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Abstract: As one of the major therapeutic options for cancer treatment, chemotherapy has limited
selectivity against cancer cells. Consequently, this therapeutic strategy offers a small therapeutic
window with potentially high toxicity and thus limited efficacy of doses that can be tolerated by
patients. Antibody-drug conjugates (ADCs) are an emerging class of anti-cancer therapeutic drugs
that can deliver highly cytotoxic molecules directly to cancer cells. To date, twelve ADCs have
received market approval, with several others in clinical stages. ADCs have become a powerful
class of therapeutic agents in oncology and hematology. ADCs consist of recombinant monoclonal
antibodies that are covalently bound to cytotoxic chemicals via synthetic linkers. The linker has
a key role in ADC outcomes because its characteristics substantially impact the therapeutic index
efficacy and pharmacokinetics of these drugs. Stable linkers and ADCs can maintain antibody
concentration in blood circulation, and they do not release the cytotoxic drug before it reaches its
target, thus resulting in minimum off-target effects. The linkers used in ADC development can
be classified as cleavable and non-cleavable. The former, in turn, can be grouped into three types:
hydrazone, disulfide, or peptide linkers. In this review, we highlight the various linkers used in ADC
development and their design strategy, release mechanisms, and future perspectives.

Keywords: antibody-drug conjugates (ADCs); bioconjugation; chemotherapy; cytotoxic drug; FDA;
monoclonal antibody; linker; tumor

1. Introduction

Cancer is a serious life-threatening disease [1] causing over 8 million deaths worldwide
each year [2]. This disease is commonly treated by surgery [3], radiotherapy [4] and
chemotherapy [5,6], the latter being the treatment most widely used due to its capacity
to target rapidly dividing cancer cells [2]. However, the use of chemotherapeutic drugs
faces constant limitations in terms of non-specificity, meaning that they kill not only the
tumor cells but also healthy cells and cause serious adverse reactions, narrow therapeutic
windows, and increased drug resistance [7–13]. Targeted drug therapy could potentially
address these challenges, as it facilitates the delivery of drug agents to unhealthy cells
without harming healthy ones [14–20]. Antibodies are a rapidly growing class of drug
that play a major role in human health, mostly in oncology, autoimmunity and chronic
inflammatory diseases [21–23].

The development of antibody drug conjugates (ADCs) as targeted drug therapies has
made significant progress over the last century [24–27]. In 1897, Paul Ehrlich, a German
scientist, was the first to propose the ‘magic bullet’ theory for delivering toxic compounds
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to unhealthy cells. His idea later evolved to become what is today known as ADCs [28–31].
This class of therapeutic agents consists of recombinant monoclonal antibodies (mAbs)
(which direct the drug to the target cells) that are covalently bound to cytotoxic chemicals
(known as warheads) via synthetic linkers, as shown in Figure 1. ADCs offer the prospect
of delivering a toxic payload directly to a target, with minimal off-target toxicity [32].
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Two main factors determine the successful development of an ADC. First, the choice
of linker is crucial, as it accounts for: (i) high plasma stability in circulation to prevent
premature drug release (t1/2 > 1 week); (ii) maintenance of the properties of the mAb
and cell-killing ability of the cytotoxic drugs, along with a reduction of systemic toxicity;
(iii) high aqueous solubility that allows bioconjugation of lipophilic drugs and prevents
antibody aggregation; and (iv) drug release in the right circumstances to maximize the
therapeutic effect [33–38]. Second, successful ADC development is also dependent on the
drug-antibody ratio (DAR), which is the number of drug molecules attached to the antibody
via a linker. A low DAR decreases ADC efficacy, while a high DAR often results in ADC
instability, increased systemic effect, and reduced half-life, and it alters the pharmacokinetic
properties of the molecule [26]. However, the choice of appropriate linker depends on
the functional groups present in the mAbs and cytotoxic drugs. This review provides an
update of FDA-approved ADCs and the linkers used in the design of these drugs.

2. The Key Components of an ADC
2.1. Monoclonal Antibody (mAb)

An important component of an ADC is the antibody. The basic premise for the
selection of an antibody for ADC design is its ability to specifically identify and bind to a
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well-characterized tumor antigen–receptor and deliver the payload to the tumor cell in the
process. The antibody must also have high binding affinity to the specific target antigen, low
immunogenicity, appreciable stability in the bloodstream, and low cross-reactivity [2,35].
Most antibodies used in ADC design are selected from human immunoglobulin G (IgG)
subclasses (IgG1, IgG2, IgG4), which consist of tw heavy and two light chains [20,26,33].
ADC-targeted antigens must be highly expressed on the tumor cells [39] and should
also have internalization properties to enhance the receptor-mediated endocytosis of the
ADC [40]. Currently, Nectin4, CD79b, CD22, CD33, HER2, CD30, FOLR1, and TROP2 are
the most targeted antigens in ADCs. In addition, over 70 other antigens are in different
stages of clinical development [41–44].

