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Abstract: This paper presents the experimental and numerical study of the laminar burning velocity
and pollutant emissions of the mixture gas of methane and carbon dioxide. Compared to previous
research, a wider range of experimental conditions was realized in this paper: CO2 dilution level up
to 60% (volume fraction) and equivalence ratio of 0.7–1.3. The burning velocities were measured
using the heat flux method. The CO and NO emissions after premixed combustion were measured
by a gas analyzer placed 20 cm downstream of the flame. The one-dimensional free flames were
simulated using the in-house laminar flame code CHEM1D. Four chemical kinetic mechanisms,
GRI-Mech 3.0, San Diego, Konnov, and USC Mech II were used in Chem1D. The results showed that,
for laminar burning velocity, the simulation results are all lower than the experimental results. GRI
Mech 3.0 showed the best agreement when the CO2 content was below 20%. USC Mech II showed
the best consistency when the CO2 content was between 40 and 60%. For CO emission, these four
mechanisms all showed a small error compared with the experiments. When CO2 content is higher
than 40%, the deviation between simulation and experiment becomes bigger. When the CO2 ratio is
more than 20%, the proportion of CO2 does not affect CO emission so much. For NO emission, when
the CO2 content is 40%, the results from simulation and experiment showed a good agreement. As
the proportion of CO2 increases, the difference in NO emissions decreases.

Keywords: laminar burning velocity measurement; pollutant emissions in premixed combustion;
one-dimensional flame simulation

1. Introduction

Biogas is one of the renewable fuels that is produced in many different sources, such as
sewage sludge, landfills, and organic material [1]. Methane (CH4) is the main component
of biogas. It is valuable but also harmful to the environment. Biogas can be used for heat,
electricity, vehicles, etc., to reduce environmental emissions and the use of fossil fuels. CH4
and carbon dioxide (CO2) are the two main components in biogas. CH4 accounts for 55 to
65% (volume fraction) and CO2 accounts for 35 to 45% in the biogas from sewage digesters.
CH4 accounts for 60 to 70% and CO2 accounts for 30 to 40% of the biogas from organic
waste. CH4 accounts for 45 to 55% and CO2 accounts for 30 to 40% in the biogas from
landfills [2].

The usage of biogas will become more and more widely in the future. It is important
to research its experimental characterization of fundamental combustion parameters [3].
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Among a variety of combustion parameters, the laminar burning velocity (SL) is an im-
portant requisite to assess flame quenching, flashback, blow-off, and stabilization [4]. The
laminar burning velocity is defined as the speed at which an unstretched, adiabatic, and
premixed planar flame propagates relative to the unburned mixture [5]. It is a property
of fuel–oxidizer mixtures and is a function of initial temperature (T), pressure (P), and
equivalence ratio (Φ). Experimental techniques like the counterflow flame method [6],
the heat flux method (HFM) [7], and the spherical flame method [8] can be applied in
determining this property. To get the SL, the one-dimensional and adiabatic flame has to be
obtained. For the experiments in this study, the authors use HFM, which was proposed by
de Goey et al. [7]. This method stabilizes a stretch less one-dimensional flame without net
heat flux and is capable of determining accurate adiabatic laminar burning velocity.

