not currently added routinely to formulas, the addition of osteopontin
to infant formula, at concentrations similar to human milk, resembles the innate and
adaptive immune responses to those of naturally fed babies. Thus, at four months of age,
babies breastfed naturally or fed a formula supplemented with osteopontin, have fewer
episodes of fever and a less pro-inflammatory immune response (they showed lower levels
of pro-inflammatory TNF-α and higher levels of interleukin-2) compared to the standard
formula group [105]. Higher TNF-α levels in formula-fed infants, compared to breastfed
infants, have been interpreted as a pro-inflammatory immune response to early formula
feeding [186]. The immunomodulatory function of osteopontin has been confirmed in other
clinical trials [187].

Other neurodevelopmental functions of this protein have been highlighted in animal
trials [188].

5.2.5. Bile Salt Stimulated Lipase (BSSL)

In infants, the digestion of triglycerides is carried out by gastric lipase, pancreatic
lipase, and the BSSL, a very abundant lipase in human milk. The BSSL compensates
for the limited capacity of pancreatic enzymes in the first months of life. This lipase is
inactive until the chyme reaches the duodenum and comes into contact with bile salts,
hence its name. Its lipolytic activity has been demonstrated against cholesterol esters,
fat-soluble vitamin esters, galactolipids, and ceramides [189]. Pasteurization of human
milk inactivates it, which explains the lower weight gain of infants fed with heat-treated
donor milk [190]. This enzyme is not detected in cow’s milk. The option for incorporation
into infant formulas is recombinant bile salt-stimulated lipase, produced by human cell
culture. The addition of recombinant human BSSL to pasteurized breast milk or infant
formula improves growth rate and the absorption of long-chain polyunsaturated fatty acids
in premature infants [191] and small for gestational age infants [192]. Apart from its effects
on nutrition, BSSL has been shown in vitro to act as a decoy receptor for human calicivirus
strains and may provide some protection against gastroenteritis due to norovirus infection
in infants [193]. Furthermore, it can bind to specific dendritic cells and reduce the risk of
HIV infection in vitro [194].

6. Non-Protein Nitrogenous Compounds

The non-protein nitrogen fraction represents approximately 25% of the total nitrogen
and comprises many bioactive molecules. As we have said before, 10–15% are endogenous
peptides and the remainder comes from urea, nucleotides, carnitine, creatine, free amino
acids, DNA, and RNA [195].

6.1. Free Amino Acids (FAAs)

In addition to proteins, human milk contains free amino acids (FAAs), which are
a good source of nitrogen for the infant. They are directly available for absorption with-
out prior digestion. The protein-bound form, for each individual AA, decreases during
lactation, in correlation with the baby’s protein needs for growth [196]. On the contrary,
the levels of FAAs show dynamics during lactation that are highly specific for each AA:
while the levels of some FAAs decrease in the first 3 months of lactation, others remain
stable or increase sharply. Surprisingly, these dynamics of FAAs during lactation are a con-
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stant worldwide. This fact suggests that they are tightly regulated throughout infancy and,
consequently, that they may have specific functions in the developing neonate. Thus, glu-
tamine, glutamate, glycine, serine, and alanine, constantly increase in the first 3 months of
lactation. The levels of most other FAAs remain relatively stable throughout infancy [197].

Glutamate and glutamine are the most abundant FAAs. Gestational age is a deter-
mining factor in the levels of free glutamine in breast milk. In the first month of lactation,
the levels of free glutamine in the milk of premature mothers are almost three times lower
than those observed in full-term milk. The levels of all other FAAs do not vary with
gestational age [198]. In newborns, dietary glutamine and glutamate are trophic factors
of intestinal epithelial cells. Therefore, they will improve the function of the intestinal
barrier and influence the development of immune cells. They have also been found to
exert anti-inflammatory effects and modify the intestinal microbiota, which could play
a role in allergic sensitization [199]. The findings that relate glutamate and glutamine
levels with child anthropometry are also surprising, they are positively associated with
increased height and weight in infants [200]. Along these lines, it has been found that milk
for boys (who gain more weight and height in this period) tends to have higher levels of
free glutamine and glutamate than milk for girls in the first 3 to 4 months of lactation [201].
The estimated free glutamine intake in breastfed infants is up to 4.5 times higher than
the acceptable daily intake (ADI) established by the EFSA [6] for infants, therefore some
authors believe that, since there is no reason to assume that breast milk feeding is unsafe for
infants, setting an ADI below the normal intake range with a safe diet such as breastfeeding
seems inappropriate [202].

