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Abstract: Identification schemes are interactive cryptographic protocols typically involving two
parties, a prover, who wants to provide evidence of their identity and a verifier, who checks the
provided evidence and decides whether or not it comes from the intended prover. Given the growing
interest in quantum computation, it is indeed desirable to have explicit designs for achieving user
identification through quantum resources. In this paper, we comment on a recent proposal for
quantum identity authentication from Zawadzki. We discuss the applicability of the theoretical
impossibility results from Lo, Colbeck and Buhrman et al. and formally prove that the protocol
must necessarily be insecure. Moreover, to better illustrate our insecurity claim, we present an attack
on Zawadzki’s protocol and show that by using a simple strategy an adversary may indeed obtain
relevant information on the shared identification secret. Specifically, through the use of the principal
of conclusive exclusion on quantum measurements, our attack geometrically reduces the key space
resulting in the claimed logarithmic security being reduced effectively by a factor of two after only
three verification attempts.

Keywords: quantum identity authentication; private equality tests; conclusive exclusion

1. Introduction

One of the major goals of cryptography is authentication in different flavours, namely,
providing guarantees that certain interaction is actually involving some specific parties from
a designated presumed set of users. In the two party scenario, cryptographic constructions
towards this goal are called identity authentication schemes, and have been extensively
studied in classical cryptography [1,2]. Classically, there are different ways of defining
so-called identification schemes, for mutual authentication of peers, mainly depending
on whether the involved parties share some secret information (such as a password) or
should rely on different (often certified) keys provided by a trusted third party. The advent
of quantum computers may suggest the end for many of these protocols however.

Since Wiesner proposed using quantum mechanics in cryptography in the 1970s, multi-
ple directions using this concept have undergone serious research. One major role quantum
mechanics has played in cryptography is the development of quantum key distribution
(QKD) where two parties can securely share a one time pad using quantum mechanics,
for example, the seminal protocol BB84 [3]. Among protocols providing entity authenti-
cation and strictly quantum in nature, some of them, such as those in [4–6], are based on
entanglement, while more recently [7,8] do not rely on entanglement but rather propose
to obtain identity authentication evidence from only the common knowledge of a shared
secret. These approaches are known as quantum identity authentication (QIA) protocols
(see also the related papers [9–14]). Due to the existence of quantum protocols such as BB84
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that do not rely on entanglement it would be more appealing to not rely on entanglement
for entity authentication purposes.

The QIA constructions in which authentication is intended from the common knowl-
edge of a shared secret, often called QIA schemes (or just quantum identification schemes),
are closely related to protocols for quantum equality tests and quantum private comparison.
All these constructions are concrete examples of two-party computations with asymmetric
output, i.e., allowing only one of the two parties involved to learn the result of a com-
putation on two private inputs. Without imposing restrictions on an adversary it was
shown by Lo [15], Colbeck [16] and Buhrman et al. [17] that these kind of constructions
are impossible, even in a quantum setting. As a consequence, constructions for generic
unrestricted adversaries in the quantum setting are doomed to failure.

While there are many things in common in the frameworks for developing QKD
protocols and identification schemes built as private comparison tests, we make note of the
following key differences in cryptographic considerations. Most QKD setups involve an
authenticated classical channel, thus the recipients may safely compare check bits to see if
there is an unintended observer. This however may not be the case in an authentication
scheme (like the one considered in this paper), so there may be no way for the legitimate
parties to determine if an eavesdropper is present. Thus, if the states obtained by the
authenticating party are not as expected, the authentication fails without the users knowing
if it is due to an adversarial presence or an attempted impersonator. For this reason the
traditional so called intercept-and-resend attack is completely irrelevant for authentication
as the adversary is always capable of sending messages as if coming from Alice or Bob,
though without the correct private value the protocol is overwhelming likely to fail. The
closest equivalent constraint is that the authenticating party may only make a single
measurement on a qubit before the state collapses. This constraint bars the adversary
from making many measurements on the same state in order to fully receive the private
value. This however does not exclude the possibility that many different calls of the
authentication protocol are made. Unlike key distribution protocols, where after a failure
the key is discarded, both classical and quantum authentication protocols must be secure
after being run multiple times with the same shared secret though with different random
inputs [1]. We make special note here that the objectives of QKD and QIA schemes are very
different. With this in mind readers should be cautious to apply the results of this work to
any current or future scheme if and only if its objectives and methods fall within certain
parameters.

