
RESEARCH ARTICLE

On the relationship between predictive

coding and backpropagation

Robert RosenbaumID*

Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre

Dame, IN, United States of America

* Robert.Rosenbaum@nd.edu

Abstract

Artificial neural networks are often interpreted as abstract models of biological neuronal

networks, but they are typically trained using the biologically unrealistic backpropagation

algorithm and its variants. Predictive coding has been proposed as a potentially more biolog-

ically realistic alternative to backpropagation for training neural networks. This manuscript

reviews and extends recent work on the mathematical relationship between predictive cod-

ing and backpropagation for training feedforward artificial neural networks on supervised

learning tasks. Implications of these results for the interpretation of predictive coding and

deep neural networks as models of biological learning are discussed along with a repository

of functions, Torch2PC, for performing predictive coding with PyTorch neural network

models.

Introduction

The backpropagation algorithm and its variants are widely used to train artificial neural net-

works. While artificial and biological neural networks share some common features, a direct

implementation of backpropagation in the brain is often considered biologically implausible

in part because of the nonlocal nature of parameter updates: The update to a parameter in one

layer depends on activity in all deeper layers. In contrast, biological neural networks are

believed to learn largely through local synaptic plasticity rules for which changes to a synaptic

weight depend on neural activity local to that synapse. While neuromodulators can have non-

local impact on synaptic plasticity, they are not believed to be sufficiently specific to implement

the precise, high-dimensional credit assignment required by backpropogation. However, some

work has shown that global errors and neuromodulators can work with local plasticity to

implement effective learning algorithms [1, 2]. Backpropagation can be performed using local

updates if gradients of neurons’ activations are passed upstream through feedback connec-

tions, but this interpretation implies other biologically implausible properties of the network,

like symmetric feedforward and feedback weights. See previous work [3, 4] for a more com-

plete review of the biological plausibility of backpropagation.

Several approaches have been proposed for achieving or approximating backpropagation

with ostensibly more biologically realistic learning rules [2–14]. One such approach [11–14] is

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 1 / 27

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Rosenbaum R (2022) On the relationship

between predictive coding and backpropagation.

PLoS ONE 17(3): e0266102. https://doi.org/

10.1371/journal.pone.0266102

Editor: Gennady S. Cymbalyuk, Georgia State

University, UNITED STATES

Received: June 29, 2021

Accepted: March 14, 2022

Published: March 31, 2022

Copyright: © 2022 Robert Rosenbaum. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All code and data to

reproduce the results in the paper have been

uploaded to figshare (https://doi.org/10.6084/m9.

figshare.19387409.v2).

Funding: This work was supported by National

Science Foundation grants NSF DMS 1654268,

NSF Neuronex DBI 1707400, and the Air Force

Office of Scientific Research (ASOFR) award

number FA9550-21-1-0223. The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

https://orcid.org/0000-0003-2105-9282
https://doi.org/10.1371/journal.pone.0266102
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0266102&domain=pdf&date_stamp=2022-03-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0266102&domain=pdf&date_stamp=2022-03-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0266102&domain=pdf&date_stamp=2022-03-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0266102&domain=pdf&date_stamp=2022-03-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0266102&domain=pdf&date_stamp=2022-03-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0266102&domain=pdf&date_stamp=2022-03-31
https://doi.org/10.1371/journal.pone.0266102
https://doi.org/10.1371/journal.pone.0266102
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.6084/m9.figshare.19387409.v2
https://doi.org/10.6084/m9.figshare.19387409.v2

derived from the theory of “predictive coding” or “predictive processing” [15–23]. A relation-

ship between predictive coding and backpropagation was first discovered by Whittington and

Bogacz [11] who showed that, when predictive coding is used to train a feedforward neural

network on a supervised learning task, it can produce parameter updates that approximate

those computed by backpropagation. These original results have since been extended to more

general network architectures and to show that modifying predictive coding by a “fixed predic-

tion assumption” leads to an algorithm that produces the exact same parameter updates as

backpropagation [12–14].

This manuscript reviews and extends previous work [11–14] on the relationship between

predictive coding and backpropagation, as well as some implications of these results on the

interpretation of predictive coding and artificial neural networks as models of biological learn-

ing. The main results in this manuscript are as follows,

1. Accounting for covariance or precision matrices in hidden layers does not affect parameter

updates (learning) for predictive coding under the “fixed prediction assumption” used in

previous work.

2. Predictive coding under the fixed prediction assumption is algorithmically equivalent to a

direct implementation of backpropagation, which raises the question of whether it should

be interpreted as more biologically plausible than backpropagation.

3. Empirical results show that the magnitude of prediction errors do not necessarily corre-

spond to surprising features of inputs.

In addition, a public repository of Python functions, Torch2PC, is introduced. These

functions can be used to perform predictive coding on any PyTorch Sequential model (see

Materials and methods).

Results

A review of the relationship between backpropagation and predictive

coding from previous work

For completeness, let us first review the backpropagation algorithm. Consider a feedforward

deep neural network (DNN) defined by

v̂0 ¼ x

v̂‘ ¼ f‘ðv̂‘� 1; y‘Þ; ‘ ¼ 1; . . . ; L
ð1Þ

where each v̂‘ is a vector or tensor of activations, each θℓ is a set of parameters for layer ℓ, and

L is the network’s depth. In supervised learning, one seeks to minimize a loss function Lðŷ; yÞ
where y is a label associated with input, x, and

ŷ ¼ f ðx; yÞ ¼ v̂L

is the network’s output, which depends on parameters y ¼ fy‘g
L
‘¼1

. The loss is typically mini-

mized using gradient-based optimization methods with gradients computed using automatic

differentiation tools based on the backpropagation algorithm. For completeness, backpropaga-

tion is reviewed in the pseudocode below.

Algorithm 1 A standard implementation of backpropagation.
Given: Input (x) and label (y)
forward pass
v̂0 ¼ x
for ℓ = 1, . . ., L

PLOS ONE On the relationship between predictive coding and backpropagation

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 2 / 27

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0266102

v̂‘ ¼ f‘ðv̂‘� 1; y‘Þ

backward pass
dL ¼

@Lðv̂L ;yÞ
@v̂L

for ℓ = L − 1, . . ., 1
d‘ ¼ d‘þ1

@f‘þ1ðv̂‘ ; y‘þ1Þ

@v̂‘

dy‘ ¼ � d‘
@f‘ðv̂‘� 1; y‘Þ

@y‘

A direct application of the chain rule and mathematical induction shows that backpropaga-

tion computes the gradients,

d‘ ¼
@Lðŷ; yÞ
@v̂‘

and dy‘ ¼ �
@Lðŷ; yÞ
@y‘

:

The negative gradients, dθℓ, are then used to update parameters, either directly for stochastic

gradient descent or indirectly for other gradient-based learning methods [24]. For the sake of

comparison, I used backpropagation to train a 5-layer convolutional neural network on the

MNIST data set (Fig 1A and 1B; blue curves). I next review algorithms derived from the theory

of predictive coding and their relationship to backpropagation, as originally derived in previ-

ous work [11–14].

A strict interpretation of predictive coding does not accurately compute gradients. I

begin by reviewing supervised learning under a strict interpretation of predictive coding. The

formulation in this section is equivalent to the one first studied by Whittington and Bogacz

[11], except that their results are restricted to the case in which fℓ(vℓ−1; θℓ) = θℓgℓ(vℓ−1) for some

point-wise-applied activation function, gℓ, and connectivity matrix, θℓ. Our formulation

extends this formulation to arbitrary vector-valued differentiable functions, fℓ. For the sake of

Fig 1. Comparing backpropagation and predictive coding in a convolutional neural network trained on MNIST. A,B) The loss (A) and

accuracy (B) on the training set (pastel) and test set (dark) when a 5-layer network was trained using a strict implementation of predictive

coding (Algorithm 2 with η = 0.1 and n = 20; red) and backpropagation (blue). C,D) The relative error (C) and angle (B) between the parameter

update, dθ, computed by Algorithm 2 and the negative gradient of the loss at each layer. Predictive coding and backpropagation give similar

accuracies, but the parameter updates are less similar.

https://doi.org/10.1371/journal.pone.0266102.g001

PLOS ONE On the relationship between predictive coding and backpropagation

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 3 / 27

https://doi.org/10.1371/journal.pone.0266102.g001
https://doi.org/10.1371/journal.pone.0266102

continuity with later sections, I also use the notational conventions from [12] which differ

from those in [11].

Predictive coding can be derived from a hierarchical, Gaussian probabilistic model in

which each layer, ℓ, is associated with a Gaussian random variable, Vℓ, satisfying

pðV‘ ¼ v‘jV‘� 1 ¼ v‘� 1Þ ¼ N ðv‘; f‘ðv‘� 1; y‘Þ; S‘Þ ð2Þ

where N ðv; m;SÞ / expð� ½v � m�TS� 1½v � m�=2Þ is the multivariate Gaussian distribution

with mean, μ, and covariance matrix, S, evaluated at v. Following previous work [11–14], I

take S = I to be the identity matrix, but later relax this assumption [21].

If we condition on an observed input, V0 = x, then a forward pass through the network

described by Eq (1) corresponds to setting v̂0 ¼ x and then sequentially computing the condi-

tional expectations or, equivalently, maximizing conditional probabilities,

v̂‘ ¼ E½V‘jV‘� 1 ¼ v̂‘� 1�

¼ argmax
v‘

pðV‘ ¼ v‘jV‘� 1 ¼ v̂‘� 1Þ

¼ f‘ðv̂‘� 1; y‘Þ

until reaching an inferred output, ŷ ¼ v̂L. Note that this forward pass does not necessarily

maximize the global conditional probability, pðVL ¼ ŷ j v0 ¼ xÞ and it does not account for a

prior distribution on VL, which arises in related work on predictive coding for unsupervised

learning [15, 21]. One interpretation of a forward pass is that each v̂‘ is the network’s “belief”

about the state of Vℓ, when only V0 = x has been observed.