Breast milk is not only adapted to the nutritional and immunological needs of the in-
fant, its composition also varies throughout the day. Circadian fluctuations in some
bioactive components, such as tryptophan, transfer chronobiological information from
the mother to the child to aid the development of the biological clock [203]. Could we think
of a future in infant formulas formulated by sex and for day and night?

Formula-fed infants exhibit faster weight gain, a different fecal microbial profile,
as well as elevated levels of serum insulin, insulin growth factor 1 (IGF-1), and branched-
chain amino acids. Since infant formula contains more protein and fewer free amino acids
than breast milk, these are believed to be key factors that explain phenotypic differences
between infants. A preclinical study in Rhessus monkeys fed low-protein and high-FAA
formula, similar to breast milk, has advanced that, although the growth and metabolic
performance of infants was more similar to naturally fed infants, it was not enough
to reverse the accelerated growth and specific insulin-inducing phenotype of artificial
formulas [204].

6.2. Taurine

Taurine, a derivative of cysteine that contains the thiol group, is the only known
natural sulfonic acid. It is classified as an amino acid but, lacking the carboxyl group, it is
not strictly one. The presence of taurine has been determined in some small polypeptides.
But so far, no aminoacyl tRNA synthetase, responsible for incorporating it into tRNA, has
been identified [205].

It has been shown that, in newborns, the hepatic activity of certain enzymes that
participate in the metabolism of taurine is limited. So an exogenous contribution of this
amino acid is essential. Taurine is very abundant in breast milk. Its presence is especially
relevant in excitable tissues, in cells that originate oxidizing substances, and in those
organs where a large amount of toxic products are generated. It reaches particularly
high concentrations in the central nervous system (even higher in newborns and during
the first months of life), in the retina, and in granulocytes. Due to its osmoregulatory ability,
elevated taurine concentrations in the brain, such as those seen in breastfed infants, are
considered to be able to protect the nervous system from adverse effects due to both hypo
and hyperosmolarity [206]. Preterm infants are more vulnerable to taurine deficiency due
to low endogenous synthesis capacity and increased kidney loss [207]. It can also aid in fat
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absorption through its conjugation with bile acids. In fact, children who eat enough of it,
absorb fat better [208].

Breast milk has the right amount of taurine to protect brain cells from osmotic imbal-
ances and oxidative stress. Cow’s milk, the basis for formulating artificial milk, is deficient
in taurine. The use of infant formulas that are poor in this nutrient has been associated
with vision and hearing problems, as well as decreased bile acid secretion, reduced fat
absorption, and liver cholestasis [208]. There are no studies linking the addition of taurine
to formulations with problems in children, and most marketed infant formulas add taurine
to breast milk levels. However, EFSA does not consider its addition necessary [6].

6.3. Carnitine

Carnitine, produced from the amino acids lysine and methionine, is an important and
highly available component of human milk [209]. The main function of carnitine is to facili-
tate the transport of long-chain fatty acids through the mitochondrial membrane, facilitating
their metabolism. In the newborn, it favors the use of fatty acids, inhibits neoglycogenic
muscle proteolysis [210], and would have a neuroprotective effect [211]. In infants, plasma
carnitine concentrations decline markedly shortly after birth [212] and this fact increases
the importance of exogenous carnitine supplementation. The ESPGHAN (European Society
for Pediatric Gastroenterology, Hepatology and Nutrition) has recommended since 1991
that formulas for low-weight newborns contain L-carnitine in concentrations at least similar
to those in human milk [213].

