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Abstract

The goal of this paper is to determine the braid index of two types of complicated DNA polyhedral links introduced by
chemists and biologists in recent years. We shall study it in a more broad context and actually consider so-called Jaeger’s
links (more general Traldi’s links) which contain, as special cases, both four types of simple polyhedral links whose braid
indexes have been determined and the above two types of complicated DNA polyhedral links. Denote by b(L) and c(L) the
braid index and crossing number of an oriented link L, respectively. Roughly speaking, in this paper, we prove that

b(L)~
c(L)

2
z1 for any link L in a family including Jaeger’s links and contained in Traldi’s links, which is obtained by

combining the MFW inequality and an Ohyama’s result on upper bound of the braid index. Our result may be used to to
characterize and analyze the structure and complexity of DNA polyhedra and entanglement in biopolymers.
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Introduction

The braid index of links has some applications in chemistry and

molecular biology. For example, representing knotted hydrocar-

bon complexes as closed braids [1] can facilitate the study of their

properties. In recent 20 years, many DNA polyhedral links such as

DNA cube [2], DNA tetrahedron [3], DNA octahedron [4], DNA

truncated octahedron [5], DNA bipyramid [6], DNA dodecahe-

dron [7], DNA icosahedron and buckyballs [8] etc, have been

synthesized in laboratories or schemes for synthesizing them have

been designed by chemists and biologists. In addition, several

novel types of polyhedral links have also been posed by

mathematicians as a potential object to be synthesized. For four

types of simple polyhedral links, their braid indexes have been

determined in [9]. The purpose of this paper is to determine braid

index of another two types of more complicated polyhedral links

appeared in [8,10,11,12,13] and [14], respectively. We shall study

it in a more broad context and actually consider so-called Jaeger’s

links and more general Traldi’s links.

In [15], Jaeger associated to a plane graph an oriented link

diagram by replacing each edge of the graph by an oriented clasp

as illustrated in (a) of Figure 1. Then he established a relation

between the Tutte polynomial [16] of the graph and the

HOMFLY polynomial [17,18] of the associated oriented link.

Moreover, about one year later, both the construction and the

relation were extended by Traldi in [19], Traldi constructed his

oriented link diagram based on a plane graph via replacing each

edge by one of four types of oriented clasps (a),(b),(c) and (d), as

illustrated in Figure 1. By assigning four different weights to edges

of the plane graph according to the four types of oriented clasps he

built a relation between the weighted dichromatic polynomial [19]

of the graph and the HOMFLY polynomial of the associated

oriented link.

Formally, let L be an oriented link, we call L to be a Jaeger’s

link if L, or its reverse, or its mirror image, or its inverse (i.e. the

composition of the reverse and the mirror image), has an oriented

diagram which can be obtained from a connected plane graph by

replacing each edge of the graph by an oriented clasp (a) in

Figure 1. According to the above definition, Jaeger’s links will be

all alternating. Analogously, we call L to be a Traldi’s link if L, or

its reverse, has an oriented diagram which can be obtained from a

connected plane graph by replacing each edge of the graph by one

of four types of oriented clasps in Figure 1. Note that different

edges may be replaced by different types of oriented clasps.

Traldi’s links may not be alternating, say, the link L8n7 in the

Thistlethwaite Link Table [20]. Clearly, Traldi’s links contain

Jaeger’s links as special cases.

The braid index of an oriented link is the minimum number of

strings among all closed braid representatives for the given

oriented link. We point out that the braid index depends on

orientations of links. See Page 215 of [21]. Let L be an oriented

link. We denote by b(L) the braid index of L. It is, in general, very

hard to determine this geometric and numerical invariant b(L)
[21]. Let PL(v,z) be the HOMFLY polynomial of the oriented link

L. In [22] and [23], Franks, Williams and Morton gave

independently a lower bound for the braid index b(L) of an

oriented link L in terms of spanvPL(v,z) as follows:

1

2
spanvPL(v,z)z1ƒb(L), ð1Þ
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where spanvPL(v,z) = max degv PL(v,z){ min degv PL(v,z), and

max degv PL(v,z) and min degv PL(v,z) denote, respectively, the

maximal degree and minimal degree of v in the polynomial

PL(v,z). This inequality (1) is usually called MFW inequality. The

MFW inequality was the first known result relating the braid index

to the HOMFLY polynomial. To date, we have known that the

MFW inequality for many link families is sharp. For example, the

inequality is sharp for all torus links, closed positive n-braids with a

full twist [22], 2-bridge links [24], alternating fibred links [24] and

a certain family of closed positive braids [25]. In this paper we

shall prove the sharpness of the MFW inequality for a family of

links including Jaeger’s links and contained in Traldi’s links. We

shall make use of the following result obtained by Ohyama in 1993

[26] which states that for a non-splittable oriented link L,

b(L)ƒ1z
c(L)

2
, ð2Þ

where c(L) is the crossing number of L. In fact, you will see this

upper bound and the MFW lower bound coincide for a family of

links including Jaeger’s links, but do not coincide for general

Traldi’s links.