Now suppose that we condition on both an observed input, V0 = x, and its label, VL = y. In

this case, generating beliefs about the hidden states, Vℓ, is more difficult because we need to

account for potentially conflicting information at each end of the network. We can proceed by

initializing a set of beliefs, vℓ, about the state of each Vℓ, and then updating our initial beliefs to

be more consistent with the observations, x and y, and parameters, θℓ.
The error made by a set of beliefs, fv‘g

L
‘¼1

, under parameters, fy‘g
L
‘¼1

, can be quantified by

�‘ ¼ f‘ðv‘� 1; y‘Þ � v‘

for ℓ = 1, . . ., L − 1 where v0 = V0 = x is observed. It is not so simple to quantify the error, �L,

made at the last layer in a way that accounts for arbitrary loss functions. In the special case of a

squared-Euclidean loss function,

Lðŷ; yÞ ¼
1

2
kŷ � yk2

;

where kuk2 = uT u. Standard formulations of predictive coding [20, 21] use

�L ¼ fLðvL� 1; yLÞ � y ð3Þ

where recall that y is the label. In this case, �L satisfies

�L ¼
@Lð~vL; yÞ
@~vL

ð4Þ

where

~vL ¼ fLðvL� 1; yLÞ:

We use the ~� to emphasize that ~vL is different from v̂L (which is defined by a forward pass start-

ing at v̂0 ¼ x) and is defined in a fundamentally different way from the vℓ terms (which do not

PLOS ONE On the relationship between predictive coding and backpropagation

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 4 / 27

https://doi.org/10.1371/journal.pone.0266102

necessarily satisfy vℓ = fℓ(vℓ−1; θℓ)). We can then define the total summed magnitude of errors

as

F ¼
1

2

XL

‘¼1

k�‘k
2

More details on the derivation of F in terms of variational Bayesian inference can be found in

previous work [12, 16, 20, 21] where F is known as the variational free energy of the model.

Essentially, minimizing F produces a model that is more consistent with the observed data.

Minimizing F by gradient descent on vℓ and θℓ produce the inference and learning steps of pre-

dictive coding, respectively.

Under a more heuristic interpretation, vℓ represents the network’s “belief” about Vℓ, and

fℓ(vℓ−1; θℓ) is the “prediction” of vℓ made by the previous layer. Under this interpretation, �ℓ is

the error made by the previous layer’s prediction, so �ℓ is called a “prediction error.” Then F
quantifies the total magnitude of prediction errors given a set of beliefs, vℓ, parameters, θℓ, and

observations, V0 = x and VL = y.

In predictive coding, beliefs, vℓ, are updated to minimize the error, F. This can be achieved

by gradient descent, i.e., by making updates of the form

v‘ v‘ þ Zdv‘

where η is a step size and

dv‘ ¼ �
@F
@v‘

¼ �‘ � �‘þ1

@f‘þ1ðv‘; y‘þ1Þ

@v‘

ð5Þ

In this expression, @fℓ+1(vℓ; θℓ+1)/@vℓ is a Jacobian matrix and �ℓ+1 is a row-vector to simplify

notation, but a column-vector interpretation is similar. If x is a mini-batch instead of one data

point, then vℓ is an m × nℓ matrix and derivatives are tensors. These conventions are used

throughout the manuscript. The updates in Eq (5) can be iterated until convergence or approx-

imate convergence. Note that the prediction errors, �ℓ = vℓ − fℓ(vℓ−1; θℓ), should also be updated

on each iteration.

Learning can also be phrased as minimizing F with gradient descent on parameters. Specifi-

cally,

y‘ ¼ y‘ þ Zydy‘

where

dy‘ ¼ �
@F
@y‘

¼ � �‘
@f‘ðv‘� 1; y‘Þ

@y‘
:

ð6Þ

Note that some previous work uses the negative of the prediction errors used here, i.e., they

use �ℓ = vℓ − fℓ(vℓ−1; θℓ). While this choice changes some of the expressions above, the value of

F and its dependence on θℓ is not changed because F is defined by the norms of the �ℓ terms.

The complete algorithm is defined more precisely by the pseudocode below:

Algorithm 2 A direct interpretation of predictive coding.
Given: Input (x), label (y), and initial beliefs (vℓ)

PLOS ONE On the relationship between predictive coding and backpropagation

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 5 / 27

https://doi.org/10.1371/journal.pone.0266102

error and belief computation
for i = 1, . . ., n

~vL ¼ fLðvL� 1; yLÞ

�L ¼
@Lð~vL ;yÞ
@~vL

for ℓ = L − 1, . . ., 1
�ℓ = vℓ − fℓ(vℓ−1; θℓ)
dv‘ ¼ � �‘ þ �‘þ1

@f‘þ1ðv‘ ; y‘þ1Þ

@v‘

vℓ = vℓ + ηdvℓ
parameter update computation
for ℓ = 1, . . ., L

dy‘ ¼ � �‘
@f‘ðv‘� 1; y‘Þ

@y‘

Here and elsewhere, n denotes the number of iterations for the inference step. The choice

of initial beliefs is not specified in the algorithm above, but previous work [11–14] uses the

results from a forward pass, v‘ ¼ v̂‘, as initial conditions and I do the same in all numerical

examples.

I tested Algorithm 2 on MNIST using a 5-layer convolutional neural network. To be consis-

tent with the definitions above, I used a mean-squared error (squared Euclidean) loss function,

which required one-hot encoded labels [24]. Algorithm 2 performed similarly to backpropaga-

tion (Fig 1A and 1B) even though the parameter updates did not match the true gradients (Fig

1C and 1D). Algorithm 2 was slower than backpropagation (31s for Algorithm 2 versus 8s for

backpropagation when training metrics were not computed on every iteration) in part because

Algorithm 2 requires several inner iterations to compute the prediction errors (n = 20 itera-

tions used in this example). Algorithm 2 failed to converge on a larger model. Specifically, the

loss grew consistently with iterations when trying to use Algorithm 2 to train the 6-layer

CIFAR-10 model described in the next section. S1 Fig shows the same results from Fig 1

repeated across 30 trials with different random seeds to quantify the mean and standard devia-

tion across trials.

Fig 1C and 1D shows that predictive coding does not update parameters according to the

true gradients, but it is not immediately clear whether this would be resolved by using more

iterations (larger n) or different values of the step size, η. I next compared the parameter

updates, dθℓ, to the true gradients, @L=@y‘ for different values of n and η (Fig 2). For the

smaller values of η tested (η = 0.1 and η = 0.2) and larger values of n (n> 100), parameter

updates were similar to the true gradients in the last two layers, but they differed substantially

in the first two layers. The largest values of η tested (η = 0.5 and η = 1) caused the iterations in

Algorithm 2 to diverge.

Some choices in designing Algorithm 2 were made arbitrarily. For example, the three

updates inside the inner for-loop over ℓ could be performed in a different order or the outer

for-loop over i could be changed to a while-loop with a convergence criterion. For any initial

conditions and any of these design choices, if the iterations over i are repeated until conver-

gence or approximate convergence of each vℓ to a fixed point, v�
‘
, then the increments must sat-

isfy dvℓ = 0 at the fixed point and therefore the fixed point values of the prediction errors, ��
‘
,

must satisfy

��
‘
¼
@f‘þ1ðv�‘ ; y‘þ1Þ

@v�‘
��
‘þ1

ð7Þ

for ℓ = 1, . . ., L − 1. By the definition of �L, we have

��L ¼
@Lð~v�L; yÞ
@~v�L

: ð8Þ

PLOS ONE On the relationship between predictive coding and backpropagation

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 6 / 27

https://doi.org/10.1371/journal.pone.0266102

where

~v�L ¼ fLðv
�

L� 1
; yLÞ:

Combining Eqs (7) and (8) gives the fixed point prediction errors of the penultimate layer

��L� 1
¼
@Lð~v�L; yÞ
@~v�L

@fLðv�L� 1
; yLÞ

@v�L� 1

¼
@Lð~v�L; yÞ
@v�L� 1

ð9Þ

where we used the fact that ~v�L ¼ fLðv�L� 1
; yLÞ and the chain rule. The error in layer L − 2 is

given by

��L� 2
¼
@Lð~v�L; yÞ
@v�L� 1

@fL� 1ðv�L� 2
; yL� 1Þ

@v�L� 2

:

Note that we cannot apply the chain rule to reduce this product (like we did for Eq (9)) because

it is not necessarily true that v�L� 1
¼ fL� 1ðv�L� 2

; yL� 1Þ. I revisit this point below. We can continue

this process to derive

��L� 3
¼
@Lð~v�L; yÞ
@v�L� 1

@fL� 1ðv�L� 2
; yL� 1Þ

@v�L� 2

@fL� 2ðv�L� 3
; yL� 2Þ

@v�L� 3

and continue for ℓ = L − 4, . . ., 1. In doing so, we see (by induction) that ��
‘

can be written as

��
‘
¼
@Lð~v�L; yÞ
@~v�L� 1

YL� 2

‘0¼‘

@f‘0þ1ðv�‘0 ; y‘0þ1Þ

@v�
‘0

: ð10Þ

for ℓ = 1, . . ., L − 2. Therefore, if the inference loop converges to a fixed point, then the

Fig 2. Comparing parameter updates from predictive coding to true gradients in a network trained on MNIST. Relative error and angle between dθℓ produced by

predictive coding (Algorithm 2) as compared to the exact gradients, @L=@y‘ computed by backpropagation (relative error defined by kdθpc − dθbpk/kdθbpk). Updates

were computed as a function of the number of iterations, n, used in Algorithm 2 for various values of the step size, η, using the model from Fig 1 applied to one mini-

batch of data. Both models were initialized identically to the pre-trained parameter values from the trained model in Fig 1. Parameter updates converge near the gradients

after many iterations for smaller values of η, but diverge for larger values.

https://doi.org/10.1371/journal.pone.0266102.g002

PLOS ONE On the relationship between predictive coding and backpropagation

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 7 / 27

https://doi.org/10.1371/journal.pone.0266102.g002
https://doi.org/10.1371/journal.pone.0266102

subsequent parameter update obeys

dy‘ ¼ �
@Lð~v�L; yÞ
@~v�L� 1

YL� 2

‘0¼‘

@f‘0þ1ðv�‘0 ; y‘0þ1Þ

@v�
‘0

" #
@f‘ðv�‘� 1

; y‘Þ

@y‘
ð11Þ

by Eq (6). It is not clear whether there is a simple mathematical relationship between these

parameter updates and the negative gradients, dy‘ ¼ � @L=@y‘, computed by

backpropagation.