6.4. Polyamines

They are molecules of small size, metabolically derived from certain amino acids, with
a size similar to theirs, that have polycationic nature, with positive charges due to their
content of ionized amino groups. Polyamines are important for the growth of various
organ systems, and are also involved in the differentiation of cells of the immune system
and the regulation of the response to inflammatory changes, such as immunoglobulin A
levels and the relative increase in intraepithelial lymphocytes [214]. Furthermore, they
are maturation factors for the small intestine as they decrease intestinal permeability to
macromolecules and reduce the frequency of food allergies in children [215,216]. Human
milk contains biologically active polyamines such as putrescine, spermidine, and spermine
and is the first and only source of these compounds for infants [217]. These compounds are
often not included in infant formulas and the concentration of polyamines is about 10 times
lower than in human milk [218]. However, in animal studies, it has been observed that
polyamine supplementation may resemble the effect of breastfeeding on the gastrointestinal
microbiota and immune system development [219].

Table 3. Examining nitrogenous components of breast milk used in health applications, summary of
evidences (clinical trials, cohort studies, and meta-analysis).

Component Utilization Health Effects References

GMP Nutritional
supplement

Nutritional management of
phenylketonurics.

Reduction of the glycemic response
in adults.

[108,109]

Casein derived
peptide, C12 Nutraceutical Significant decrease in systolic and

diastolic blood pressure. [111]

Casein derived
peptide, MKP Nutraceutical

Improves cognitive function in adults
without dementia, with good tolerability

and without secondary effects.
[117]

Casein derived
peptide

(Colostrinin®)
Nutraceutical

Demonstrable clinical effects, without
secondary effects, in patients with

Alzheimer.
[119,120,122]

Hydrolyzed casein
(Ditriamino®) Nutraceutical Action against Papillomavirus. [220]
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Table 3. Cont.

Component Utilization Health Effects References

Bovine
α-lactoalbumina Infant formula

Increases absorption of iron.
Similar growth to those that were given

maternal lactation.
[126,221]

Bovine
α-lactoalbumina

Nutritional
supplement

Protects la muscle mass in adults or
athletes.

Improvements in sleep and state of mind.
[127–130]

HAMLET
Pharmaceutical
preparation for

bladder instillation
Improved prognosis in bladder cancer. [134]

HAMLET

Pharmaceutical
preparation for topic

application
in condylomas.

Complete remission of treated injuries
in more than 90% of patients treated,
without significant secondary effects.

[135]

Bovine lactoferrin Infant formula

Increase in absorption of iron.
Decrease of bacterial sepsis risk, lesser

necrotizing enterocolitis, lesser diarrhea,
and lower mortality.

Lower incidence of fungal sepsis
in premature babies.

[152–157]

Human recombinant
lactoferrin

Nutraceutical for
children

Premature babies that receive it show
a tendency to lower infectious morbidity

and changes in fecal microbiome
[159,160].

[159,160]

Human recombinant
lactoferrin

Nutraceutical for
adults

Decrease in mortality of adults with
severe sepsis.

Increase of efficacy of H Pylori
eradication therapies.

Decrease of post antibiotic diarrhea
in patients of advanced age.

Increase of efficacy of standard interferon
therapy (IFN) and ribavirin in hepatitis C

and other viral infections.
Reduction of symptomatology and

duration of common colds.

[163–167]

Human recombinant
lactoferrin and

lysozyme

Nutraceutical for
children

Treatment of acute diarrhea in children
and improvement of intestinal health

in general.
[222,223]

Hyperimmune Bovine
Colostrum, HBC Travelan® tablets Prevents traveler’s diarrhea. [179]

Bovine osteopontin
(Lacprodan® OPN-10) Infant formula Fewer episodes of fever and a less

pro-inflammatory immune response. [187,224]

Bile Salt Stimulated
Lipase (BSSL)

Infant formula and
pasteurized human

milk

Improves growth rate and PUFA
absorption in premature infants and
small-for-gestational-age newborns.

[191,192]

Glutamine Enteral supplement Reduces invasive infection rates without
affecting growth or mortality. [225]

7. Growth Factors (GFs)

Breast milk is rich in GFs, that seem to play an important role in the first moments
of life, favoring the growth and development of the child. Some are found in higher
concentrations in colostrum and others increase their concentration in mature milk [7].

GFs withstand the conditions of the infant’s digestive system and reach the blood-
stream intact, being able to reach the target organs in a bioactive form. Among them, we can
mention epidermal growth factor (EGF), also present in amniotic fluid, brain-derived neu-
rotrophic factor (BDNF), insulin-like growth factor type I (IGF-I) or transforming growth
factor (TGF-β).