The laminar burning velocity of biogas can also be found in the literature. Cohé
et al. [9] used a Bunsen burner to measure the SL of the mixture of CH4 and CO2. They
got the conclusion that the pressure affected the SL much more than the dilution of CO2.
Additionally, they used PREMIX code from the program package CHEMKIN-II to simulate
biogas under an equivalence ratio of 0.88, and 0.1 and 0.2 MPa pressure, 300 K temperature,
then they approved that the percentage reduction in SL corresponded to the percentage of
CO2. The chemical kinetics was GRI-Mech v3.0. Experimentally, Galmiche et al. [10] and
Halter et al. [11] used a cylindrical vessel to measure the SL from an initial pressure of 0.1
MPa and an initial temperature of 393 K but with up to 20% CO2 in a stoichiometric mixture
with methane linearly, but the decrease of the laminar burning velocity does not show a
linear trend. Xie et al. [12] used a constant volume chamber to study the flame instability
and flame radiation of CH4/CO2/O2 mixtures. Chen et al. [13] carried out research on
the effects of diluents on laminar flame speeds of stoichiometric, laminar, and premixed
dimethyl ether (DME)/air flames. Qiao et al. [14] used a spherical vessel to measure the
SL of premixed methane/air/diluent flames. However, it is difficult to extract the SL from
associated conical flames because of curvature effects at the tip and the base. Therefore, de
Goey and his colleagues [15] introduced HFM for measuring adiabatic burning velocity
and stabilizing flat flames canceling heat fluxes. In recent times, Hermanns [16] used HFM
to determine the effect of H2 addition to the SL of methane–air mixtures. Konnov and his
colleagues [17–20] used a replica of the HFM setup and measured the SL of CH4, C2H6,
and CH4-H2 mixtures with different dilution ratios of artificial air having CO2, N2, or Ar.
In contrast again, Clarke et al. [21] used the constant volume technique at zero gravity
conditions for the determination of burning velocities of natural gas-like compositions
(i.e., methane/diluents–air mixtures). But the stretch corrected data of methane-diluent
mixtures do not appear to be available in the literature.

The present work is an experimental and computational investigation into the effect
of dilution with CO2 on the adiabatic burning velocity partially along the lines of Nonaka
and Pereira [3] but with extended CO2 amounts up to 60%, and additionally CO and
NO emission. As NO and CO are very harmful to the human body, NOx is a concern
because they contribute to the formation of acid rain, which threatens human health [22,23].
Furthermore, for simulating, we investigate the role of diffusion approximations. The
experimental method is HFM. The setup is validated initially by obtaining SL values
from the measurements of ethane-air mixtures and methane–air mixtures, and also made
many comparisons with the literature. We made a closed chamber outside the burner,
and installed a probe inside the chamber to measure the NO and CO emissions. The
computational method is performed by a steady one-dimensional laminar flame code,
Chem1D [24]. The reaction mechanisms are four different mechanisms which are GRI-
Mech 3.0 [25], San Diego [26], Konnov [27], and USC Mech II [28], a suitable selection also
used by Nonaka and Pereira [3], to predict the SL of the mixtures in and to compare the
results from the experiment.
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2. Materials and Method

There are two main methods, stationary flame and non-stationary flame methods [29],
to obtain the laminar burning velocity. Stationary flames can be established using a burner
in which the premixed fuel and oxidant are provided at constant mass flow. Then the
flame will establish at the outlet of the burner. Having small experimental deviations,
flat flame burners provide the closest approximation to the unstretched flat 1-D flame.
Flat flame burners were first used by Powling [30] and then developed by Bosschaart and
de Goey [31], amongst others. They reduced the problem of heat transfer and allowed
adiabatic burning velocities to be obtained without corrections.

2.1. Heat Flux Burner

As already indicated, the HFM is applied for the determination of SL in this paper.
Figure 1 shows the heat flux method burner (HFB). There is a burner head on the top and a
plenum chamber on the bottom. From the chamber, a uniform flow will be formed. The
burner plate is 1 mm thick. The inlet for the premixed fuel–oxidizer mixture is placed on
the bottom of the plenum chamber. The cooling jacket is around the chamber with an inlet
water temperature of 25 ◦C to keep the inlet gases temperature at a constant level. The
heating jacket is located around the burner plate. The inlet water temperature is 85 ◦C, to
keep a stable suitable temperature of the burner plate, having an exothermal flame on top
of it, with zero net heat flux by adjusting the mass flow. There are several thermocouples
attached to the burner plate to measure the radial temperature of the burner plate.
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2.2. The Principle of the Experiment

In HFB’s, there is no flame stretch and flow straining. This adiabatic flame condition
can be realized by adding the heat from the burner plate to the unburnt gas portion to
make up the heat loss from the flame to the burner head [32]. The mechanism is shown in
Figure 2. The temperature distribution of the burner plate is as the following equation:

Tp(r) = Tcenter + Cr2, (1)

in which r represents radius from the center of the burner plate, Tp(r) represents the
temperature at different r, Tcenter represents the temperature at the center of the burner
plate and C represents a parabolic coefficient variant related to the heat transfer [7,31]. In
the complete burner plate, there are several thermocouples placed at different r. These
thermocouples would show the data of Tp(r) and C. When the value of C is zero, the
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temperature distribution is flat, then the adiabatic flat flame is obtained. The diameter of
each hole is indicated by d and s is the center distance between each hole.
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Figure 2. The heat flux compensation mechanism for the one-dimensional adiabatic laminar flame.