It is tempting to assume that v�
‘
¼ f‘ðv�‘� 1

; y‘Þ, in which case the product terms would be

reduced by the chain rule. Indeed, this assumption would imply that v�
‘
¼ v̂‘ and ~v�L ¼ v̂L and,

finally, that �‘ ¼ @L=@v̂‘ and dy‘ ¼ � @L=@y‘, identical to the values computed by backpropa-

gation. However, we cannot generally expect to have v�
‘
¼ f‘ðv�‘� 1

; y‘Þ because this would imply

that ��
‘
¼ 0 and therefore @L=@v�

‘
¼ @L=@y‘ ¼ 0. In other words, Algorithm 2 is only equiva-

lent to backpropagation in the case where parameters are at a critical point of the loss function,

so all updates are zero. Nevertheless, this thought experiment suggests a modification to Algo-

rithm 2 for which the fixed points do represent the true gradients [11, 12]. I review that modifi-

cation in the next section.

Note also that the calculations above rely on the assumption of a Euclidean loss function,

Lðŷ; yÞ ¼ kŷ � yk2
=2. If we want to generalize the algorithm to different loss functions, then

Eqs (3) and (4) could not both be true, and therefore Eqs (7) and (8) could not both be true.

This leaves open the question of how to define �L when using loss functions that are not pro-

portional to the squared Euclidean norm. If we were to define �L by (3), at the expense of losing

(4), then the algorithm would not account for the loss function at all, so it would effectively

assume a Euclidean loss, i.e., it would compute the same values that are computed by Algo-

rithm 2 with a Euclidean loss. If we instead were to define �L by Eq (4) at the expense of (3),

then Eqs (5) and (7) would no longer be true for ℓ = L − 1 and Eq (6) would no longer be true

for ℓ = L. Instead, all three of these equations would involve second-order derivatives of the

loss function, and therefore the fixed point Eqs (10) and (11) would also involve second order

derivatives. The interpretation of the parameter updates is not clear in this case. One might

instead try to define �L by the result of a forward pass,

�L ¼ fLðv̂L� 1; yLÞ � y

¼ v̂L � y

but then �L would be a constant with respect to vL−1, so we would have @�L/@vL−1 = 0, and

therefore Eq (5) at ℓ = L − 1 would become

dvL� 1 ¼ �
@F
@vL� 1

¼ �L� 1

which has a fixed point at ��L� 1
¼ 0. This would finally imply that all the errors converge to

��
‘
¼ 0 and therefore dθℓ = 0 at the fixed point.

I next discuss a modification of Algorithm 2 that converges to the same gradients computed

by backpropagation, and is applicable to general loss functions [11, 12].

Predictive coding modified by the fixed prediction assumption converges to the gradi-

ents computed by backpropagation. Previous work [11, 12] proposed a modification of the

predictive coding algorithm described above called the “fixed prediction assumption” which I

now review. Motivated by the considerations in the last few paragraphs of the previous section,

we can selectively substitute some terms of the form vℓ and fℓ(vℓ−1; θℓ) in Algorithm 2 with v̂‘

PLOS ONE On the relationship between predictive coding and backpropagation

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 8 / 27

https://doi.org/10.1371/journal.pone.0266102

(or, equivalently, f‘ðv̂‘� 1; y‘Þ) where v̂‘ are the results of the original forward pass starting from

v̂0 ¼ x. Specifically, the following modifications are made to the quantities computed by Algo-

rithm 2

�‘ ¼ v̂‘ � v‘

�L ¼
@Lðv̂L; yÞ
@v̂L

dv‘ ¼ �‘ � �‘þ1

@f‘þ1ðv̂‘; y‘þ1Þ

@v̂‘

dy‘ ¼ � �‘
@f‘ðv̂‘� 1; y‘Þ

@y‘

ð12Þ

for ℓ = 1, . . ., L − 1. This modification can be interpreted as “fixing” the predictions at the val-

ues computed by a forward pass and is therefore called the “fixed prediction assumption” [11,

12]. Additionally, the initial conditions of the beliefs are set to the results from a forward pass,

v‘ ¼ v̂‘ for ℓ = 1, . . ., L − 1. The complete modified algorithm is defined by the pseudocode

below:

Algorithm 3 Supervised learning with predictive coding modified by the fixed prediction

assumption. Adapted from the algorithm in [12] and similar to the algorithm from [11].
Given: Input (x) and label (y)
forward pass
v̂0 ¼ x
for ℓ = 1, . . ., L

v̂‘ ¼ f‘ðv̂‘� 1; y‘Þ

v‘ ¼ v̂‘
error and belief computation
�L ¼

@Lðv̂L ; yÞ
@v̂L

for i = 1, . . ., n
for ℓ = L − 1, . . ., 1
�‘ ¼ v‘ � v̂‘
dv‘ ¼ �‘ � �‘þ1

@f‘þ1ðv̂‘ ; y‘þ1Þ

@v̂‘

vℓ = vℓ + ηdvℓ
parameter update computation
for ℓ = 1, . . ., L

dy‘ ¼ � �‘
@f‘ðv̂‘� 1; y‘Þ

@y‘

Note, again, that some choices in Algorithm 3 were made arbitrarily. The three updates

inside the inner for-loop over ℓ could be performed in a different order or the outer for loop

over i could be changed to a while-loop with a convergence criterion. Regardless of these

choices, the fixed points, ��
‘
, can again be computed by setting dvℓ = 0 to obtain

��
‘
¼ ��

‘þ1

@f‘þ1ðv̂‘; y‘þ1Þ

@v̂‘
:

Now note that �L is fixed, so

��L ¼
@Lðv̂L; yÞ
@v̂L

PLOS ONE On the relationship between predictive coding and backpropagation

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 9 / 27

https://doi.org/10.1371/journal.pone.0266102

and we can combine these two equations to compute

��L� 1
¼
@Lðv̂L; yÞ
@v̂L

@fLðv̂L� 1; yLÞ

@v̂L� 1

¼
@Lðv̂L; yÞ
@v̂L� 1

where we used the chain rule and the fact that v̂‘ ¼ f‘ðv̂‘� 1; y‘Þ. Continuing this approach we

have,

��
‘
¼ ��

‘þ1

@f‘þ1ðv̂‘; y‘þ1Þ

@v̂‘

¼
@Lðŷ; yÞ
@v̂‘

for all ℓ = 1, . . ., L (where recall that ŷ ¼ v̂L is the output from the feedfoward pass). Combin-

ing this with the modified definition of dθℓ, we have

dy‘ ¼ � ��‘
@f‘ðv̂‘� 1; y‘Þ

@y‘

¼ �
@Lðŷ; yÞ
@v̂‘

@v̂‘
@y‘

¼ �
@Lðŷ; yÞ
@y‘

where we use the chain rule and the fact that v̂‘ ¼ f‘ðv̂‘� 1; y‘Þ. We may conclude that, if the

inference step converges to a fixed point (dvℓ = 0), then Algorithm 3 computes the same values

of dθℓ as backpropagation and also that the prediction errors, �ℓ, converge to the gradients,

d‘ ¼ @L=@v̂‘, computed by backpropagation. As long as the inference step approximately con-

verges to a fixed point (dvℓ� 0), then we should expect the parameter updates from Algorithm

3 to approximate those computed by backpropagation. In the next section, I extend this result

to show that a special case of the algorithm computes the true gradients in a fixed number of

steps.

I next tested Algorithm 3 on MNIST using the same 5-layer convolutional neural network

considered above. I used a cross-entropy loss function, but otherwise used all of the same

parameters used to test Algorithm 2 in Fig 1. The modified predictive coding algorithm (Algo-

rithm 3) performed similarly to backpropagation in terms of the loss and accuracy (Fig 3A

and 3B). Parameter updates computed by Algorithm 3 did not match the true gradients, but

pointed in a similar direction and provided a closer match than Algorithm 2 (compare Fig 3C

and 3D to Fig 1C and 1D). Algorithm 3 was similar to Algorithm 2 in terms of training time

(29s for Algorithm 3 versus 31s for Algorithm 2 and 8s for backpropagation). S2 Fig shows the

same results from Fig 3 repeated across 30 trials with different random seeds to quantify the

mean and standard deviation across trials.

I next compared the parameter updates computed by Algorithm 3 to the true gradients for

different values of n and η (Fig 4). When η< 1, the parameter updates, dθℓ, appeared to con-

verge, but did not converge exactly to the true gradients. This is likely due to numerical float-

ing point errors accumulated over iterations. When η = 1, the parameter updates at each layer

remained constant for the first few iterations, then immediately jumped to become very near

the updates from backpropagation. In the next section, I provide a mathematical analysis of

PLOS ONE On the relationship between predictive coding and backpropagation

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 10 / 27

https://doi.org/10.1371/journal.pone.0266102

this behavior and show that when η = 1, Algorithm 3 computes the true gradients in a fixed

number of steps.

To see how well these results extend to a larger model and more difficult benchmark, I next

tested Algorithm 3 on CIFAR-10 [25] using a six-layer convolutional network. While the

Fig 3. Predictive coding modified by the fixed prediction assumption compared to backpropagation in a convolutional neural network

trained on MNIST. Same as Fig 1 except Algorithm 3 was used (with η = 0.1 and n = 20) in place of Algorithm 2. The accuracy of predictive

coding with the fixed prediction assumption is similar to backpropagation, but the parameter updates are less similar for these

hyperparameters.

https://doi.org/10.1371/journal.pone.0266102.g003

Fig 4. Comparing parameter updates from predictive coding modified by the fixed prediction assumption to true gradients in a network trained on MNIST.