EGF is found in the infant’s intestine, where it plays a role in intestinal maturation and
repair [226]. It can limit the spread of enteric pathogens and potentially prevent systemic
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infections in newborns. Furthermore, it has effects on various organs and systems through
the activation of the growth factor receptor on neonatal epithelial cells [227].

BDNF is a protein that, along with another related protein, ciliary neurotropic factor
(CNTF), are detected in breast milk for up to 90 days after birth. The content of neurotrophic
factors and cytokines in human breast milk could influence the postnatal development of
the enteric nervous system. The potent modulatory role in enteric neuronal activity and
synaptic communication of BDNF is capable of enhancing enteric nervous system signaling
and thus promoting intestinal peristalsis, which is often poor in the preterm infant [228].

IGF-1 factor is a single chain 70 amino acid polypeptide, is a member of a superfamily
of insulin-like hormones, and acts as the main mediator of growth hormone, playing
a very important role in regulating human growth [229]. IGF1 is found in human milk,
in a bioactive form in the intestine of breastfed infants and in their blood serum at higher
concentrations [195]. Very recent research links its concentration in human milk with
an important role in defining infant growth trajectories beyond the first year of life [230] and
supports previous studies that highlighted its importance in infant growth and regulation
of fat accumulation during childhood [231].

The concentration of TGF-β in breast milk shows a positive correlation with the pro-
duction of immunoglobulins [232], induces antigenic tolerance during colonization of
the neonatal intestine [233], and attenuates the inflammatory response [234]. TGF-β has
been associated with a lower risk of respiratory disease and neonatal allergy [235]. The util-
ity of this GF in immunology has been demonstrated in experimental animal studies [235]
and clinical trials [236,237]. However, in 2019, a systematic review concluded that differ-
ences in the methodology and results of the studies do not allow unconditional rejection or
acceptance of the hypothesis that TGF-β influences the risk of developing allergy [238]. Its
use has also been tested in Crohn’s disease [239,240]. An enteral nutrition formulation is
currently available for the primary treatment of pediatric Crohn’s disease or as an adjunct
or alternative treatment for Crohn’s disease in adults (Modulen IBD, Nestlé Nutrition).
The results of clinical trials in patients indicate that nutritional supplementation with
TGF-β improves nutritional and inflammatory patterns (histological parameters and CRP
levels) and produces an improvement in the fecal microbiome associated with disease
remission [241,242], see Table 4.

8. Exosomes

Milk exosomes are secreted by the epithelial cells of the mammary glands and are
also released from milk fat globules during lactation [243]. They are vesicles released
by cells that contain various types of lipids, proteins, as well as genetic material such as
microRNA [244]. The encapsulation of these molecules confers them protection against
digestive degradation, and they can also be captured by cellular endocytosis and me-
diate the delivery of these charges to the recipient cells. The bioactive cargo molecules
transporting by exosomes affect immunity, growth and development, cell proliferation,
and apoptosis or differentiation of progenitor cells in the lung epithelium [245–249]. The bi-
ological and nutritional importance of the lipids and proteins of the exosomes of breast
milk also remains to be discovered [250].

Although exosomes were first extracted and characterized from human colostrum
and breast milk [251], they can be obtained, on a significant scale, from bovine milk and
show tolerance between species [252]. For this reason, its therapeutic potential has begun
to be tested in autoimmune and inflammatory diseases [253]. As natural carriers of en-
dogenous biomolecules, milk exosomes have notable advantages over other drug delivery
vehicles [249]. As they are not degraded by digestion, they could be used for the oral
absorption of drugs conventionally administered intravenously such as chemotherapeutic
agents [254] or as small molecules that will thereby increase their bioavailability [255]. Milk
exosomes are also used for the administration of siRNA, thus avoiding its degradation
by nucleases in blood serum. In this way, they are taken up by cancer cells and silence
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the target genes [256]. Table 4 shows some recent clinical applications of exosomes obtained
from bovine milk.