1.1. Our Contribution

Recently, an original work about authentication without entanglement by Hong et al.
in [8] was improved by Zawadzki using tools from classical cryptography in [7]. In Za-
wadzki’s protocol, there are two parties, Alice and Bob, who share a common secret
bitstring k. In order to achieve entity authentication from Alice to Bob, they run a non-
interactive protocol in which Alice first computes a hash value ha, which depends on k and
a random nonce r; then Alice sends r to Bob so he can reproduce the computation obtaining
a hash value hb (which must equal ha if there is no adversarial interference). Next Alice
sequentially sends quantum states to Bob, which she prepares as a function of consecutive
pairs of bits of h. At reception, Bob measures these states choosing each time a basis which
depends on the value h. If all measures’ outcomes are the expected ones, Bob concludes
that the other party must know k and, therefore, identifies it as being Alice.

Our theoretical analysis of the protocol shows its insecurity, but in a non-constructive
way (e.g., it does not help finding a concrete successful adversarial strategy). However, we
are in addition able to show an explicit attack against the protocol, based on conclusive
exclusion on quantum measurements, which we describe in Section 4. There we analyze in
detail how the attack halves the size of the key space after only three verification attempts.

Note that, when analyzing Zawadski’s protocol, we deal only with its theoretical
design. Both the impossibility results we invoke and our attack do not take advantage of
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physical aspects, such as distance or timing, they hold independently of the implementation.
It is indeed interesting to study in depth how identification protocols could be practically
deployed in the real world, and what weaknesses could be exploited, but this is beyond
the scope of this work. These physical issues, present in attacks against QKD, such as,
for example, time-shift attacks [18], phase-remapping attacks [19] or synchronization
attacks [20], would also naturally arise for quantum identification protocols.

Finally, we discuss the applicability of the impossibility results and the explicit attack
to other QIA protocols, such as [4,5,8,21–24]. For instance, we point out that the protocol
from Hong et al. [8], in which Zawadzki’s protocol is based upon, is vulnerable to the same
attack we describe against the latter. On the other hand, the rest of the protocols cited,
for different reasons discussed later, are neither affected by the impossibility results nor
vulnerable to our attack.

The main contribution that arises from this work is that our theoretical analysis
evidences an implication of the proven impossibility of identification schemes, such as
Zawadzki’s design. Thus, we stress that fundamental changes in the original proposal,
beyond preventing our particular attack, would be needed in order to derive a secure
identification scheme.

1.2. Paper Roadmap

We start this contribution by summarizing in Section 2 the impossibility results from
Lo [15], Colbeck [16] and Buhrman et al. [17], concerning generic quantum two party
protocols. Further, we present and discuss the Zawadzki protocol in Section 3, evidencing
it actually fits the framework considered in the impossibility results from Section 2, and
thus concluding it must necessarily be insecure. Moreover, we outline a simple explicit
attack which we describe in Section 4. Finally we discuss how other QIA protocols are
affected by our results in Section 5 and provide some conclusions in Section 6.

2. Quantum Equality Tests Are Impossible

A one sided equality test is a cryptographic protocol in which one party, Alice, con-
vinces another party, Bob, that they share a common key by revealing nothing to them but
equality (or inequality) of their inputs. Formally we define a key space K and a function
F : K2 → {0, 1} which checks for equality. Let i ∈ K be Alice’s key and j ∈ K be Bob’s key.
The goals of a one sided equality test are as follows:

(1) F(i, j) = 1 if and only if i = j.
(2) Alice learns nothing about j nor about F(i, j).
(3) Bob learns F(i, j) with certainty. If F(i, j) = 0 then Bob learns nothing about i besides

that i 6= j.

The above is a specific case of a one-sided two-party secure computation protocol
as described in [15], as only one side, Bob, learns the output of the computation. In this
work, a very general result is proven indicating that any protocol realising a one-sided
two-party secure computation task is impossible, even in a quantum setting. In particular,
Lo shows in [15] that if a protocol satisfies (1) and (2) then Bob can know the output of
F(i, j) for any j. Furthermore, a one sided equality test with some small relaxations on
points (1) and (3) is also proven impossible. Hence, any one-sided QIA protocol which
validates identities using equality tests by use of quantum mechanics is impossible without
imposing restrictions on the adversary.