Relative error and angle between dθ produced by predictive coding modified by the fixed prediction assumption (Algorithm 3) as compared to the exact gradients

computed by backpropagation (relative error defined by kdθpc − dθbpk/kdθbpk). Updates were computed as a function of the number of iterations, n, used in Algorithm 3

for various values of the step size, η, using the model from Fig 3 applied to one mini-batch of data. Both models were initialized identically to the pre-trained parameter

values from the backpropagation-trained model in Fig 3. In the rightmost panels, some lines are not visible where they overlap at zero. Parameter updates quickly

converge to the true gradients when η is larger.

https://doi.org/10.1371/journal.pone.0266102.g004

PLOS ONE On the relationship between predictive coding and backpropagation

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 11 / 27

https://doi.org/10.1371/journal.pone.0266102.g003
https://doi.org/10.1371/journal.pone.0266102.g004
https://doi.org/10.1371/journal.pone.0266102

network only had one more layer than the MNIST network used above, it had 141 times more

parameters (32,695 trainable parameters in the MNIST model versus 4,633,738 in the CIFAR-

10 model). Algorithm 3 performed similarly to backpropagation in terms of loss and accuracy

during learning (Fig 5A and 5B) and produced parameter updates that pointed in a similar

direction, but still did not match the true gradients (Fig 5C and 5D). Algorithm 3 was substan-

tially slower than backpropagation (848s for Algorithm 3 versus 58s for backpropagation when

training metrics were not computed on every iteration).

Predictive coding modified by the fixed prediction assumption using a step size of η = 1

computes exact gradients in a fixed number of steps. A major disadvantage of the approach

outlined above—when compared to standard backpropagation—is that it requires iterative

updates to vℓ and �ℓ. Indeed, previous work [12] used n = 100–200 iterations, leading to sub-

stantially slower performance compared to standard backpropagation. Other work [11] used

n = 20 iterations as above. In general, there is a tradeoff between accuracy and performance

when choosing n, as demonstrated in Fig 4. However, more recent work [13, 14] showed that,

under the fixed prediction assumption, predictive coding can compute the exact same gradi-

ents computed by backpropagation in a fixed number of steps. That work used a more specific

formulation of the neural network which can implement fully connected layers, convolutional

layers, and recurrent layers. They also used an unconventional interpretation of neural net-

works in which weights are multiplied outside the activation function, i.e., fℓ(x; θℓ) = θℓgℓ(x),

and inputs are fed into the last layer instead of the first. Next, I show that their result holds for

arbitrary feedforward neural networks as formulated in Eq (1) (with arbitrary functions, fℓ)
and this result has a simple interpretation in terms of Algorithm 3. Specifically, the following

theorem shows that taking a step size of η = 1 yields an exact computation of gradients using

just n = L iterations (where L is the depth of the network).

Fig 5. Predictive coding modified by the fixed prediction assumption compared to backpropagation in convolutional neural networks

trained on CIFAR-10. Same as Fig 3 except a larger network was trained on the CIFAR-10 data set. The accuracy of predictive coding with the

fixed prediction assumption is similar to backpropagation and parameter updates are similar to the true gradients.

https://doi.org/10.1371/journal.pone.0266102.g005

PLOS ONE On the relationship between predictive coding and backpropagation

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 12 / 27

https://doi.org/10.1371/journal.pone.0266102.g005
https://doi.org/10.1371/journal.pone.0266102

Theorem 1. If Algorithm 3 is run with step size η = 1 and at least n = L iterations then the
algorithm computes

�‘ ¼
@Lðŷ; yÞ
@v̂‘

and

dy‘ ¼ �
@Lðŷ; yÞ
@y‘

for all ℓ = 1, . . ., L where v̂‘ ¼ f‘ðv̂‘� 1; y‘Þ are the results from a forward pass with v̂0 ¼ x and
ŷ ¼ v̂L ¼ f ðx; yÞ is the output.

Proof. For the sake of notational simplicity within this proof, define d‘ ¼ @Lðv̂L; yÞ=@v̂‘.
Therefore, we first need to prove that �ℓ = δℓ. First, rewrite the inside of the error and belief

loop from Algorithm 3 while explicitly keeping track of the iteration number in which each

variable was updated,

�i
‘
¼ vi� 1

‘
� v̂‘

dvi
‘
¼ �i

‘
� �i

‘þ1

@f‘þ1ðv̂‘; y‘þ1Þ

@v̂‘
vi
‘
¼ vi� 1

‘
þ dvi

‘
:

Here, vi
‘
, �i

‘
, and dvi

‘
denote the values of vi

‘
, �i

‘
, and dvi

‘
respectively at the end of the ith itera-

tion, v0
‘
¼ v̂‘ corresponds to the initial value, and all terms without superscripts are constant

inside the inference loop. There are some subtleties here. For example, we have vi� 1
‘

in the first

line because vℓ is updated after �ℓ in the loop. More subtly, we have �i
‘þ1

in the second equation

instead of �i� 1
‘þ1

because the for loop goes backwards from ℓ = L − 1 to ℓ = 1, so �ℓ+1 is updated

before �ℓ. First note that

�1

‘
¼ 0

for ℓ = 1, . . ., L − 1 because v0
‘
¼ v̂‘. Now compute the change in �ℓ across one step,

�iþ1
‘
� �i

‘
¼ vi

‘
� vi� 1

‘

¼ dvi
‘

¼ �i
‘
� �i

‘þ1

@f‘þ1ðv̂‘; y‘þ1Þ

@v̂‘
:

Note that this equation is only valid for i� 1 due to the i − 1 term (v� 1
‘

is not defined). Adding

�i
‘

to both sides of the resulting equation gives

�iþ1

‘
¼ �i

‘þ1

@f‘þ1ðv̂‘; y‘þ1Þ

@v̂‘
:

We now use induction to prove that �ℓ = δℓ after n = L iterations. Indeed, we prove a stronger

claim that �i
‘
¼ d‘ at i = L − ℓ + 1. First note that �iL ¼ dL for all i because �iL is initialized to δL

and then never changed. Therefore, our claim is true for the base case ℓ = L.

PLOS ONE On the relationship between predictive coding and backpropagation

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 13 / 27

https://doi.org/10.1371/journal.pone.0266102

Now suppose that �i
‘þ1
¼ d‘þ1 for i = L − (ℓ + 1) + 1 = L − ℓ. We need to show that �iþ1

‘
¼ d‘.

From above, we have

�iþ1
‘
¼ �i

‘þ1

@f‘þ1ðv̂‘; y‘þ1Þ

@v̂‘

¼ d‘þ1

@f‘þ1ðv̂‘; y‘þ1Þ

@v̂‘

¼
@Lðŷ; yÞ
@v̂‘þ1

@f‘þ1ðv̂‘; y‘þ1Þ

@v̂‘

¼
@Lðŷ; yÞ
@v̂‘þ1

@v̂‘þ1

@v̂‘

¼
@Lðŷ; yÞ
@v̂‘

¼ d‘:

This completes our induction argument. It follows that �i
‘
¼ d‘ at iteration i = L − ℓ + 1 at all

layers ℓ = 1, . . ., L. The last layer to be updated to the correct value is ℓ = 1, which is updated

on iteration number i = L − 1 + 1 = L. Hence, �ℓ = δℓ for all ℓ = 1, . . ., L after n = L iterations.

This proves the first statement in our theorem. The second statement then follows from the

definition of dθℓ,

dy‘ ¼ � �‘
@f‘ðv̂‘� 1; y‘Þ

@y‘

¼ �
@Lðŷ; yÞ
@v̂‘

@f‘ðv̂‘� 1; y‘Þ

@y‘

¼ �
@Lðŷ; yÞ
@v̂‘

@v̂‘
@y‘

¼ �
@Lðŷ; yÞ
@y‘

:

This completes the proof.

This theorem ties together the implementation and formulation of predictive coding from

[12] (i.e., Algorithm 3) to the results in [13, 14]. As noted in [13, 14], this result depends criti-

cally on the assumption that the values of vℓ are initialized to the activations from a forward

pass, v‘ ¼ v̂‘ initially. The theoretical predictions from Theorem 1 are confirmed by the fact

that all of the errors in the rightmost panels of Fig 4 converge to zero after n = L = 5 iterations.

To further test the result empirically, I repeated Figs 3 and 5 using η = 1 and n = L (in con-

trast to Figs 3 and 5 which used η = 0.1 and n = 20). The loss and accuracy closely matched

those computed by backpropagation (Figs 6A and 6B and 7A and 7B). More importantly, the

parameter updates closely matched the true gradients (Figs 6C and 6D and 7C and 7D), as pre-

dicted by Theorem 1. The differences between predictive coding and backpropagation in Fig 6

were due floating point errors and the non-determinism of computations performed on

GPUs. For example, similar differences to those seen in Fig 6A and 6B were present when the

same training algorithm was run twice with the same random seed. The smaller number of

iterations (n = L in Figs 6 and 7 versus n = 20 in Figs 3 and 5) resulted in a shorter training

time (13s for MNIST and 300s for CIFAR-10 for Figs 6 and 7, compare to 29s and 848s in Figs

3 and 5, and compare to 8s and 58s for backpropagation).