9. Microorganisms

In the 1920s it was already known that breast milk contained bacteria (Dudgeon and
Jewesbury 1924). But until not many years ago it was assumed that the bacteria that were
isolated were contaminants from the baby’s oral cavity, from the mother’s skin, or from
utensils in contact with her. In the past decade, in addition to bacterial culture, multiple
methods have been used to determine the microbiota of breast milk. Thus, with a different
approach to culture, there have been used techniques such as PCR (polymerase chain
reaction), PCR-DDGE (PCR-denaturing gradient gel electrophoresis), MALDI-TOF-MS
(matrix assisted laser desorption ionization-time of flight mass spectrometry), 16S rRNA
gene amplicon sequencing or shotgun metagenomic sequencing, in a large number of
investigations. These works are allowing us to know the amazing diversity of the breast
milk microbiome, which includes: potentially beneficial, commensal and probiotic bac-
teria [257–259]. The studies reviewed by Zimmermann and Curtis indicate more than
1300 species, with the predominant genera Staphylococcus, Streptococcus, Lactobacillus, Pseu-
domonas, Bifidobacterium, Corynebacterium, and Enterococcus, but it also contains archaea,
fungi, and viruses [260].

In human milk we find a microbiota of maternal origin and another that we could con-
sider exogenous. Regarding microorganisms of maternal origin, bacteria from the maternal
gastrointestinal and oropharyngeal tract could translocate and migrate to the mammary
glands through an endogenous cellular pathway (the enteric and oro-mammary tract).
The diversity of the microbiota of this origin is influenced by diet, mother’s lifestyle, medi-
cation, permeability of her intestinal mucosa, as well as her periodontal health. The mi-
crobiota of the mammary gland is another source of microorganisms on which mastitis,
previous pregnancies, or even cancer has an influence. Regarding the exogenous origin,
the existence of a retrograde translocation of bacteria from the child (which would be
influenced by sex or the type of delivery) has been postulated. This exogenous source
should be added to the contaminating flora of the utensils in contact with breast milk
or the extractor device used in the extraction. As we can see, depending on the origin,
maternal or exogenous, there will be different factors that would influence the diversity of
microorganisms [261–264]. In 2020, Zimmermann and Curtis systematically summarized
the factors that influence the microbiota of breast milk, concluding that: if the delivery is
preterm, the Lactobacillus and Bifidobacterium strains increase; if the delivery is vaginal,
the diversity is greater and the composition is different than when a cesarean section occurs;
when it comes to children there is more diversity of genders and a decrease in Staphylococcus
and an increase in Streptococcus is observed; parity increases diversity; the use of antibiotics
in childbirth increases diversity but decreases the number of colony-forming units and
reduces Lactobacillus and Bifidobacterium; the composition of the microbiota changes with
the stage of lactation; in colostrum there are more microorganisms; Mastitis decreases
the diversity of flora and changes composition, which also varies with geographic location,
collection method, and type of feeding (direct to the breast or using a bottle) [260].

Today, the microbiome is considered one of the main functional assets of human milk
(breastfed babies ingest up to 800,000 bacteria per day) [265]. It is the second source of
microorganisms for the infant, after exposure to the vaginal and fecal maternal microbiota
in the birth canal, when this occurs vaginally [266]. The transfer of bacteria from mother
to child has been widely described [267] and has a strong impact on the colonization of
the intestine of the breastfed infant [263,268–271]. Many epidemiological studies have
documented differences in the composition of the intestinal microbiota in breastfed and
formula-fed infants [272]. But it also has an impact on the colonization of its oral cavity [269]
and its respiratory tract [273].

Breast milk provides a very important source of microorganisms, but also of bioactive
factors that modulate the establishment of a beneficial microbiome for the present and
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future health of the child [274–276]. Among these biofactors, are HMOs, determined in part
by the maternal genotype [70,274]. HMOs orchestrate the development of the microbiota by
playing a role in preventing pathogenic bacterial adhesion, as well as providing nutrition
for microorganisms. Other components of human milk, such as exosomes (which carry
a diverse load, including mRNA and microRNA), in addition to cytosolic and MFGM
proteins, may also play a significant role in the development of the infant microbiome [258].