2.3. Experimental Design

Figure 3 shows the schematic design of the setup used in this study. This HFM setup
was built for gaseous fuels at atmospheric pressure. The current burner plate is shown
in Figure 4, as follows. The perforation pattern was 0.4 mm holediameter and 0.51 mm
pitchdistance. The outer diameter is 20 mm; there were 1362 holes totally in this burner
plate. The material of the burner plate was brass and the material of the insulation plate
was nylon. Several thermocouples were placed flush-mounted in the plate. There was
a computer connected to all thermocouples to run Labview for analyzing the data. The
types of mass flow controller (MFC) are Bronkhorst FG-201CV-RAD-33-V-DA-000 for CO2,
FG-201CV-RAD-33-V-DA-A1V for CH4 and air. The range of pressure for all MFCs were
from 0–5 bar. All MFCs were calibrated with professional equipment and set up before
the experiment. The left part in Figure 3 is the gas supply part. The purity of CO2 is
99.995%. The purity of CH4 is 99.5%. The experimental conditions are 1 atm and 298 K. A
gas analyzing probe is located 20 cm above the HFB. The series of the gas analyzer is MRU
VARIO Plus. It can give real-time and long-term monitoring for several emission gases,
such as CO, CO2, CH4, NO, NO2, SO2, H2S, H2, etc. This is a portable stack gas emission
analyzer for long time measurements of industrial combustion. The outstanding benefits of
it are that it is the most suitable method for low NOx measurements and other toxic gas
emissions measurements. The accuracy of it is 5% for NO and 3% for CO.
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2.4. Error Analysis

Alekseev et al. [33] identified the uncertainties in laminar burning velocity in the HFM
setup and the HFB method in the experiment. The main reason for uncertainties is the
uncertain value of the parabolic coefficient C. The factors include the temperature of the
burner plate, the mass flow, the control from the MFC, and the inlet gas temperature. The
value of C can be obtained from linear regression of the temperature data over the burner
plate. The uncertainty σC can be shown as the following equation:

 1
N−2 ∑i

(
Ti − C·

(
r2)

i − Tcenter
)2

∑i

(
(r2)i −

(
r2
))2


1
2

(2)

In Equation (2), N represents the number of thermocouples, Ti is the thermocouple
reading at the distance of r and

(
r2
)

is the mean of the squared r.

2.5. One-Dimensional Flame Simulation

The one-dimensional free flames were simulated using the in-house laminar flame code
CHEM1D [24] to get solutions, including SL. CHEM1D solves a set of equations describing
the conservation of mass, momentum, energy, and species for chemically reacting flow
using an exponential finite-volume discretization in space [4]. Non-linear differential
equations were solved with a fully implicit, modified Newton method along with an option
to invoke several transport models, including the complex one. An adaptive gridding
procedure was also achieved to increase accuracy in the flame front by placing almost 80%
of the grid points in the area with the largest gradients [16]. Basic thermodynamic data
were from Burcat and Ruscic [34]. CHEM1D can calculate not only with a simple one-step
reaction mechanism but can also run with complex chemistry. Many kinetic mechanisms
have been developed, such as Li et al. [35], Burke et al. [36], Kéromnès et al. [37], and GRI
Mech 3.0 [25]. The users can use different mechanisms in Chem1D directly without editing.
GRI-Mech 3.0 is an updated mechanism derived to simulate natural gas combustion,
including NO formation and reburn chemistry. This method is a widely recognized good
mechanism for natural gas in much research, e.g., [38–40]. The pressure range for GRI
Mech 3.0 is wide from 0.1 to 10 atm. The main gas for San Diego [26] is hydrocarbons. San
Diego can use the minimum number of reactions and species to explain the phenomenon
to increase accuracy compared with GRI 3.0. USC Mech II is a detailed kinetic mechanism
specialized for a large number of combustion processes from C0 to C4 with 111 species
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in 784 reversible reactions [28]. The main gas used for USC Mech II is syngas which is
consistent with H2 and CO in the high-temperature oxidation process [41]. The Konnov
mechanism is very exact chemistry for low temperature and radical effects. The current
version of the mechanism (Release 0.5) consists of 1200 reactions among 127 species [27].