PLOS ONE On the relationship between predictive coding and backpropagation

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 14 / 27

https://doi.org/10.1371/journal.pone.0266102

Fig 6. Predictive coding modified by the fixed prediction assumption with η = 1 compared to backpropagation in convolutional neural

networks trained on MNIST. Same as Fig 3 except η = 1 and n = L. Predictive coding with the fixed prediction assumption approximates

true gradients accurately when η = 1.

https://doi.org/10.1371/journal.pone.0266102.g006

Fig 7. Predictive coding modified by the fixed prediction assumption with η = 1 compared to backpropagation in convolutional neural

networks trained on CIFAR-10. Same as Fig 5 except η = 1 and n = L. Predictive coding with the fixed prediction assumption approximates

true gradients accurately when η = 1.

https://doi.org/10.1371/journal.pone.0266102.g007

PLOS ONE On the relationship between predictive coding and backpropagation

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 15 / 27

https://doi.org/10.1371/journal.pone.0266102.g006
https://doi.org/10.1371/journal.pone.0266102.g007
https://doi.org/10.1371/journal.pone.0266102

In summary, a review of the literature shows that a strict interpretation of predictive coding

(Algorithm 2) does not converge to the true gradients computed by backpropagation. To com-

pute the true gradients, predictive coding must be modified by the fixed prediction assumption

(Algorithm 2). Further, I proved that Algorithm 2 computes the exact gradients when η = 1

and n� L, which ties together results from previous work [12–14].

Predictive coding with the fixed prediction assumption and η = 1 is

functionally equivalent to a direct implementation of backpropagation

The proof of Theorem 1 and the last panel of Fig 4 give some insight into a how Algorithm 3

works. First note that the values of vℓ in Algorithm 3 are only used to compute the values of

�ℓ and are not otherwise used in the computation of dθℓ or any other quantities. Therefore, if

we only care about understanding parameter updates, dθℓ, we can ignore the values of vℓ and

only focus on how �ℓ is updated on each iteration, i. Secondly, note that when η = 1, each �ℓ is

updated only once: �i
‘
¼ 0 for i< L − ℓ + 1 and �i

‘
¼ �i

‘þ1
@f‘þ1ðv̂‘; y‘þ1Þ=@v̂‘ for i� L − ℓ + 1, so

�ℓ is only changed on iteration number i = L − ℓ + 1. In other words, the error computation in

Algorithm 3 when η = 1 and n = L is equivalent to
error computation
�L ¼

@Lðv̂L ;yÞ
@v̂L

for i = 1, . . ., L
for ℓ = L − 1, . . ., 1
if ℓ == L − i + 1
�‘ ¼ �‘þ1

@f‘þ1ðv̂‘ ; y‘þ1Þ

@v̂‘

The two computations are equivalent in the sense that they compute the same values of the

errors, �i
‘
, on every iteration. The formulation above makes it clear that the nested loops are

unnecessary because for each value of i, �ℓ is only updated at one value of ℓ. Therefore, the

nested loops and if-statement can be replaced by a single for-loop. Specifically, the error com-

putation in Algorithm 3 when η = 1 is equivalent to
error computation
�L ¼

@Lðv̂L ; yÞ
@v̂L

for ℓ = L − 1, . . ., 1
�‘ ¼ �‘þ1

@f‘þ1ðv̂‘ ; y‘þ1Þ

@v̂‘

This is exactly the error computation from the standard backpropagation algorithm, i.e.,
Algorithm 1. Hence, if we use η = 1, then Algorithm 3 is just backpropagation with extra steps

and these extra steps do not compute any non-zero values. If we additionally want to compute

the fixed point beliefs, then they can still be computed using the relationship

v‘ ¼ �‘ þ v̂‘:

We may conclude that, when η = 1, Algorithm 3 can be replaced by an exact implementation

of backpropagation without any effect on the results or effective implementation of the algo-

rithm. This raises the question of whether predictive coding with the fixed prediction assump-

tion should be considered any more biologically plausible than a direct implementation of

backpropagation.

Accounting for covariance or precision matrices in hidden layers does not

affect learning under the fixed prediction assumption

Above, I showed that predictive coding with the fixed prediction assumption is functionally

equivalent to backpropagation. However, the predictive coding algorithm was derived under

an assumption that covariance matrices in the probabilistic model are identity matrices, Sℓ = I.

PLOS ONE On the relationship between predictive coding and backpropagation

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 16 / 27

https://doi.org/10.1371/journal.pone.0266102

This raises the question of whether relaxing this assumption could generalize backpropagation

to account for the covariances, as suggested in previous work [11, 12, 26].

We can account for covariances by returning to the calculations starting from the probabi-

listic model in Eq (2) and omit the assumption that Sℓ = I. To this end, it is helpful to define

the precision-weighted prediction errors [20, 21, 26],

~�‘ ¼ �‘P‘

for ℓ = 1, . . ., L − 1 where P‘ ¼ S� 1

‘
is the inverse of the covariance matrix of Vℓ, which is called

“precision matrix.” Recall that we treat �ℓ as a row-matrix, which explains the right-multiplica-

tion in this definition.

Modifying the definition of �L to account for covariances is not so simple because the

Gaussian model for Vℓ is not justified for non-Euclidean loss functions such as categorical loss

functions. Moreover, it is not clear how to define the covariance or precision matrix of the out-

put layer when labels are observed. As such, I restrict to accounting for precision matrices in

hidden layers only, and leave the question of accounting for covariances in the output layer for

future work with some comments on the issue provided at the end of this section. To this end,

let us not modify the last layer’s precision and instead define

~�L ¼ �L ¼
@Lðŷ; yÞ
@ŷ

:

The free energy is then defined as [20, 21]

F ¼
1

2

XL

‘¼1

k~�‘k
2
:

Performing gradient descent on F with respect to vℓ therefore gives

dv‘ ¼ ~�‘ � ~�‘þ1

@f‘þ1ðv‘; y‘þ1Þ

@v‘

and performing gradient descent on F with respect to θℓ gives

dy‘ ¼ � ~�‘
@f‘ðv‘� 1; y‘Þ

@y‘
:

These expressions are identical to Eqs (5) and (6) derived above except that ~�‘ takes the place

of �ℓ.

The precision matrices themselves can be learned by performing gradient descent on F
with respect to Pℓ or, as suggested in other work [21], by parameterizing the model in terms of

S‘ ¼ P� 1
‘

and performing gradient descent with respect to Sℓ. Alternatively, one could use

techniques from the literature on Gaussian graphical models to learn a sparse or low-rank

representation of Pℓ. I circumvent the question of estimating Pℓ by instead just asking how an

estimate of Pℓ (however it is obtained) would affect learning. I do assume that Pℓ is symmetric.

I also simplify the calculations by restricting the analysis to predictive coding with the fixed

prediction assumption, leaving the analysis of fixed point prediction errors and parameter

updates under strict predictive coding with precisions matrices for future work. Some analysis

has been performed in this direction [21], but not for the supervised learning scenario consid-

ered here.

PLOS ONE On the relationship between predictive coding and backpropagation

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 17 / 27

https://doi.org/10.1371/journal.pone.0266102

Putting this together, predictive coding under the fixed prediction assumption while

accounting for precision matrices in hidden layers is defined by the following equations

~�‘ ¼ ½v̂‘ � v‘�P‘

~�L ¼
@Lðv̂L; yÞ
@v̂L

dv‘ ¼ ~�‘ � ~�‘þ1

@f‘þ1ðv̂‘; y‘þ1Þ

@v̂‘

dy‘ ¼ � ~�‘
@f‘ðv̂‘� 1; y‘Þ

@y‘

The only difference between these equations and Eq (12) is that they use ~�‘ in place of

�‘ ¼ v̂‘ � v‘. Following the same line of reasoning, therefore, if the updates to vℓ are repeated

until convergence, then fixed point precision-weighted prediction errors satisfy

~��
‘
¼ ~��

‘þ1

@f‘þ1ðv̂‘; y‘þ1Þ

@v̂‘
:

Notably, this is the same equation derived for �ℓ under the fixed prediction assumption with

Sℓ = I, so fixed point precision-weighted prediction errors are also the same,

~��
‘
¼
@Lðŷ; yÞ
@v̂‘

and, therefore, parameter updates are the same as well,

dy‘ ¼ �
@Lðŷ; yÞ
@y‘

:

In conclusion, accounting for precision matrices in hidden layers does not affect learning

under the fixed prediction assumption. Fixed point parameter updates are still the same as

those computed by backpropagation. This conclusion is independent of how the precision

matrices are estimated, but it does rely on the assumption that fixed points for vℓ exist and are

unique.

Above, we only considered precision matrices in the hidden layers because accounting for

precision matrices in the output layer is problematic for general loss functions. The use of a

precision matrix in the output implies the use of a Gaussian model for the output layer and

labels, which is inconsistent with some types of labels and loss functions. If we focus on the

case of a squared-Euclidean loss function,

Lðŷ; yÞ ¼
1

2
kŷ � yk2

;

then the use of precision matrices in the output layer is more parsimonious and we can define

~�L ¼ v̂L � y½ �PL ¼
@Lðŷ; yÞ
@ŷ

PL

in place of the definition above (recalling that ŷ ¼ v̂L). Following the same calculations as

above, gives fixed points of the form

~��
‘
¼
@Lðŷ; yÞ
@ŷ

PL
@ŷ
@v̂‘

PLOS ONE On the relationship between predictive coding and backpropagation

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 18 / 27

https://doi.org/10.1371/journal.pone.0266102

and, therefore, weight updates take the form

dy‘ ¼ �
@Lðŷ; yÞ
@ŷ

PL
@ŷ
@y‘

:

at the fixed point. Hence, accounting for precision matrices at the output layer can affect learn-

ing by re-weighting the gradient of the loss function according to the precision matrix of the

output layer. Note that the precision matrices of the hidden layers still have no effect on learn-

ing in this case. Previous work relates the inclusion of the precision matrix in output layers

with the use of natural gradients [26, 27].

Prediction errors do not necessarily represent surprising or unexpected

features of inputs

Deep neural networks are often interpreted as abstract models of cortical neuronal networks.

To this end, the activations of units in deep neural networks are compared to the activity (typi-

cally firing rates) of cortical neurons [3, 28, 29]. This approach ignores the representation of

errors within the network. More generally, the activations in one particular layer of a feedfor-

ward deep neural network contain no information about the activations of deeper layers, the

label, or the loss. On the other hand, the activity of cortical neurons can be modulated by

downstream activity and information believed to be passed upstream by feedback projections.