WHO recommends exclusive breastfeeding for the first six months [277]. During
this time, a microbial imprint will be established that may have long-term health implica-
tions [258,266,278–281]. Indeed, strong associations have been established between whether
adults had been breastfed as infants and their microbiome at various sites in the body [282].
The benefits of breastfeeding make the isolation of strains from breast milk for their subse-
quent use a preferential focus of attention.

Probiotic function is understood to be the ability to colonize the neonatal intestine,
resist stomach acid and bile salts, adherence to the intestinal mucosa, induction of anti-
inflammatory responses, inhibition of pathogens by production of antimicrobial substances,
and stimulation of the immune system [283]. The potential probiotic function of the strains
isolated from the maternal microbiota has been widely investigated [276,284–290].

Among the microbial colonizers of early life, mainly the strains of the genera Bifidobac-
terium (infantis, breve, animalis) and Lactobacillus (plantarum, rhamnosus, salivarius,
reuteri, gasseri, fermentum), but also Streptococcus, Enterococcus, Bacillus, Escherichium,
Propionibacterium, Lactococcus and yeasts (Saccharomyces), have been considered as
probiotics with a wide range of health benefits [291–294].

Dysbiosis that lead to inflammation could be avoided if we understand the mech-
anisms by which the microbiota settles in the child and impacts on the child’s immune
development. By modulating the maternal microbiome, we could perhaps improve the mi-
crobiome of the breast milk. This and other possible interventions to improve the beneficial
properties of breast milk are and will be a very important focus of research in the coming
years. The existence of the entero-mammary route of microbial transfer opens the possibil-
ity of modulation of the infantile intestinal microbiota through supplementing the mother
with probiotics [295]. In the ProPACT study (Probiotics in the Prevention of Allergy be-
tween Children in Trondheim), maternal supplementation during pregnancy and lactation
was used to increase the prevalence and relative abundance of the probiotic strains used
in the study, in the feces of the mothers and of their children, in addition to reducing by 40%
the cumulative incidence of atopic dermatitis among offspring at 2 years of age [295,296].
This entero-mammary route could also explain the emerging use of lactobacilli strains
from human milk as a prevention strategy or even as an alternative to antibiotics to treat
lactational mastitis [297].

Bifidobacterium is the most abundant genus in the intestine of the naturally fed infant
and has been considered a marker of healthy development of the microbiota [298]. Some
factors such as maternal overweight [299], premature birth, cesarean delivery or early use
of antibiotics [300] are known to prevent adequate colonization of the baby’s intestine with
bifidobacteria. For this reason and due to their symbiotic relationship with the oligosac-
charides in breast milk, bifidobacteria are considered ideal probiotics for babies and are
already used in currently marketed infant nutrition products.

The European Commission has favorably evaluated the addition of probiotics in infant
milk, provided that its benefit and safety have been evaluated by controlled, double-blind
clinical studies [301]. B. animalis subsp. lactis INL-1 [302] and L. plantarum 73a [293] isolated
from breast milk are being tested as potential probiotics in complementary strategies for
the prevention of childhood obesity [294]. These strains and others that have scientific
evidence that supports their use in the prevention or improvement of different health
problems, are presented in Table 4.
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Table 4. Examining other breast milk components used in health applications, summary of evidences
(clinical trials, cohort studies, and meta-analysis).

Component Utilization Health Effects References

TGF-β
Modulen® IBD

Nutraceutical for
children and adults

Improvement of nutritional and
inflammatory patterns Crohn’s

disease. Changes in the fecal
microbiome associated with

remission of the disease.

[241,242]

Bovine milk exosomes Drug delivery systems

Possibility of using intravenous
drugs by mouth.

Increased bioavailability of small
molecules.

Improvements in the effectiveness of
anti-cancer drugs.

Decreased off-target antitumor
effects.

[303–306]

B. animalis ssp. lactis
Bb-12 Infant formula

Prevention of diarrhea.
Improved intestinal health markers.

Prevention of NEC, sepsis,
and all-cause mortality among

preterm infants in preterm infants.

[307–310]

B. infantis Bb-02 Nutritional supplement
Prevention of NEC, sepsis,

and all-cause mortality among
preterm infants in preterm infants.