3. Results and Discussion
3.1. Effect of CO2 Addition on Laminar Flame Velocity

The variation principle of laminar burning velocity with the addition of CO2 is shown
in Figure 5 below. The laminar burning velocity all show a linear downward trend un-
der different equivalence ratios. When the addition ratio of CO2 is from 40 to 60%, the
decreasing rate of SL becomes larger. When the addition ratio of CO2 is from 20 to 40%, the
decreasing rate of SL becomes smaller. Figure 5b shows a comparison with the data from
the literature.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 6 of 16 
 

 

sistent with H2 and CO in the high-temperature oxidation process [41]. The Konnov mech-
anism is very exact chemistry for low temperature and radical effects. The current version 
of the mechanism (Release 0.5) consists of 1200 reactions among 127 species [27]. 

3. Results and Discussion 
3.1. Effect of CO2 Addition on Laminar Flame Velocity 

The variation principle of laminar burning velocity with the addition of CO2 is shown 
in Figure 5 below. The laminar burning velocity all show a linear downward trend under 
different equivalence ratios. When the addition ratio of CO2 is from 40 to 60%, the decreas-
ing rate of SL becomes larger. When the addition ratio of CO2 is from 20 to 40%, the de-
creasing rate of SL becomes smaller. Figure 5b shows a comparison with the data from the 
literature. 

  

(a) (b) 

Figure 5. (a) Measured data: laminar burning velocity with the addition of CO2, (b) adiabatic lami-
nar burning velocities with literature data [3] [42]. 

3.2. Comparison between Experimental and Simulation Results Using Different Mechanisms 
There were four mechanisms chosen in this study, which are GRI-Mech 3.0 [25], San 

Diego [26], Konnov [27], and USC Mech II [28]. Because they are the common mechanisms 
for gas simulations, like H2, CH4 etc. For the CO2/CH4 mixtures, the compositions investi-
gated are: 0/100, 20/80, 40/60, and 60/40 %/% (all by volume fraction). The range of equiv-
alent ratio Φ is from 0.7 to 1.3. The pressure is 1 atm and the temperature is 298 K. Both 
burning velocities and CO and NO emissions were reported. The results for CO emissions 
and NO emissions were taken at a downstream position of 20 cm, the latter as measured 
in the accompanying experiments. 

From figure 6, it can be observed that all mechanisms involved showed the same 
tendency. The simulation results were all lower than the experimental results. GRI Mech 
3.0 showed the best agreement when the CO2 content was below 20%. When CO2 ac-
counted lower than 20%, the ranking of accuracy among all four mechanisms was GRI-
Mech 3.0 > USC Mech II > Konnov > San Diego. When CO2 accounted for 40 and 60%, the 
ranking of accuracy interchanged between the first two. All in all, GRI-Mech 3.0 was the 
best choice for SL simulation of mixed gas in Chem1D when CO2 accounted for lower than 
20%. USC Mech II was a good mechanism when the mixed gas had a higher concentration 
(>40%) of CO2. 

When the gas was CH4 and when the CO2 accounted for 20%, the highest values of 
SL appeared at Φ = 1.1 in the experiments. In other proportions of CO2 in this experiment, 

0.0 0.2 0.4 0.6
0

4

8

12

16

20

24

28

32

36

CO2 ratio

 phi=0.8
 phi=0.9
 phi=1.0
 phi=1.1
 phi=1.2

Bu
rn

in
g 

ve
lo

ci
ty

 (c
m

/s)

0.8 0.9 1 1.1 1.2 1.3
0

4

8

12

16

20

24

28

32

36  present work
 Nonaka et al.
 Zahedi et al.