Predictive coding provides a precise model for the information that deeper layers send to shal-

lower layers, specifically prediction errors.

Under the fixed prediction assumption (Algorithm 3), prediction errors in a particular

layer are approximated by the gradients of that layers’ activations with respect to the loss func-

tion, �‘ ¼ d‘ ¼
@L
@v̂‘

, but under a strict interpretation of predictive coding (Algorithm 2), predic-

tion errors do not necessarily reflect gradients. We next empirically explored how the

representations of images differ between the activations from a feedforward pass, v̂‘, the pre-

diction errors under the fixed prediction assumption, �ℓ = δℓ, as well as the beliefs, vℓ, and pre-

diction errors, �ℓ, under a strict interpretation of predictive coding (Algorithm 2). To do so, we

computed each quantity in VGG-19 [30], which is a large, feedforward convolutional neural

network (19 layers and 143,667,240 trainable parameters) pre-trained on ImageNet [31].

The use of convolutional layers allowed us to visualize the activations and prediction errors

in each layer. Specifically, we took the Euclidean norm of each quantity across all channels and

plotted them as two-dimensional images for layers ℓ = 1 and ℓ = 10 and for two different input

images (Fig 8). For each image and each layer (each row in Fig 8), we computed the Euclidean

norm of four quantities. First, we computed the activations from a forward pass through the

network (v̂‘, second column). Under predictive coding with the fixed prediction assumption

(Algorithm 3), we can interpret the activations, v̂‘, as “beliefs” and the gradients, δℓ, as “predic-

tion errors.” Strictly speaking, there is a distinction between the beliefs, v̂‘, from a feedforward

pass and the beliefs, v‘ ¼ v̂‘ þ �‘, when labels are provided. Either could be interpreted as a

“belief.” However, we found that the difference between them was negligible for the examples

considered here.

Next, we computed the gradients of the loss with respect to the activations (δℓ, third column

in Fig 8). The theory and simulations above and from previous work confirms that these gradi-

ents approximate the prediction errors from predictive coding with the fixed prediction

assumption (Algorithm 3). Indeed, for the examples considered here, the differences between

the two quantities were negligible. Next, we computed the beliefs (vℓ, fourth column in Fig 8)

computed by strict predictive coding (Algorithm 2). Finally, we computed the prediction

errors (�ℓ, last column in Fig 8) computed by strict predictive coding (Algorithm 2).

PLOS ONE On the relationship between predictive coding and backpropagation

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 19 / 27

https://doi.org/10.1371/journal.pone.0266102

Note that we used a VGG-19 model that was pre-trained using backpropagation. Hence,

the weights were not necessarily the same as the weights that would be obtained if the model

were trained using predictive coding, particularly strict predictive coding (Algorithm 2) which

does not necessarily converge to the true gradients. Training a large ImageNet model like

VGG-19 with predictive coding is extremely computationally expensive. Regardless, future

work should address the question of whether using pre-trained weights (versus weights trained

by predictive coding) affects the conclusions reached here.

Overall, the activations, v̂‘, from a feedforward pass were qualitatively very similar to the

beliefs, vℓ, computed under a strict interpretation of predictive coding (Algorithm 2). To a

slightly lesser degree, the gradients, δℓ, from a feedforward pass were qualitatively similar to

the prediction errors computed under a strict interpretation of predictive coding (Algorithm

2). Since v̂‘ and δℓ approximate beliefs and prediction errors under the fixed prediction

Fig 8. Magnitude of activations, beliefs, and prediction errors in a convolutional neural network pre-trained on ImageNet. The Euclidean norm of feedforward

activations (v̂, interpreted as beliefs under the fixed prediction assumption), gradients of the loss with respect to activations (d‘ ¼ @L=@v̂, interpreted as prediction errors

under the fixed prediction assumption), beliefs (v) under strict predictive coding, and prediction errors (�ℓ)) under strict predictive coding computed from the VGG-19

network [30] pre-trained on ImageNet [31] with two different photographs as inputs at two different layers. The vertical labels on the left (“triceratops” and “Irish

wolfhound”) correspond to the guessed label which was also used as the “true” label (y) used to compute the gradients.

https://doi.org/10.1371/journal.pone.0266102.g008

PLOS ONE On the relationship between predictive coding and backpropagation

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 20 / 27

https://doi.org/10.1371/journal.pone.0266102.g008
https://doi.org/10.1371/journal.pone.0266102

assumption, these observations confirmed that the fixed prediction assumption does not make

large qualitative changes to the representation of beliefs and errors in these examples. There-

fore, in the discussion below, we used “beliefs” and “prediction errors” to refer to the quantities

from both models.

Interestingly, prediction errors were non-zero even when the image and the network’s

“guess” was consistent with the label (no “mismatch”). Indeed, the prediction errors were larg-

est in magnitude at pixels corresponding to the object predicted by the label, i.e., at the most

predictable regions. While this observation is an obvious consequence of the fact that predic-

tion errors are approximated by the gradients, d‘ ¼
@L
@v̂‘

, it is contradictory to the heuristic or

intuitive interpretation of prediction errors as measurements of “surprise” in the colloquial

sense of the word [16].

As an illustrative example from Fig 8, it is not surprising that an image labeled by “tricera-

tops” contains a triceratops, but this does not imply a lack of prediction errors because the

space of images containing a triceratops is large and any one image of a triceratops is not

wholly representative of the label. Moreover, the pixels to which the loss is most sensitive are

those pixels containing the triceratops. Therefore those pixels give rise to larger values of

�‘ � d‘ ¼ @L=@v̂‘. Hence, in high-dimensional sensory spaces, predictive coding models do

not necessarily predict that prediction error units encode “surprise” in the colloquial sense of

the word.

In both examples in Fig 8, we used an input, y, that matched the network’s “guessed” label,

i.e., the label to which the network assigned the highest probability (argmaxðŷÞ). Prediction

errors are often discussed in the context of mismatched stimuli in which top-down input is

inconsistent with bottom-up predictions [32–37]. Mismatches can be modeled by taking a

label that is different from the network’s guess. In Fig 9, we visualized the prediction errors in

response to matched and mismatched labels. The network assigned a probability of p = 0.9991

Fig 9. Magnitude of activations, beliefs, and prediction errors in response to matched and mismatched inputs and labels. Same as Fig 8, but for the bottom row

the label did not match the network’s guess.

https://doi.org/10.1371/journal.pone.0266102.g009

PLOS ONE On the relationship between predictive coding and backpropagation

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 21 / 27

https://doi.org/10.1371/journal.pone.0266102.g009
https://doi.org/10.1371/journal.pone.0266102

to the label “carousel” and a probability of p = 3.63 × 10−8 to the label “bald eagle”. The low

probability assigned to “bald eagle” is, at least in part, a consequence of the network being

trained with a softmax loss function, which implicitly assumes one label per input. When we

applied the mismatched label “bald eagle,” prediction errors were larger in pixels that are

salient for that label (e.g., the bird’s white head, which is a defining feature of a bald eagle).

Moreover, the prediction errors as a whole are much larger in magnitude in response to the

mismatched label (see the scales of the color bars in Fig 9).

In summary, the relationship between prediction errors and gradients helped demonstrate

that prediction errors sometimes, but do not always conform to their common interpretation

as unexpected features of a bottom-up input in the context of a top-down input. Also, beliefs

and prediction errors were qualitatively similar with and without the fixed prediction assump-

tion for the examples considered here.

Discussion

We reviewed and extended previous work [11–14] on the relationship between predictive cod-

ing and backpropagation for learning in neural networks. Our results demonstrated that a

strict interpretation of predictive coding does not accurately approximate backpropagation,

but is still capable of learning (Figs 1 and 2). Previous work proposed a modification to predic-

tive coding called the “fixed prediction assumption” which causes predictive coding to con-

verge to the same parameter updates produced by backpropagation, under the assumption

that the predictive coding iterations converge to fixed points. Hence, the relationship between

predictive coding and backpropagation identified in previous work relies critically on the fixed

prediction assumption. Formal derivations of predictive coding in terms of variational infer-

ence [20] do not produce the fixed prediction assumption. It is possible that an alternative

probabilistic model or alternative approaches to the variational formulation could help formal-

ize a model of predictive coding under the fixed prediction assumption.

We proved analytically and verified empirically that taking a step size of η = 1 in the modi-

fied predictive coding algorithm computes the exact gradients computed by backpropagation

in a fixed number of steps (modulo floating point numerical errors). This result is consistent

with similar, but slightly less general, results in previous work [13, 14].

A closer inspection of the the fixed prediction assumption with η = 1 showed that it is algo-

rithmically equivalent to a direct implementation of backpropagation. As such, any potential

neural architecture and machinery that could be to implement predictive coding with the fixed

prediction assumption could also implement backpropagation directly. This result calls into

question whether predictive coding with the fixed prediction assumption is any more biologi-

cally plausible than a direct implementation of backpropagation.

Visualizing the beliefs and prediction errors produced by predictive coding models applied

to a large convolutional neural network pre-trained on ImageNet showed that beliefs and pre-

diction errors were activated by distinct parts of input images, and the parts of the images that

produced larger prediction errors were not always consistent with an intuitive interpretation

of prediction errors as representing surprising or unexpected features of inputs. These obser-

vations are consistent with the fact that prediction errors approximate gradients of the loss

function in backpropagation [11–14]. Gradients are large for input features that have a larger

impact on the loss. While surprising features can have a large impact on the loss, unsurprising

features can as well. We only verified this finding empirically on a few examples. The reader

can try additional examples by inserting the URL of any image into the file PredErrsFro-
mURLimage.ipynb contained in the directories linked in Materials and Methods, and can

also be accessed directly at https://bit.ly/3JwGUM9. Future work should attempt to quantify

PLOS ONE On the relationship between predictive coding and backpropagation

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 22 / 27

https://bit.ly/3JwGUM9
https://doi.org/10.1371/journal.pone.0266102

the relationship between prediction errors and surprising features more systematically across

many inputs. In addition, prediction errors could be computed for learning tasks associated

with common experimental paradigms so they can be used to make experimentally testable

predictions.