Note that many types of polyhedral links are, in fact, Jaeger’s

links defined above. Four types of simple polyhedral links

considered in [9] are actually all Jaeger’s links constructed from

subdivisions of (convex) polyhedral graphs or their duals. Note that

the dual of a polyhedral graph is also a polyhedral graph and

Steinitz’s theorem states that a polyhedral graph is a 3-connected

simple (i.e. no loops and no multiple edges) planar graph. Thus the

result in [9] can not be used to deal with general Jaeger’s links.

Roughly speaking, in this paper we prove that b(L)~
c(L)

2
z1 for

any link L in a family including Jaeger’s links and contained in

Traldi’s links and thus extend the result in [9]. This extension

enables us to determine the braid index of another two types of

more complicated polyhedral links in [8,10] and [14] as well as

four types of polyhedral links in [9]. It is probable that our result

be used to determine braid indexes of new types of polyhedral links

to be synthesized in the future. Our research demonstrates that

using the braid index or crossing index to describe the complexity

of some polyhedral links are equivalent and it may open a door to

characterize, analyze the structure and complexity of DNA

polyhedra and entanglement in biopolymers.

Analysis

Before analyzing the braid index of polyhedral links, we give

some preliminary knowledge on links, the HOMFLY polynomial,

graphs and the dichromatic polynomial.

1. Links
A knot is a simple closed curve in R35S3, i.e. the image of the

embedding of S1 into R3. A link L of n components is a disjoint

union of n knots: L~K1| � � �|Kn. A knot is a link with one

component. An oriented link is a link with each of its component

assigned an orientation. A link diagram is a (regular) projection

of a link onto a plane with the under-strand specified by using gaps

at each crossing. When the link is oriented, the link diagram will

inherit the orientation of the link in a natural way and called

oriented link diagram. The crossing number or crossing
index of a link L, denoted by c(L), is the least number of crossings

that occur in any diagram of the link. A diagram with fewest

number of crossings for a given link is called a minimal diagram

for the link.

An n-string braid b is a set of n strings in a 3-dimensional

cube I|I|I , where I~½0,1�, all of which are attached to a

horizontal bar at the top f1
2
g|I|f1g and at the bottom

f1
2
g|I|f0g such that each I|I|x, x[S1, meets the n strings in

exactly n points. A closed n-string braid b̂b is a set of n strings

embedded in I|I|S1 such that each I|I|x, x[S1, meets the

n strings in exactly n points. An example is illustrated in Figure 2.

It is clear that a closed n-string braid b̂b is an oriented link with

the convention that we always orient b from the top to the bottom.

Conversely, Alexander [27], in 1923, showed that every oriented

link in S3 can be represented as a closed n-string braid. The braid

Figure 1. Replace an edge by four types of oriented clasp.
doi:10.1371/journal.pone.0048968.g001

Figure 2. A braid b and its corresponding closed braid b̂b.
doi:10.1371/journal.pone.0048968.g002
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index b(L) for an oriented link L is the smallest positive integer n
such that L can be represented as a closed n-string braid.

Let L be an oriented link. We denote by Lr and Lm the reverse

(reversing the orientation of each component of L) and the mirror

image of L, respectively. Then it is obvious that

b(L)~b(Lr)~b(Lm).

2. The HOMFLY polynomial
The HOMFLY polynomial is an invariant of oriented links,

introduced in [17] and [18] independently. Now we recall the

definition of the HOMFLY polynomial. The HOMFLY polyno-

mial of an oriented link L, denoted by PL(v,z), can be defined by

the three following axioms [28].

(1) PL(v,z) is invariant under ambient isotopy of L.

(2) If L is the trivial knot then PL(v,z)~1.