[309,310]

B. breve CECT7263 Infant formula Decreases the incidence of diarrhea. [311]

L. rhamnosus GG (LGG)
ATCC 53103, ATC
A07FA and Lcr35

Nutritional supplement

Reduction in the duration of infant
diarrhea.

Prevention of NEC, sepsis,
and all-cause mortality among

preterm infants in preterm infants.

[310,312]

L. reuteri
DSM 17,938 and ATCC

55730
Nutritional supplement

Effective in the prevention and
treatment of infant colic.

Reduction in the duration of infant
diarrhea.

Reduction in the frequency of
respiratory infections.

[313–315]

L reuteri
DSM 17938 Infant formula It modulates the intestinal flora

in children born by cesarean section. [316]

L. fermentum CECT5716 Nutritional supplement
for nursing mothers

Improved growth and health of
the infant.

Prevention and treatment of mastitis.
[317,318]

L. fermentum CECT5716 Infant formula Decreases the incidence of diarrhea. [311]

LGG, Bb-12 and L.
acidophilus La-5

Nutritional supplement
for pregnant and
nursing mothers

Decrease in the incidence of atopic
dermatitis. [295,296]

10. Concluding Remarks

Breast milk is a complex matrix that contains a large number of bioactive components,
with a distribution and organization that is not accidental. The excellent tolerability and
absence of side effects of compounds derived from human milk is an obvious advan-
tage. However, the difficulty of isolating and producing these bioactive substances on
an adequate scale slows down the progress toward preclinical-clinical research and their
nutraceutical application. Dairy components isolated from milk of other species such as
bovines, transgenic cattle, or microbial cultures are used.

The study of specific structures with clear functional activity that are present in breast
milk, allows the development and/or improvement of infant formulas. To bring them
as close as possible to breast milk, attempts are made to reproduce the microstructure of
functional MFG emulsions. Also, formulas are enriched with components of breast milk
such as β-palmitate, ARA, DHA, taurine, or carnitine. In addition, dairy fractions have
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been isolated from bovine milk with bioactive components and are now commercially avail-
able. Among these components are MFGM, α-lactalbumin, lactoferrin, and osteopontin.
Chemoenzymatic processes have been used in these by-products of the dairy industry to
approximate the oligosaccharides of the cow and goat serum permeate to HMOs, especially
in terms of fucosylated oligosaccharides. Furthermore, engineered microbial systems are
currently used to produce HMO in sufficient quantities. Some strains of Bifidobacterium
and Lactobacillus present in breast milk are added to artificial formulas. However, we are
still a long way from replicating the complexity of human milk and many questions about
its clinical implications remain unanswered. The research findings in this field should
serve, above all, as another compelling reason to encourage and support breastfeeding as
the “gold standard” in infant nutrition.

Apart from infant formula, breast milk bioactive compounds can be used in other
food products, nutritional supplements, nutraceuticals, or they can even lead to opportuni-
ties for translational medicine. Thus, 2’FL and LNnT HMOs are included in nutritional
supplements to improve intestinal flora in adults with irritable bowel syndrome. Some
casein-derived peptides are incorporated into nutraceuticals to help patients with patholo-
gies as diverse as hypertension or cognitive impairment. Bovine α-lactalbumin is used
in older adults or in athlete supplements to protect muscle mass and to modify neurolog-
ical or behavioral outcomes such as sleep and mood. Microbial cultures and transgenic
animals are used for the large-scale production of HAMLET (α-lactalbumin lethal to tu-
mor cells), which is used in pharmaceutical formulations against cancer. Recombinant
human lactoferrin and lysozyme are used in nutraceutical preparations as antimicrobial
agents with clinical efficacy in the treatment of infectious diseases in humans. HBC has
been used successfully for specific antimicrobial prophylaxis in healthy adults and to treat
diarrhea in children. Adding recombinant human BSSL to pasteurized breast milk or infant
formula improves growth rate and absorption of long-chain PUFAs in premature infants.
The TGF-β present in human milk improves the nutritional and inflammatory pat-terns of
Crohn’s disease. But also, exosomes from bovine milk are used as drug delivery systems.
Finally, we must not forget the probiotic strains isolated from breast milk that are used
in the prevention and treatment of diarrhea and mastitis.
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