Note that the above argument says nothing about protocols with built in adversarial
assumptions such as those presented in [25,26]. Further, note that many of QIA schemes in
the literature include a final round where Bob accepts or rejects, which makes Alice aware
of the success or failure of the protocol. Indeed, those schemes can be straightforwardly
turned into one-sided equality tests by suppressing Bob’s final message announcing the
result. Hence, they are clearly insecure against a dishonest Bob. However, note that if any
such protocol can be modified so that Alice may obtain information on the identification
output at some point before the last protocol round, it is unclear how Lo’s impossibility
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result would apply. However, if they are built upon equality tests we can get impossibility
from another well know result by Buhrman el al. [17]. Certainly, two-sided QIA schemes, in
which both Alice and Bob learn the result of the protocol, are a particular case of two-sided
two-party computations. It is shown in [17] that a correct quantum protocol for a classical
two-sided two-party computation that is secure against one of the parties is completely
insecure against the other. For equality tests, if one of the parties, say Alice, learns nothing
else than F(i, j), the other party, Bob, will indeed be able to compute F(i, j) for all possible
inputs j. Thus, any two-sided QIA protocol which validates identities using equality tests
is also impossible without imposing further restrictions on the adversary.

Both total insecurity results are valid for protocols that compute a deterministic
function F, and admit relaxed versions for computations that implement approximate
versions of F. For a non-deterministic function F, Colbeck [16] showed that in a correct
one-sided or two-sided two-party computation for F, one of the parties can always access
more information about the other party’s input than it is supposed to, where the analysis is
only done quantitatively for dychotomic values of i,j, and extended trivially to the general
case, yielding a qualitative more than a quantitative result.

3. Insecurity of Zawadzki’s QIA Protocol

In this section, we outline the protocol proposed in [7] and show that it must be
insecure on Alice’s side by the results discussed in Section 2. Moreover, we consider minor
changes to the protocol to evidence that making it more “in line” with classical authentica-
tion does not help, as the protocol remains insecure. Indeed, the changes introduced do
not fundamentally alter the protocol, namely both the changed and unchanged protocols
allow for the attack we outline in Section 4 to provide information leakage.

The protocol proposed in [7] can be described as follows: suppose Alice and Bob
have keys ka and kb, respectively, and agree on some universal hash function (universal
hash functions are to be understood as familiesH of functions providing a nice collision-
resistance property, i.e., given inputs x 6= y, the probability of h(x) = h(y) can be proven
negligible if h is chosen at random from H (see [27]). In an abuse of notation, is it
typical to treat them as individual functions, as we do above) H : {0, 1}N → {0, 1}2d.
Bob wishes to verify that kb = ka without leaking any information about kb or ka. Al-
ice randomly generates a nonce ra from a designated domain and calculates the value
ha = H(ra||ka). Alice sends Bob ra. Bob receives rb (which in principle should be equal
to ra) then calculates the value hb = H(rb||kb). Note that if ka = kb and the nonces are
received as constructed, then ha = hb. Alice then acts on pairs of bits in ha with an embed-
ding function Q : {0, 1}2 → C2. This function Q uses the first of the two binary values to
determine the measurement basis (horizontal/vertical or diagonal/antidiagonal) and the
second to determine the specific qubit in {|0〉, |1〉, |+〉, |−〉}. More precisely, Q(0, 0) = |0〉,
Q(0, 1) = |1〉, Q(1, 0) = |+〉 and Q(1, 1) = |−〉. Applying Q to the pairs of bits in ha Alice
prepares and sends d qubits to Bob over the quantum channel one by one with a constant
speed known to Bob.

Using the first bit of each pair Bob decides in which base he measures the quantum
states and insures he obtains the correct qubit according to the second bit of the pair. If the
loss of qubits is very high or the rate of bits measured by Bob that disagree with the even
bits of hb is over a certain threshold then Bob rejects Alice’s challenge. Otherwise he accepts
her challenge. See Figure 1 for a schematic overview of the protocol.

For the sake of simplicity we restrict the security analysis to the case where there are
no losses in the communication and the bit error rate is set to 0.