(3) It satisfies the skein relation: v{1PLz
(v,z){vPL{

(v,z)~
zPL0

(v,z), where Lz, L{ and L0 are link diagrams which

are identical except near one crossing where they are as in

Figure 3 and are called a skein triple.

It possesses the following basic properties [28], which imply that

spanvPL(v,z)~spanvPLm (v,z)~spanvPLr (v,z).

(a) If Lr is the reverse of L, then PLr (v,z)~PL(v,z).

(b) If Lm is the mirror image of L, then PLm (v,z)~PL({v{1,z).

3. Graphs
Let G~SV (G),E(G)T be a graph. We denote by DV (G)D and

DE(G)D the numbers of vertices and edges, respectively, of the

graph G. A graph G is said to be connected if it has a path with

two distinct vertices u and v whenever u,v[V (G) and G is said to

be disconnected otherwise. A component of a graph G is a

subgraph that is connected and is not properly contained in any

other connected subgraph of G. We denote by k(G) the number of

components of the graph G. An edge e of G is said to be a bridge
if k(G{e)wk(G). If G has no bridges, G is said to be bridgeless.

An edge e of G is said to be a loop if its two end-vertices are the

same. Iff G has no loops, G is said to be loopless. The rank r(G)
and nullity n(G) of the graph G is defined to be DV (G)D{k(G)
and DE(G)D{DV (G)Dzk(G), respectively. It is well known that r(G)
and n(G) are exactly the dimensions of cycle space and cut space,

respectively, of the graph G and hence, are both non-negative

integers. See, for example, [29].

Given a graph G and an edge e of G, we write G{e for the

graph obtained from G by deleting the edge e, and G=e for the

graph obtained from G by contracting e, i.e. deleting e firstly and

then identifying its two endvertices. A planar graph is a graph

which can be embedded in the plane or equivalently, the sphere

S2. A specific embedding of a planar graph is called a plane

graph. For undefined notations and terminologies on graph

theory, we refer the readers to [29].

4. The dichromatic polynomial
A weighted graph is a graph G together with a function w

mapping E(G) into some commutative ring R with unity 1. If e is

an edge of the weighted graph G, then w(e) is the weight of the

edge e. The dichromatic polynomial for weighted graphs was

introduced by Traldi in [19], which is a generalization of the Tutte

polynomial for signed graphs introduced by Kauffman in [30]. We

point out there are actually several weighted versions of the Tutte

polynomial.

The dichromatic polynomial Q(t,z) of a weighted graph G can

be defined as

Q(t,z)~
X

F(E(G)

P
f [F

w(f )

� �
tkSFTznSFT, ð3Þ

where the summation is over all edge subsets, F , of G, kSFT and

nSFT are the number of components and the nullity, respectively,

of the spanning subgraph SFT, induced by F , of G. It can also be

defined by using the following recursive relations:

(1) If G is an edgeless graph with n§1 vertices Q(G)~tn:

(2) If e is a loop of G, then Q(G)~(1zw(e)z)Q(G{e):

(3) If e is not a loop of G, then Q(G)~Q(G{e)zw(e)Q(G=e).

Figure 5. An alternating Traldi’s link upper and lower bounds
of whose braid index are not equal.
doi:10.1371/journal.pone.0048968.g005

Figure 4. An example.
doi:10.1371/journal.pone.0048968.g004

L L 0L

Figure 3. Lz, L{ and L0.
doi:10.1371/journal.pone.0048968.g003
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Just as the Tutte polynomial, it also has a spanning tree

expansion and we do not explain it here.

Now we start to analyze the braid index of polyhedral links. We

first consider a family of Jaeger’s links.

Let G be a connected plane graph. Let Da(G) be the oriented

link diagram constructed based on G by covering each edge of G

with oriented clasp (a) in Figure 1. Oriented link diagrams

Db(G),Dc(G) and Dd (G) can be defined similarly. Let Da,d (G) be

the oriented link diagram constructed based on G by covering

some edges of G with oriented clasp (a) and other edges with

oriented clasp (d) in Figure 1. Oriented link diagrams Db,c(G) can

be defined similarly. Note that Da,d (G) (resp. Db,c(G)) contains

Da(G),Dd (G) (resp. Db(G),Dc(G)) as special cases. More gener-

ally, Da,b,c,d (G) is defined to be the oriented link diagram obtained

from G by covering each edge with one of four types of clasps

(a),(b),(c) and (d). In [19], Traldi obtained the following general

formula.