When interpreting artificial deep neural networks as models of biological neuronal net-

works, it is common to compare activations in the artificial network to biological neurons’ fir-

ing rates [28, 29]. However, under predictive coding models and other models in which errors

are propagated upstream by feedback connections, many biological interpretations posit the

existence of “error neurons” that encode the errors sent upstream. In most such models

(including predictive coding), error neurons reflect or approximate the gradient of the loss

function with respect to artificial neurons’ activations, δℓ. Any model that hypothesizes the

neural representation of backpropagated errors would predict that some recorded neural activ-

ity should reflect these errors. Therefore, if we want to draw analogues between artificial and

biological neural networks, the activity of biological neurons should be compared to both the

activations and the gradients of artificial neurons.

Following previous work [11, 12], we took the covariance matrices underlying the probabi-

listic model to be identity matrices, Sℓ = I, when deriving the predictive coding model. We

also showed that relaxing this assumption by allowing for arbitrary precision matrices in hid-

den layers does not affect learning under the fixed prediction assumption. Future work should

consider the utility of accounting for covariance (or precision) matrices in models without the

fixed prediction assumption (i.e., under the “strict” model) and accounting for precisions or

covariances in the output layer. Moreover, precision matrices could still have benefits in other

settings such as recurrent network models, unsupervised learning, or active inference.

Predictive coding and deep neural networks (trained by backpropagation) are often viewed

as competing models of brain function. Better understanding their relationship can help in the

interpretation and implementation of each algorithm as well as their mutual relationships to

biological neuronal networks.

Materials and methods

All numerical examples were performed on GPUs using Google Collaboratory with custom-

written PyTorch code. The networks trained on MNIST used two convolutional and three

fully connected layers with rectified linear activation functions using 2 epochs, a learning

rate of 0.002, and a batch size of 300. The networks trained on CIFAR-10 used three convolu-

tional and three fully connected layers with rectified linear activation functions using 5

epochs, a learning rate of 0.01, and a batch size of 256. All networks were trained using the

Adam optimizer with gradients replaced by the output of the respective algorithm. All of the

code to produce the figures in the manuscript can be found at https://doi.org/10.6084/m9.

figshare.19387409.v2 A Google Drive folder with Colab notebooks that produce all figures in

this text can be found at https://drive.google.com/drive/folders/1m_y0G_sTF-pV9pd2_

sysWt1nvRvHYzX0 An additional copy of the same code is also stored at https://github.com/

RobertRosenbaum/PredictiveCodingVsBackProp Full details of the neural network architec-

tures and metaparameters can be found in this code.

Torch2PC software for predictive coding with PyTorch models

The figures above were all produced using PyTorch [38] models combined with custom writ-

ten functions for predictive coding. Functions for predictive coding with PyTorch models are

collected in the Github Repository Torch2PC. Currently, the only available functions are

PLOS ONE On the relationship between predictive coding and backpropagation

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 23 / 27

https://doi.org/10.6084/m9.figshare.19387409.v2
https://doi.org/10.6084/m9.figshare.19387409.v2
https://drive.google.com/drive/folders/1m_y0G_sTF-pV9pd2_sysWt1nvRvHYzX0
https://drive.google.com/drive/folders/1m_y0G_sTF-pV9pd2_sysWt1nvRvHYzX0
https://github.com/RobertRosenbaum/PredictiveCodingVsBackProp
https://github.com/RobertRosenbaum/PredictiveCodingVsBackProp
https://doi.org/10.1371/journal.pone.0266102

intended for models built using the Sequential class, but more general functions will be added

to Torch2PC in the future. The functions can be imported using the following commands

!git clonehttps://github.com/RobertRosenbaum/Torch2PC.git

from Torch2PC import TorchSeq2PC as T2PC
The primary function in TorchSeq2PC is PCInfer, which performs one predictive cod-

ing step (computes one value of dθ) on a batch of inputs and labels. The function takes an

input ErrType, which is a string that determines whether to use a strict interpretation of pre-

dictive coding (Algorithm 2; ErrType=“Strict”), predictive coding with the fixed predic-

tion assumption (Algorithm 3; “FixedPred”), or to compute the gradients exactly using

backpropagation (Algorithm 1; “Exact”). Algorithm 2 can be called as follows,

vhat,Loss,dLdy,v,epsilon=
T2PC.PCInfer(model,LossFun,X,Y,“Strict”,eta,n,vinit)

where model is a Sequential PyTorch model, LossFun is a loss function, X is a mini-

batch of inputs, Y is a mini-batch of labels, eta is the step size, n is the number of iterations to

use, and vinit is the initial value for the beliefs. If vinit is not passed, it is set to the result

from a forward pass, vinit = vhat. The function returns a list of activations from a for-

ward pass at each layer as vhat, the loss as Loss, the gradient of the output with respect to

the loss as dLdy, a list of beliefs, vℓ, at each layer as v, and a list of prediction errors, �ℓ, at each

layer as epsilon. The values of the parameter updates, dθℓ, are stored in the grad attributes

of each parameter, model.param.grad. Hence, after a call to PCInfer, gradient descent

could be implemented by calling

with torch.no_grad():
for p in modelPC.parameters():
p-=eta�p.grad

Alternatively, an arbitrary optimizer could be used by calling

optimizer.step()
where optimizer is an optimizer created using the PyTorch optim class, e.g., by calling

optimizer = optim.Adam(model.parameters()) before the call to T2PC.
PCInfer.

The input model should be a PyTorch Sequential model. Each layer is treated as a single

predictive coding layer. Multiple functions can be included within the same layer by wrapping

them in a separate call to Sequential. For example the following code:

model = nn.Sequential(
nn.Conv2d(1,10,3),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(10,10,3),
nn.ReLU())

will treat each item as its own layer (5 layers in all). To treat each “convolutional block” as a

separate layer, instead do

model = nn.Sequential(
nn.Sequential(
nn.Conv2d(1,10,3),
nn.ReLU(),
nn.MaxPool2d(2)),

nn.Sequential(
nn.Conv2d(10,10,3),
nn.ReLU()))

which has just 2 layers.

PLOS ONE On the relationship between predictive coding and backpropagation

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 24 / 27

https://github.com/RobertRosenbaum/Torch2PC.git
https://doi.org/10.1371/journal.pone.0266102

Algorithm 3 can be called as follows,

vhat,Loss,dLdy,v,epsilon=
T2PC.PCInfer(model,LossFun,X,Y,“FixedPred”,eta,n)

The input vinit is not used for Algorithm 3, so it does not need to be passed in. The exact

values computed by backpropagation can be obtained by calling

vhat,Loss,dLdy,v,epsilon=
T2PC.PCInfer(model,LossFun,X,Y,“Exact”)

The inputs vinit, eta, and n are not used for computing exact gradients, so they do not

need to be passed in. Theorem 1 says that

T2PC.PCInfer(model,LossFun,X,Y,“FixedPred”,eta = 1,n = len
(model))

computes the same values as

T2PC.PCInfer(model,LossFun,X,Y,“Exact”)
up to numerical floating point errors. The inputs eta, n, and vinit are optional. If they

are omitted by calling

T2PC.PCInfer(model,LossFun,X,Y,ErrType)
then they default toeta=.1,n = 20,vinit = Nonewhich produces vinit = vhat

when

ErrType=“Strict”. More complete documentation and a complete example is pro-

vided as

SimpleExample.ipynb in the GitHub repository and in the code accompanying this

paper. More examples are provided by the code accompanying each figure above.

Supporting information

S1 Fig. Comparing backpropagation and predictive coding in a convolutional neural net-

work trained on MNIST across multiple trials. Same as Fig 1 except the model was trained

30 times with different random seeds. Dark curves show the mean values and shaded regions

show ± one standard deviation across trials.

(EPS)

S2 Fig. Comparing backpropagation and predictive coding modified by the fixed predic-

tion assumption in a convolutional neural network trained on MNIST across multiple

trials. Same as Fig 3 except the model was trained 30 times with different random seeds.

Dark curves show the mean values and shaded regions show ± one standard deviation across

trials.

(EPS)

Author Contributions

Conceptualization: Robert Rosenbaum.

Formal analysis: Robert Rosenbaum.

Funding acquisition: Robert Rosenbaum.

Investigation: Robert Rosenbaum.

Methodology: Robert Rosenbaum.

Software: Robert Rosenbaum.

Visualization: Robert Rosenbaum.

PLOS ONE On the relationship between predictive coding and backpropagation

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 25 / 27

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0266102.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0266102.s002
https://doi.org/10.1371/journal.pone.0266102

Writing – original draft: Robert Rosenbaum.

Writing – review & editing: Robert Rosenbaum.

References
1. Izhikevich EM. Solving the distal reward problem through linkage of STDP and dopamine signaling.

Cerebral cortex. 2007; 17(10):2443–2452. https://doi.org/10.1093/cercor/bhl152 PMID: 17220510

2. Clark DG, Abbott L, Chung S. Credit Assignment Through Broadcasting a Global Error Vector. arXiv

preprint arXiv:210604089. 2021;.

3. Lillicrap TP, Santoro A, Marris L, Akerman CJ, Hinton G. Backpropagation and the brain. Nature

Reviews Neuroscience. 2020; 21(6):335–346. https://doi.org/10.1038/s41583-020-0277-3 PMID:

32303713

4. Whittington JC, Bogacz R. Theories of error back-propagation in the brain. Trends in Cognitive Sci-

ences. 2019; 23(3):235–250. https://doi.org/10.1016/j.tics.2018.12.005 PMID: 30704969

5. Urbanczik R, Senn W. Learning by the dendritic prediction of somatic spiking. Neuron. 2014; 81

(3):521–528. https://doi.org/10.1016/j.neuron.2013.11.030 PMID: 24507189

6. Lillicrap TP, Cownden D, Tweed DB, Akerman CJ. Random synaptic feedback weights support error

backpropagation for deep learning. Nature Communications. 2016; 7(1):1–10. https://doi.org/10.1038/

ncomms13276 PMID: 27824044

7. Scellier B, Bengio Y. Equilibrium propagation: Bridging the gap between energy-based models and

backpropagation. Frontiers in computational neuroscience. 2017; 11:24. https://doi.org/10.3389/fncom.