The Zawadzki protocol is claimed to be leakage resistant when considering an adver-
sary measuring in a random basis. The reasoning behind this is that unless an adversary,
Eve, correctly guesses the correct basis for each round, she will obtain different values for
at least one of the bits of the hash. Now suppose an adversary is capable of computing
preimages of hash functions through brute force with unbounded classical computational
power or through dictionary attacks with unbounded classical memory. In this case it is
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unlikely that there will exist a ke ∈ K such that H(re||ke) matches what Eve measured. In
the event there does exist such a ke then with overwhelming probability ke 6= ka = kb and
Eve will not be able to falsify authentication of Alice or Bob.

Alice Bob

H←$H
known to Alice and Bob

Input: ka Input: kb

ra ←$ {0, 1}∗

ha ← H(ra||ka)

ra

Classical
receives rb

hb ← H(rb||kb)

|ϕi〉 ← Q(ha2i−1 , ha2i )

repeat for all i=1,2,...,d

|ϕi〉 ∀i ≤ d

Quantum

si ← M(|ϕi〉, hb2i−1
)

repeat for all i=1,2,...,d

if si = hb2i
∀i ≤ d, accept

otherwise, reject

Accept/Reject

Classical

Figure 1. The protocol presented in [7].

Unfortunately, Zawadzki’s protocol implemets a two-sided equality test (one-sided if
the last accept/reject round is omitted) for the secrets, with a relaxation on the correctness,
that is, the condition F(i, j) = 1 if and only if i = j (in this case i is ha and j is hb). Suppose,
for the sake of reasoning, that the protocol were a correct two-sided equality test, then all
the results summarized in Section 2 apply and the protocol has necessary leakage. As Bob
is sending nothing but the final bit, we know that nothing can possibly leak from hb. Thus,
any potential leakage comes from ha and in fact it is completely leaked. Although Eve may
not be able to determine any exact bit of ka, due to collisions of the hash function, she may
drastically reduce the number of possible options for ka to those k such that ha = H(ra||k)
and hence construct a proper subset of K such that the true value for ka is contained in
this subset.

However, Zawadzki’s protocol is not perfectly correct. Whenever Alice and Bob
secrets, ha and hb, differ in the measurement bits (the ones associated to the measurements
basis), there is some probability of the computation returning value 1 and thus Bob accept-
ing Alice’s input as valid. This probability is exponentially small in the number of different
measurement bits between ha and hb, that is, for a large majority of the cases this probability
is very small. Thus, the reasoning made in the approximate case of the relaxation of the
correctness in the one-sided case in [15] can be applied to Zawadzki’s protocol (without
the last round) in these cases. That is, when Bob chooses a secret that differs in many
measurement bits from Alice’s secret, what will happen for a random choice of the secret,
he will be able not only to compute with some probability (close to 1) the equality test for
(ha, hb), but to compute the equality test with some different probabilities (close to 1) for
every (ha, h′b) such that the output of the computation has large probability of being the
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value of the equality test. Thus, he will obtain partial (but close to full) information about
many different secrets at the same time.

The approximate version of the result of Buhrman et al. [17] does not straightfor-
wardly say anything in this case as their notion of approximate correctness requires that
the function F should be computed correctly for every input with probability close to
1. Whereas in Zawadzki’s proposal the pairs of secrets (ha, hb) that only differ in one of
the measurement bits has probability of computing correctly the equality test equals 1/2.
However, it may be possible to give a version of the result of Buhrman et al. with a different
notion of approximate correctness.

Finally, the result of Colbeck does apply when considering the non deterministic
function F to be the actual computation of the secrets ha and hb implemented by the
protocol. Thus, the function implemented by the protocol is not secure and a dishonest
Bob could learn information about the implemented function for more than one secret hb
at a time, acquiring more information than following the protocol honestly.

Next we analyze what happens if some minor changes are done to make the protocol
more in line with classical authentication schemes. Unfortunately, we conclude that these
changes do not fundamentally modify the protocol and as will be clear the previous
reasoning still holds. Moreover, both the changed and unchanged protocols still allow
for the particular attack outlined in Section 4 to provide information leakage by allowing
an adversary to learn about many ha simultaneously as predicted by the results of Lo
and Colbeck.

Changes made to the protocol are as follows: (1) Bob generates r and H, this is done
to thwart a simple attack discussed later; (2) the hash function changes between trials, this
has no impact on the security of the protocol due to the public nature of the hash in both
instances; and finally (3) here we assume for simplicity that Alice and Bob obtain the same
nonce r with certainty, using classical error correction techniques one can be relatively
certain both parties obtain the same nonce. See Figure 2 below for a schematic overview of
the modified protocol.