Theorem 1. Let G be a plane graph. Let D(G)~Da,b,c,d (G) be the

Traldi’s oriented link diagram. Let the weight of the edge replaced by oriented

clasp (a),(b),(c) and (d) be
v

z
, {

1

vz
,

z

v
and {vz, respectively. Then

PD(G)(v,z)~
z

v{1{v
(vz)a({

z

v
)bv2c{2dQG(

v{1{v

z
,
v{1{v

z
), ð4Þ

where a,b,c and d are numbers of edges of G which are replaced

by oriented clasp (a),(b),(c) and (d), respectively.

The following theorem is a main theoretical tool for determin-

ing the braid index of polyhedral links.

Theorem 2. Let G be a connected bridgeless and loopless plane graph.

Let La,d (G) (resp. Lb,c(G)) be the oriented link that Da,d (G) (resp.

Db,c(G)) represents. Then

b(La,d (G))~jE(G)jz1~
c(La,d (G))

2
z1, ð5Þ

b(Lb,c(G))~jE(G)jz1~
c(Lb,c(G))

2
z1: ð6Þ

Proof. Note that Lb,c(G) is the mirror image of some La,d (G)
and taking the mirror image does not change the braid index and

the crossing index. It suffices for us to prove Eq. (5). When G is

bridgeless and loopless, it is not hard to observe that Da,d (G) is a

connected alternating oriented link diagram without nugatory

crossings. According to the famous result [31,32,33] due to

Kauffman, Murasugi and Thistlethwaite: A connected alternating

link diagram without nugatory crossings is minimal, we obtain that

c(La,d (G))~2DE(G)D, ð7Þ

where La,d (G) is the link that the link diagram Da,d (G) represents.

In addition, by a result [34] due to Menasco that states that a link

with an alternating diagram will be non-splittable if and only if the

diagram is connected, we know that La,d (G) is non-splittable.

Thus, by Eq. (2), we have

( )A

( )B

A

A

A

A

B
B

B
B

Figure 6. 3-point star motifs: DNA tetrahedron, cube, dodeca-
hedron, buckyball; 4-point star motifs: DNA octahedron; 5-
point star motifs: DNA icosahedron.
doi:10.1371/journal.pone.0048968.g006
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b(La,d (G))ƒDE(G)Dz1: ð8Þ

Now we consider the lower bound of b(La,d (G)). For the

oriented link La,d (G), as a special case of Theorem 1, we obtain

PLa,d (G)(v,z)~
z

v{1{v
(vz)av{2d QG(

v{1{v

z
,
v{1{v

z
)Dwa~vz,wd ~{vz

~(
z

v{1{v
)va{2d za

X
F(E(G)

P
f [F

w(f )

� �
v{1{v

z

� �kSFT
v{1{v

z

� �nSFT

~(
z

v{1{v
)va{2d za

X
F(E(G)

P
f [F

w(f )

� �
v{1{v

z

� �DF D{DV(G)Dz2kSFT

~(
z

v{1{v
)va{2d za

X
F(E(G)

v

z

� �a(F )

{vzð Þd(F )

� �
v{1{v

z

� �DF D{DV (G)Dz2kSFT

~va{2d za
X

F(E(G)

({1)d(F )vDF Dzd(F ){a(F ) v{1{v

z

� �DF D{DV (G)Dz2kSFT{1

~
X

F(E(G)

({1)d(F )va{2dzDV (G)D{2kSFTz1(1{v2)DF D{DV (G)Dz2kSFT{1

zazd(F ){a(F ){DF DzDV (G)D{2kSFTz1,

ð9Þ

where a(F ) and d(F ) are numbers of edges in F covered by

clasps of types (a) and (d), respectively. It is clear that

a(F )zd(F )~DF D.
Now we compute the highest and lowest degrees in v of Eq. (9).

Note that the power of 1{v2 is DF D{DV (G)Dz2kSFT{1~

nSFTzkSFT{1§0. Thus we have

max degv PLa,d (G)(v,z)~ max
F
f(a{2dzDV (G)D{2kSFTz1)

z2(DF D{DV (G)Dz2kSFT{1)g

~ max
F
fa{2dzDV (G)D{1z2nSFTg

~a{2dzDV (G)D{1z2nSE(G)T

~a{2dzDV (G)D{1z2DE(G)D{2DV (G)Dz2

~a{2dz2DE(G)D{DV (G)Dz1:

The third equation holds since nSFT attains maximality if and

only if F~E(G) because of G is bridgeless. Similarly, we have

min degv PLa,d (G)(v,z)~ min
F
fa{2dzDV (G)D{2kSFTz1g

~a{2dzDV (G)D{2kS1Tz1

~a{2d{DV (G)Dz1:

The second equation holds since kSFT attains maximality if and

only if F~1 since G is loopless. Thus,

spanvPLa,d (G)(v,z)~max degv PLa(G)(v,z){min degv PLa(G)(v,z)

~(a{2dz2DE(G)D{DV (G)Dz1){(a{2d{DV (G)Dz1)

~2DE(G)D:

Hence, by Eq. (1), we obtain

b(La,d (G))§DE(G)Dz1: ð10Þ

Combining Eq. (8) with Eq. (10), we show that Eq. (5) holds. %

Corollary. (1). Let G be a connected bridgeless plane graph. Then

b(La(G))~DE(G)Dz1~
c(La(G))

2
z1, ð11Þ

b(Lb(G))~DE(G)Dz1~
c(Lb(G))

2
z1: ð12Þ

(2). Let G be a connected loopless plane graph. Then

b(Lc(G))~DE(G)Dz1~
c(Lc(G))

2
z1, ð13Þ

b(Ld (G))~DE(G)Dz1~
c(Ld (G))

2
z1: ð14Þ

As a result,

b(L)~
c(L)

2
z1 ð15Þ

for any Jaeger’s link L.

Proof. By checking the proof of Theorem 2, we find that the

condition ‘‘loopless’’ is actually not necessary for the special case

La(G). Hence, Eq. (11) holds. Eq. (12) follows from Eq. (11) and

the fact Lb(G)~Lm
a (G). Let G be a connected loopless plane

graph and G� be the planar dual of G. Then G� is connected and

Truncation+Inflation+Subdivision Jaeger

Figure 7. Planar form of double crossover DNA cube and its
associated plane graph G.
doi:10.1371/journal.pone.0048968.g007
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bridgeless. Note that Lc(G)~Lr
a(G�) (see Figure 4 for an example)

and Ld (G)~Lrm
a (G�) and reversing orientations do not change

braid index and crossing index. Hence, Eqs. (13) and (14) hold. By

the definition of a Jaeger’s link L, we know that there is a

connected plane graph G such that L is equivalent to one of the

four links: La(G), Lm
a (G), Lr

a(G) and Lmr
a (G)~Lrm

a (G). It will

suffice to prove that b(La(G))~
c(Ld (G))

2
z1 for any connected

plane graph G. Firstly, b(La(G))~DE(G)Dz1~
c(Ld (G))

2
z1 for

any connected bridgeless plane graph G. Secondly, if G has

bridges, let G’ be the connected plane graph obtained from G by

contracting all bridges of G. Note that La(G) is equivalent to

La(G’) via untwisting oriented clasps covering bridges. Hence, we

have b(La(G))~b(La(G’))~
c(La(G’))

2
z1~

c(Ld (G))

2
z1.

%

Remark. Eq. (15) generalizes Theorem 4.3 in [9] from subdivisions

of polyhedral graphs to any connected plane graphs.

To conclude the section, we point out that the braid index of

general Traldi’s links (even for alternating Traldi’s links) can not

be determined similarly since the upper and lower bounds are not

always equal in general. An example of alternating Traldi’s links,

denoted by L, is shown in Figure 5 which is constructed from a

theta graph by replacing edges e1,e2 by oriented clasp (a) and e3

by clasp (c). On the one hand, by using the software KnotGTK,

we obtain

PL(v,z)~z{1({v5zv3)zz({v5z3v3)zz3v3 ð16Þ

and hence, spanvPL(v,z)~2. On the other hand, we have

c(L)~4. Therefore,

2~
spanvPL(v,z)

2
z1ƒb(L)ƒ

c(L)

2
z1~3: ð17Þ

Results

It is obvious that by the Corollary the braid index of four types

of polyhedral links (see Fig. 2 of [9]) can be determined. In this

section, we determine the braid index of two types of complicated

DNA polyhedral links. However, braid indexes of these two new

types of polyhedral links can not be obtained by the previous result

in [9]. You will see these new types of polyhedral links are all

alternating and hence their crossing numbers are easily obtained.

By the Corollary, in order to obtain the braid index, we only need

to show that these links are Jaeger’s links, and equivalently to find

their associated plane graphs. Note that two strands of DNA have

antiparallel orientations which are consistent with Jaeger’s

orientations. For simplicity, we do not draw orientations in the

following any more.