2017.00024 PMID: 28522969

8. Aljadeff J, D’amour J, Field RE, Froemke RC, Clopath C. Cortical credit assignment by Hebbian, neuro-

modulatory and inhibitory plasticity. arXiv preprint arXiv:191100307. 2019;.

9. Kunin D, Nayebi A, Sagastuy-Brena J, Ganguli S, Bloom J, Yamins D. Two routes to scalable credit

assignment without weight symmetry. In: International Conference on Machine Learning. PMLR; 2020.

p. 5511–5521.

10. Payeur A, Guerguiev J, Zenke F, Richards BA, Naud R. Burst-dependent synaptic plasticity can coordi-

nate learning in hierarchical circuits. Nature Neuroscience. 2021; p. 1–10.

11. Whittington JC, Bogacz R. An approximation of the error backpropagation algorithm in a predictive cod-

ing network with local hebbian synaptic plasticity. Neural Computation. 2017; 29(5):1229–1262. https://

doi.org/10.1162/NECO_a_00949 PMID: 28333583

12. Millidge B, Tschantz A, Buckley CL. Predictive coding approximates backprop along arbitrary computa-

tion graphs. arXiv preprint arXiv:200604182. 2020;.

13. Song Y, Lukasiewicz T, Xu Z, Bogacz R. Can the brain do backpropagation?—exact implementation of

backpropagation in predictive coding networks. Advances in Neural Information Processing Systems.

2020; 33:22566. PMID: 33840988

14. Salvatori T, Song Y, Lukasiewicz T, Bogacz R, Xu Z. Predictive Coding Can Do Exact Backpropagation

on Convolutional and Recurrent Neural Networks. arXiv preprint arXiv:210303725. 2021;.

15. Rao RP, Ballard DH. Predictive coding in the visual cortex: a functional interpretation of some extra-

classical receptive-field effects. Nature Neuroscience. 1999; 2(1):79–87. https://doi.org/10.1038/4580

PMID: 10195184

16. Friston K. The free-energy principle: a unified brain theory? Nature Reviews Neuroscience. 2010; 11

(2):127–138. PMID: 20068583

17. Huang Y, Rao RP. Predictive Coding. Wiley Interdisciplinary Reviews: Cognitive Science. 2011; 2

(5):580–593. PMID: 26302308

18. Bastos AM, Usrey WM, Adams RA, Mangun GR, Fries P, Friston KJ. Canonical microcircuits for predic-

tive coding. Neuron. 2012; 76(4):695–711. https://doi.org/10.1016/j.neuron.2012.10.038 PMID:

23177956

19. Clark A. Surfing uncertainty: Prediction, action, and the embodied mind. Oxford University Press; 2015.

20. Buckley CL, Kim CS, McGregor S, Seth AK. The free energy principle for action and perception: A math-

ematical review. Journal of Mathematical Psychology. 2017; 81:55–79. https://doi.org/10.1016/j.jmp.

2017.09.004

21. Bogacz R. A tutorial on the free-energy framework for modelling perception and learning. Journal of

Mathematical Psychology. 2017; 76:198–211. https://doi.org/10.1016/j.jmp.2015.11.003 PMID:

28298703

PLOS ONE On the relationship between predictive coding and backpropagation

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 26 / 27

https://doi.org/10.1093/cercor/bhl152
http://www.ncbi.nlm.nih.gov/pubmed/17220510
https://doi.org/10.1038/s41583-020-0277-3
http://www.ncbi.nlm.nih.gov/pubmed/32303713
https://doi.org/10.1016/j.tics.2018.12.005
http://www.ncbi.nlm.nih.gov/pubmed/30704969
https://doi.org/10.1016/j.neuron.2013.11.030
http://www.ncbi.nlm.nih.gov/pubmed/24507189
https://doi.org/10.1038/ncomms13276
https://doi.org/10.1038/ncomms13276
http://www.ncbi.nlm.nih.gov/pubmed/27824044
https://doi.org/10.3389/fncom.2017.00024
https://doi.org/10.3389/fncom.2017.00024
http://www.ncbi.nlm.nih.gov/pubmed/28522969
https://doi.org/10.1162/NECO_a_00949
https://doi.org/10.1162/NECO_a_00949
http://www.ncbi.nlm.nih.gov/pubmed/28333583
http://www.ncbi.nlm.nih.gov/pubmed/33840988
https://doi.org/10.1038/4580
http://www.ncbi.nlm.nih.gov/pubmed/10195184
http://www.ncbi.nlm.nih.gov/pubmed/20068583
http://www.ncbi.nlm.nih.gov/pubmed/26302308
https://doi.org/10.1016/j.neuron.2012.10.038
http://www.ncbi.nlm.nih.gov/pubmed/23177956
https://doi.org/10.1016/j.jmp.2017.09.004
https://doi.org/10.1016/j.jmp.2017.09.004
https://doi.org/10.1016/j.jmp.2015.11.003
http://www.ncbi.nlm.nih.gov/pubmed/28298703
https://doi.org/10.1371/journal.pone.0266102

22. Spratling MW. A review of predictive coding algorithms. Brain and cognition. 2017; 112:92–97. https://

doi.org/10.1016/j.bandc.2015.11.003 PMID: 26809759

23. Keller GB, Mrsic-Flogel TD. Predictive processing: a canonical cortical computation. Neuron. 2018; 100

(2):424–435. https://doi.org/10.1016/j.neuron.2018.10.003 PMID: 30359606

24. Goodfellow I, Bengio Y, Courville A, Bengio Y. Deep Learning. MIT press Cambridge; 2016.

25. Krizhevsky A, Hinton G, et al. Learning multiple layers of features from tiny images. Citeseer. 2009;.

26. Millidge B, Seth A, Buckley CL. Predictive Coding: a Theoretical and Experimental Review. arXiv pre-

print arXiv:210712979. 2021;.

27. Amari Si. Information geometry of the EM and em algorithms for neural networks. Neural networks.

1995; 8(9):1379–1408. https://doi.org/10.1016/0893-6080(95)00003-8

28. Schrimpf M, Kubilius J, Hong H, Majaj NJ, Rajalingham R, Issa EB, et al. Brain-Score: Which Artificial

Neural Network for Object Recognition is most Brain-Like? bioRxiv preprint. 2018;.

29. Schrimpf M, Kubilius J, Lee MJ, Murty NAR, Ajemian R, DiCarlo JJ. Integrative Benchmarking to

Advance Neurally Mechanistic Models of Human Intelligence. Neuron. 2020;. https://doi.org/10.1016/j.

neuron.2020.07.040 PMID: 32918861

30. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv

preprint arXiv:14091556. 2014;.

31. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. Imagenet large scale visual recogni-

tion challenge. International Journal of Computer Vision. 2015; 115(3):211–252. https://doi.org/10.

1007/s11263-015-0816-y

32. Hertäg L, Sprekeler H. Learning prediction error neurons in a canonical interneuron circuit. Elife. 2020;

9:e57541. https://doi.org/10.7554/eLife.57541 PMID: 32820723

33. Gillon CJ, Pina JE, Lecoq JA, Ahmed R, Billeh Y, Caldejon S, et al. Learning from unexpected events in

the neocortical microcircuit. bioRxiv. 2021;.

34. Keller GB, Bonhoeffer T, Hübener M. Sensorimotor mismatch signals in primary visual cortex of the

behaving mouse. Neuron. 2012; 74(5):809–815. https://doi.org/10.1016/j.neuron.2012.03.040 PMID:

22681686

35. Zmarz P, Keller GB. Mismatch receptive fields in mouse visual cortex. Neuron. 2016; 92(4):766–772.

https://doi.org/10.1016/j.neuron.2016.09.057 PMID: 27974161

36. Attinger A, Wang B, Keller GB. Visuomotor coupling shapes the functional development of mouse visual

cortex. Cell. 2017; 169(7):1291–1302. https://doi.org/10.1016/j.cell.2017.05.023 PMID: 28602353

37. Homann J, Koay SA, Glidden AM, Tank DW, Berry MJ. Predictive coding of novel versus familiar stimuli

in the primary visual cortex. BioRxiv. 2017; p. 197608.

38. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. PyTorch: An Imperative Style,

High-Performance Deep Learning Library. Advances in Neural Information Processing Systems. 2019;

32:8026–8037.

PLOS ONE On the relationship between predictive coding and backpropagation

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 27 / 27

https://doi.org/10.1016/j.bandc.2015.11.003
https://doi.org/10.1016/j.bandc.2015.11.003
http://www.ncbi.nlm.nih.gov/pubmed/26809759
https://doi.org/10.1016/j.neuron.2018.10.003
http://www.ncbi.nlm.nih.gov/pubmed/30359606
https://doi.org/10.1016/0893-6080(95)00003-8
https://doi.org/10.1016/j.neuron.2020.07.040
https://doi.org/10.1016/j.neuron.2020.07.040
http://www.ncbi.nlm.nih.gov/pubmed/32918861
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.7554/eLife.57541
http://www.ncbi.nlm.nih.gov/pubmed/32820723
https://doi.org/10.1016/j.neuron.2012.03.040
http://www.ncbi.nlm.nih.gov/pubmed/22681686
https://doi.org/10.1016/j.neuron.2016.09.057
http://www.ncbi.nlm.nih.gov/pubmed/27974161
https://doi.org/10.1016/j.cell.2017.05.023
http://www.ncbi.nlm.nih.gov/pubmed/28602353
https://doi.org/10.1371/journal.pone.0266102