Alice Bob

Input: ka Input: kb

r←$ {0, 1}∗

H←$H
hb ← H(r||kb)

r H
Classical

ha ← H(r||ka)

|ϕi〉 ← Q(ha2i−1 , ha2i )

repeat for all i=1,2,...,d

|ϕi〉 ∀i ≤ d

Quantum

si ← M(|ϕi〉, hb2i−1
)

repeat for all i=1,2,...,d

if si = hb2i
∀i ≤ d, accept

otherwise, reject

Accept/Reject

Classical

Figure 2. Modified protocol.
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The reason we force Bob to generate the randomness instead of Alice is that an
adversary with unbounded quantum memory may impersonate Bob but not make a mea-
surement. Suppose an adversary does not know the key but requests Alice to identify
herself. If Alice generates and sends r, H with the string of states |ϕi〉 then the adversary
may record r, H and hold in memory, but not measure, the qubits. At a later time an honest
participant may ask the adversary to identify themselves, in this case the adversary may
send r, H and the qubits in memory. Thus, the adversary correctly forges an authentication.
Note that as we have presented the algorithm an adversary may still make this imperson-
ation by waiting between Alice and Bob then passing the information between the two.
The difference is that as long as Bob generates the nonce then this attack must only be done
while Alice and Bob are both online, whereas if Alice generates and sends the nonce then
an adversary may hold the states for as long as is technologically feasible.

Unfortunately, the changes introduced do not alter the validity of the impossibility
results discussed before. This updated version is still a two-sided equality test (one-sided if
the last accept/reject round is omitted) for the secrets with a relaxation on the correctness,
as no changes have been introduced after the generation of the secrets.

Thus, both the original and the modified protocols have necessary leakage and due
to the non-interactive nature of Bob we know that kb has no leakage, thus we know there
must exist some leakage on ka. Although Eve may not be able to determine any exact bit of
ka she may drastically reduce the number of possible options for ka and hence construct
a proper subset of K such that the true value for ka is contained in this subset. An attack
exemplifying this phenomenon is described in the next section.

4. A Key Space Reduction Attack on Zawadzki’s Protocol

Before discussing the specific attack, let B be a set of orthogonal bases in C2 and
consider the following fact. If a quantum state is prepared in a basis b ∈ B with value
v ∈ {0, 1}, then an adversary may always remove one possible combination of b and v with
a single measurement. Upon measuring in basis b′ ∈ B an adversary obtains v′ ∈ {0, 1}.
The adversary is then certain the original pair (b, v) was not (b′, 1

⊕
v′), as when measured

in the basis b the qubit prepared by b and v will yield v with certainty. Note that the
adversary cannot say with certainty how the qubit was prepared, but he can always
remove one possible option. This is an example of conclusive exclusion discussed in [28] in
the case of two measurement bases.

Suppose now that instead of sampling at random for b and v, the qubit is prepared
using a private key k ∈ K and a set of public parameters p, namely b = b(k, p) and
v = v(k, p). An adversary once again measures in basis b′ ∈ B (chosen or taken at random)
to obtain v′ ∈ {0, 1}, they may then determine a basis/value pair in which the qubit was
not prepared. Because the adversary is assumed to be computationally unbounded they
may then compute b(k̂, p) and v(k̂, p) for all k̂ ∈ K. Whenever these computations output
the impossible pair k′, v′ the adversary becomes aware that k̂ 6= k, hence reducing the key
space. The extent to which the key space is reduced depends on the number of basis in
B. If the distribution of basis choices in B is low entropy the attack may be accomplished
as described while if B is high entropy then a probabilistic version decreases the space of
likely keys. The assumption that the adversary is computationally unbounded may be
lifted if k is low entropy (for he can then indeed test all possible values for k—given there
are only a polynomial set of candidates), however assuming a computationally bounded
adversary immediately removes unconditional security as an end goal.