1. Double crossover DNA polyhedral links
Recent years, in [8,10,11,12,13], the authors, in laboratory,

designed and synthesized some fancy double crossover DNA

polyhedra, such as DNA tetrahedron, cube, octahedron, dodeca-

hedron, icosahedron and buckyball, by covering each vertex of

degree n of the polyhedron by ‘‘n-point star motif (tiles)’’ and

through sticky-end association between the tiles. The ‘‘n-point star

motif’’ has an n-fold rotational symmetry and consists of 2nz1
single strands: a long repetitive central DNA strand (colored red

and yellow), n identical medium DNA strands (colored green) and

n identical short DNA strands (colored black). The colored yellow

part at the center of the motif represents n unpaired DNA single-

strands whose lengths can be adjusted to change bending degree of

the whole structure. See Figure 6.

We point out in Figure 6 the tiles are a little different in the ends

of tiles from the actual assemblies of such DNA polyhedra. For

Figure 8. 3-branched curve, cycle-crossover and the construction of cycle-crossover tetrahedral link.
doi:10.1371/journal.pone.0048968.g008

Figure 9. Planar form of cycle-crossover DNA tetrahedron and
its associated plane graph G.
doi:10.1371/journal.pone.0048968.g009
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actual assemblies, we refer the reader to Fig. 1 of [8] for DNA

tetrahedron, dodecahedron and buckyball, Fig. 4 of [11] for DNA

cube, Fig. 1 of [13] for DNA octahedron and Fig. 4(f) of [10] and

Fig. 1 of [12] for DNA icosahedron. However, one will obtain the

same polyhedron links based on our drawings as actual assemblies,

and hence do not affect the analysis of their braid indexes.

Now we take double crossover DNA cube as an example to

show double crossover DNA polyhedra are all Jaeger’s links. The

planar form of double crossover DNA cube link and its associated

plane graph are shown in Figure 7 (upper and right) and (lower),

respectively. In general, the associated plane graph G can be

obtained from the polyhedron P by the following steps:

Step 1: Truncating the polyhedron P, i.e. cutting each corner

of the polynhedron P, we obtain a polyhedral graph Q.

Step 2: Inflating edges of Q corresponding to edges of P, i.e.

converting a single edge into two parallel edges, we obtain a plane

graph H .

Step 3: Subdividing each edge of H by inserting a vertex, we

obtain the associated graph G.

Let P be a polyhedron with m edges. Then, by simple

calculation, the associated plane graph G has 8m edges and thus

the braid index of the corresponding double crossover DNA

polyhedral link is 8mz1.

2. Cycle-crossover polyhedral links
This type of polyhedral links was introduced in [14], designed as

a potential object for synthesising, which can be constructed from

a polyhedron by replacing each edge of the polyhedron by a

‘‘cycle-crossover’’ and replacing each vertex of degree n by an n-

branched curve. See Figure 8. The planar form of the cycle-

crossover cube link is shown in Figure 9 (upper and right) and its

associated plane graph is shown in Figure 9 (lower).

In general, cycle-crossover polyhedral links are all Jaeger’s links.

The associated plane graph G can be obtained from the

polyhedron P by the following steps:

Step 1: Computing the planar dual of P, we obtain a plane

graph H

Step 2: Inflating edges of H, i.e. converting a single edge into

several parallel edges, we obtain the associated graph G.

In this case suppose that the total lengths of cycle-crossovers

used to construct cycle-crossover polyhedral links are m. Then the

associated plane graph G has m edges and thus the braid index of

the corresponding cyle-crossover DNA polyhedral link is mz1.

Discussion

Firstly, note that the two associated plane graphs in Figures 7

and 9 are both not subdivisions of polyhedral graphs and for both

types of polyhedral links. This means that the method used in [9]

can not be used here. Secondly, it is easy to find that the braid

index of two types of complicated polyhedral links does not depend

on the structure of the polyhedron. Thirdly, as the referee points

out that there are two types of DNA cube: 4 turns and 4.5 turns.

See Figure 4 and Figure 1, respectively, of [11], we only consider

the 4-turn DNA cube in this paper. It deserves to study the braid

index of 5-turn DNA cube and more general 5-turn DNA

polyhedra. Finally, in fact Theorem 2 is more powerful than it has

been used, and hence may be used to determine the braid index of

more complicated polyhedral links in the future.
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