Bu
rn

in
g 

ve
lo

ci
ty

 (c
m

/s)

phi (CO2_20%)

Figure 5. (a) Measured data: laminar burning velocity with the addition of CO2, (b) adiabatic laminar
burning velocities with literature data [3,42].

3.2. Comparison between Experimental and Simulation Results Using Different Mechanisms

There were four mechanisms chosen in this study, which are GRI-Mech 3.0 [25], San
Diego [26], Konnov [27], and USC Mech II [28]. Because they are the common mechanisms
for gas simulations, like H2, CH4 etc. For the CO2/CH4 mixtures, the compositions
investigated are: 0/100, 20/80, 40/60, and 60/40 %/% (all by volume fraction). The range
of equivalent ratio Φ is from 0.7 to 1.3. The pressure is 1 atm and the temperature is 298
K. Both burning velocities and CO and NO emissions were reported. The results for CO
emissions and NO emissions were taken at a downstream position of 20 cm, the latter as
measured in the accompanying experiments.

From Figure 6, it can be observed that all mechanisms involved showed the same
tendency. The simulation results were all lower than the experimental results. GRI Mech 3.0
showed the best agreement when the CO2 content was below 20%. When CO2 accounted
lower than 20%, the ranking of accuracy among all four mechanisms was GRI-Mech 3.0 >
USC Mech II > Konnov > San Diego. When CO2 accounted for 40 and 60%, the ranking of
accuracy interchanged between the first two. All in all, GRI-Mech 3.0 was the best choice
for SL simulation of mixed gas in Chem1D when CO2 accounted for lower than 20%. USC
Mech II was a good mechanism when the mixed gas had a higher concentration (>40%)
of CO2.
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Figure 6. Comparison between simulation values (different simulation mechanisms) and experimen-
tal value for different mixtures, (a) CH4, (b) 20% CO2, (c) 40% CO2, (d) 60% CO2.

When the gas was CH4 and when the CO2 accounted for 20%, the highest values of SL
appeared at Φ = 1.1 in the experiments. In other proportions of CO2 in this experiment, the
highest values of SL were found at Φ = 1.0; therefore, the highest SL mainly appeared in
the interval from 1 to 1.1 in the experiment. But the Chem1D simulation results showed
the highest SL at Φ = 1.1 for CH4 for GRI 3.0 and Konnov. For other ratios of mixed
gases, simulations with different mechanisms did not give a synchronous prediction for
the peak value of SL. The peak value of SL for other mixed gases all appeared at Φ = 1.0
from Chem1D simulation results, so the experiments presented the change of SL in a more
trustworthy manner.

3.3. Comparison of Experimental and Simulated Values of Different Concentrations of CO2

From both simulation and experiment, the changing trends of SL showed a consistent
pattern. In Figure 7, the behavior was shown for different mixtures in experiments and for
simulations with GRI 3.0. When the range of Φ was between 0.7 and 1.0, as Φ increased,
SL showed an increasing trend as well. When the range of Φ was between 1.0 and 1.3,
as Φ increased, SL showed a decreasing trend. The authors used the mechanism of GRI
Mech 3.0 to show how the SL changed with the concentration of CO2 in the simulation. As
the concentration of CO2 increased every 10%, under the same Φ, the SL also showed a
corresponding regular decrease. From the experimental results, under the same Φ, the SL
decreased as well.
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Figure 7. The burning velocity for different CO2 compositions (a) from the experiment, and (b) from
simulations with GRI 3.0.