Let us now apply this key space reduction to the QIA protocol proposed in [7], in this
case the private key is k and the public parameters are r and H. Suppose an Eve has no
a priori knowledge of the key except its existence in K. After receiving r and H over the
classical channel she measures all qubits |ϕi〉 received from Alice in the horizontal/vertical
basis and records the outputs as M. In the case where Eve is utilizing man-in-the-middle,
she is done. If she is impersonating Bob, she accepts or rejects the protocol.
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After the protocol finishes the adversary may then compute hk̂ = H(r||k̂) for all k̂ ∈ K.
Suppose the first qubit Eve measured in M was |0〉. She now examines the first two bits
of each hk̂, those that begin 00, 10, or 11 are all possible of obtaining the qubit |0〉 after
measurement. The first of these three tuples will yield |0〉 with certainty and the later two
with a probability of 0.5. The final tuple 01 however is not possible as that would imply
that the qubit started in the state |1〉 and measured in |0〉. Thus, Eve knows that any k̂
such that hk̂ begins 01 is not the key. The hash function is assumed to be independent and
identically distributed so this removes approximately 1

4 of all possible keys. Repeat this
process for all qubits. After completion of all hash and check operations the adversary
has obtained a subset of the key space which contains the key, hence causing information
leakage. Specifically, the adversary knows the key is in subset S defined by

S = {s ∈ K : hs2i = Mi and hs2i−1 = 0 ∀i ≤ d}.

Note that the true key k ∈ S and |S| ≈ ( 3
4 )

d|K|.
After running this attack on a single attempted authentication the proposed ideal

(brute force) security of 22d = 2N drops to 3d = 2log2(3)/2N ≈ 20.792N . Recall that authenti-
cation protocols must remain secure given many attempts. Thus, an adversary is allowed
to receive multiple authentication attempts, possibly claiming that the received hash of
the shared secret is denied due to interference from a third party. The logarithm of the
security parameter drops geometrically at a rate of log2(3)

2 ≈ 0.792 after every authentication
the adversary receives, meaning that once an adversary obtains the third authentication
(all with different random values or even different hash functions) the brute force security
has been reduced to brute force on a string of half the length. This trend continues with
every authentication attempt.

5. Other QIA Protocols

It is worth pointing out that the attack described in Section 4 also applies to the
protocol by Hong et al. [8], which Zawadzki [7] modifies. In more detail, the protocol
in [8] is similar to Zawadzki’s, but does not use a hash function. Instead, whenever Alice
transmits the qubits sequentially and, before sending each qubit, she randomly decides
if she is going to use security mode or authentication mode. In the first case, she sends a
decoy state while in the second one, a qubit encoding two bits of the authentication string
is sent, similarly to [7]. After Bob’s reception, Alice announces which mode she just has
used. Therefore an adversary using the same strategy described in our attack in Section 4
and collecting the information obtained whenever Alice announces authentication mode,
will be able to shrink the size of the key space in the same way we have previously stated.

On the other hand, other quantum identification protocols proposed in the litera-
ture are not vulnerable to our attack neither contradict the impossibility results men-
tioned in Section 2. For instance, some of them [4,5,21] are aided by the presence of a
trusted third party, therefore not being real two-party protocols. Another type of protocols,
such as [22–24], make use of an entangled quantum state shared between both parties.
In [22], the users, in addition, share a bitstring used as a password; both parties measures
their part of the entangled state to produce a one time key that one of the users XORs with
the password and sends the result to the other who checks for consistency. The downside
of this approach is that to repeat the identification process the parties need to be provided
again with new entangled states. In [23,24], the users do not share any classical secret,
they just use the entangled state to identify themselves.

6. Conclusions

The protocol given by Zawadzki in [7] may be secure against hash preimage attacks
when attempting to find an exact match; however, when considering impossible results
from quantum measurements we see some hashed key values are not possible. Proverbially,
the forest may be secure but each of the trees reveals enough information to reconstruct the
possible forests. By eliminating approximately one quarter of the key options from each
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qubit we see that by measuring all the individual qubits in a random basis does in fact
reveal a great deal about the key. This attack does not concern quantum memory but rather
relies heavily on classical computational power. Hence, unlike [25,26] where the authors
consider a bounded quantum storage model, the only way to make this protocol secure
without greatly changing its construction is to constrict adversarial computational power.

No solution is presented to the problem outlined in this paper. The reason for this is
that any solution presented which does not impose more fundamental restrictions such as
limited quantum memory or polynomial time restriction will inevitably fail due to the re-
sults of Lo [15], Colbeck [16] and Buhrman et al. [17]. Regardless of the restriction imposed,
implementation of this and any other “prepare and measure” authentication scheme must
find a way to contend with key space reductions posed by conclusive exclusion.
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