3.4. The Emission of CO, Simulation and Experimental Results at 20 cm Downstream

From Figure 8, for the CO emissions at the location of the measurement probe, the
results from the four kinetic mechanisms used in Chem1D showed very little deviation
from each other, though a small deviation with experiment can be observed. Under every
ratio of CO2 content, the CO emissions increase as Φ increases. For the pure CH4 and mixed
gas with a CO2 ratio below 40%, the experimental results showed good consistency with
the simulation results. At lean conditions, the CO emissions are almost zero as expected.
Then, in rich conditions, when there is insufficient O2 for complete combustion, it increased
rapidly after Φ = 1.0. After Φ = 1.0, the experimental results showed a higher CO emission
than simulation. Like the Figure 8d of CO2 = 60%. This is consistent with the theoretical
principle. More CO will emerge under the rich CO2 situation. The simulation results
all showed a continuous acceleration of growth rate from Φ = 1.0 to Φ = 1.3. From the
experiment, when CO2 accounts for lower than 40%, the increasing slope of CO emission
was first steep from Φ = 1.0 to Φ = 1.2, then became slow from Φ = 1.2 to Φ = 1.3.
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Figure 8. Cont.
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Figure 8. Comparison between simulation values (different simulation mechanisms at 20 cm down-
stream position) and experimental values for the mixed gas at (a) CH4, (b) 20% CO2, (c) 40% CO2,
(d) 60% CO2.

Figure 9 showed how CO2 concentrations affected CO emission from the perspectives
of simulation and experiments. From the Chem1D simulation, adding CO2 to CH4 will
produce more exhaust CO emissions when the CO2 ratio is between 0–40% in rich con-
ditions. Between 40 to 60%, the CO emission amount will decrease when more CO2 is
added at these equivalence ratios. From the experiment, adding CO2 to CH4 from 0 to 20%,
the emission of CO had a significant increase. From the simulation, when CO2 = 40%, the
value of CO emission reached the highest. In the experiment, the highest value of emission
appeared at the CO2 concentration of 60%.

The conclusion can be drawn here that for the mixed gas, all four mechanisms in
Chem1D can be used to predict CO exhaust amount, especially when CO2 accounts for less
than 40%. These four mechanisms all showed a small error compared with the experiments.
In the mixed gas, the proportion of CO2 does affect CO emissions. But only when the CO2
ratio was less than 20%, compared with the pure CH4 gas, the impact was big. When the
CO2 ratio was more than 20%, the proportion of CO2 did not affect CO emissions so much.
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Figure 9. Cont.
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Figure 9. CO emission (a) measured, (b) simulated with GRI 3.0, (c) measured under different CO2

ratios.

3.5. The Emission of NO between Simulation (20 cm Downstream Position) and
Experimental Results

The authors used three mechanisms to simulate NO emissions, which were GRI-Mech
3.0, Konnov, and San Diego. The USC Mech II mechanism programming does not involve
the calculation of NO. From Figure 10, when the CO2 content was 40% and the Φ was
between 0.7 to 1.2, the results from simulation (GRI-Mech 3.0) and experiment showed a
good agreement. From the experimental results, the NO emission maintained a stable and
low level, and showed a linear decreasing relationship as CO2 was added. All simulation
results were higher than the experimental results. GRI 3.0 showed the smallest differences,
therefore, GRI-Mech 3.0 was the best mechanism in this study to simulate NO emissions
for mixed gases.
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Figure 10. The comparison between simulation values (different simulation mechanisms) and
experimental values for the mixed gas under every CO2 ratio at 20 cm downstream, (a) CH4, (b) 20%
CO2, (c) 40% CO2, (d) 60% CO2. (e) The NO emission measured under different CO2 ratios.

From the simulation results of GRI Mech 3.0 in Figure 11b, the NO emission showed
a proportional decline with the proportional addition of CO2. Of course, as an inert CO2
only lowers the temperature and reduces the Zeldovich effect. The experiment results from
Figure 11a did not show a similar proportional decline but still showed a reduction tendency.
When the equivalence ratio was 1.0, the order of the NO mass fraction was contrary to the
concentration of CO2, which means the CO2 content affected the NO emission at Φ = 1.0.
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Figure 11. The NO emission of different CO2 compositions from (a) experiment, (b) simulated with
GRI 3.0.

3.6. Burning Velocities with Different Diffusion Methods

Different diffusion approximations were used, complex, mixture averaged, constant
Lewis numbers, and unity Lewis numbers. Of course, the complex and mixture averaged
approximations showed the best agreement. The authors used the mixture averaged
approach for burning velocity, CO emission, and NO emission in this research. The
influence of the Lewis number on the numerical simulation results was studied in this
chapter. A constant Lewis number approach is often used for analytical considerations. The
setting of the Lewis number depends on the problem of concern. If the problem of concern
is the thermal effect, the Lewis numbers are reasonable to be 1, but if the focus is on the
concentration of light molecules and their flame behavior, detailed complex diffusion must
be used. This can explain why the constant Lewis number showed the worst agreement
compared with other diffusion approximations. From Figure 12, for CH4, the curves from
complex, mixture averaged, and unity Lewis numbers showed a very small deviation
compared with the experiment results. For the mixture gas, like Figure 12b, when CO2
accounted for 20%, there was a bigger deviation between the experimental results and
simulation.
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Figure 12. Burning velocities with different diffusion approaches using GRI 3.0 (a) for methane, (b)
for the mixed gas.
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4. Conclusions

The experimental and numerical study of the laminar burning velocity and pollutant
emissions of the mixture gas of methane and carbon dioxide were studied in this research.
Compared with previous studies, a wider range of experimental conditions is realized in
this paper: CO2 dilution level up to 60% and equivalence ratio of 0.7–1.3. Furthermore,
this research focused on the emissions of CO and NO after premixed combustion, which
filled the gaps in other people’s research. Depending on the results got in this research, the
following conclusions can be given:

1. For laminar burning velocity simulation, four chemical kinetic mechanisms, GRI-
Mech 3.0, San Diego, Konnov, and USC Mech II, all showed the same tendency
compared with the experimental results. The simulation results were all lower than
the experimental results. Consistent with the conclusion of Nonaka and Pereira [3],
GRI Mech 3.0 showed the best agreement when the CO2 content was 20%. USC Mech
II showed the best consistency when the CO2 content was between 40% and 60%.
Agreement was limited when there were CO2 additions. The burning velocity showed
a liner decrease while adding CO2.

2. For the CO emission, for the mixed gas, all four mechanisms in Chem1D can be
used to predict CO exhaust amount. These four mechanisms all showed a small
error compared with the experiments. When CO2 content was higher than 40%, the
deviation between simulation and experiment became bigger. In the mixed gas, the
proportion of CO2 did affect CO emissions, making the CO emissions decrease first
and then increase.

3. For the NO emission, when the CO2 content was 40%, compared with the experimental
results, the Chem1D can predict the mixed gas NO emission interval range. The NO
emissions showed a linear relationship with the addition of CO2. In rich conditions,
no matter how much CO2 accounted for, the NO emissions were all below 0.0001
mass fraction.

4. All in all, numerical simulation is a good way to predict burning velocities and CO
emissions for 1D adiabatic flames. GRI Mech 3.0 is the best kinetic mechanism for this
with the current mixtures. Adding CO2 to CH4 decreases the burning velocity but
also decreases NO emissions and does not produce more CO emissions.

5. Different diffusion approximations were used, complex, mixture averaged, constant
Lewis numbers, and unity Lewis numbers. Of course, the complex and mixture aver-
aged approximations showed the best agreement. For CH4, the curves from complex,
mixture averaged, and unity Lewis numbers showed a very small deviation compared
with the experiment results. Different burning velocity approximations cause different
burning rates estimations and, therefore, different CO and NOx emission rates. The
exact impact should be investigated in an upcoming survey. For now, we can say that
for truth-finding, complex diffusion is advised for use.

6. The authors found the mixed ratio for CO2 as 40% was a good balance between SL and
pollutant emissions. For SL, the curve from CO2 = 40% did not show a big difference
compared with CH4 but had a much lower CO and NO emission specifically at the
point of Φ = 1.0. This is due to the inert dilution that lowers the product’s temperature
and, therefore, the thermal (Zeldovich) mechanism; thus, adding CO2 into CH4 is a
good NOx removal method due to its low cost. Good advice can be provided here
for industrial utilization by using 40% CO2 of the natural gas, which can reduce the
pollutant emission without drastically reducing the burning velocity. More simulation
work to research the ignition delay time, chemical and thermal effects on burning
velocity will be undertaken in the future.
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