2.2. Cytotoxic Drug

Cytotoxic drugs are highly potent agents used to kill cancer cells. They can prevent cell
division either by disrupting microtubule assembly, thus inhibiting mitosis, or by binding to
the minor groove of DNA, leading to the cleavage of double-strand DNA. The latter process
causes cell death/apoptosis [45,46]. Therefore, a cytotoxin is required to have maximum
plasma stability and an in vitro subnanomolar IC50 (half maximal inhibitory concentration)
value for tumor cells, as only 1–2% of injected ADCs reach the tumor [33,47]. Cytotoxic
drugs are transported in the bloodstream throughout the body. At present, auristatins and
maytansinoids are the drugs most frequently used for ADC development (see Figure 2 for
their chemical structures) [37]. The conjugation of these drugs to mAbs is usually achieved
via a chemical linker attached to the thiol residue of Cys or to the amino group of Lys
antibody molecule. Several drugs used in the design of ADCs are listed in Figure 2.
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3. Linker Chemistry and Conjugation to Antibody

The linker, which is the focus of this review, is an essential component in ADC design.
It connects the antibody to the cytotoxic payload via covalent conjugation [26,48–50]. The
key requirement of a linker is that it must ensure chemical stability of the ADC within
the bloodstream (i.e., have a half-life 10 times longer than the ADC) and allow for rapid
release of the payload at the target site after internalization [51,52]. In addition to the above
parameters that minimize premature drug release [39], hydro/lipophilicity, a property that
enhances the coupling of payloads and reduces immunogenicity, is also a key aspect of
linkers [53,54].

Two types of linkers, namely cleavable and non-cleavable, are used in ADC develop-
ment (Figure 3). These linkers play major roles in determining pharmacokinetic properties,
selectivity, therapeutic index, and the overall success of the ADC. With the development
of ADCs, a series of linkers have been exploited [37]. Cleavable and non-cleavable linkers
have been proven to be safe in preclinical and clinical trials. Linkers are broadly classified
on the basis of the drug release mechanism and their stability in circulation [55,56].
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3.1. Cleavable Linkers

Cleavable linkers play a pivotal role in the success of ADCs. They are stable in blood
circulation for a long time and efficiently release their payload in the tumor microenvi-
ronment. Some of the cleavable linker strategies available and cleavage conditions are
summarized in Table 1 and are subsequently discussed.
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Table 1. A selection of cleavable linkage types, their structures, cleavage conditions, cleavage
products, and site of cleavage.

ADC Structure Linkage Type Cleavage Mechanism Products Formed Cleavage Site
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3.1.1. Chemically Labile Linkers

ADCs containing chemically labile linkers, including acid-cleavable linkers and re-
ducible linkers, take advantage of the differential properties between plasma and the
cytoplasmic compartments to release the payload.

Acid-Cleavable/pH-Sensitive Linkers

This class of linkers is stable to alkaline environments but highly sensitive to acidic
environments such as the hydrazone. They take advantage of the low pH of the endosome
(pH = 5–6) and the lysosome (pH = 4.8) to trigger the hydrolysis of the acid-labile hydrazone
linker and subsequently release the payload [48].

BR96-Doxorobicin (BR96-Dox) is a good example of a drug conjugate constructed
using an acid-sensitive linker. This ADC was designed by linking doxorubicin, an interca-
lating agent that blocks DNA replication over a (6-maleimidocaproyl) hydrazone linker
bonded to cysteine residues of humanized BR96 monoclonal antibody (Figure 4) [74]. The
preclinical results of BR96-Dox were remarkable due to its potential to deliver high doses
of doxorubicin to tumors. These doses were found to be capable of curing hypodermic
human breast, and lung and colon tumors [75,76]. Although BR96-Dox has a high DAR, it
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showed insufficient potency in clinical trials. In addition, the half-life of the drug was too
short compared to that of the naked BR96 mAb in humans [77].
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Hydrazone linkers were also explored in the design of Gemtuzumab ozogamicin
(Mylotarg) and Inotuzumab ozogamicin (InO; Besponsa). Mylotarg, the first ADC to
gain regulatory approval, is used for the treatment of patients suffering from relapsed
acute myelocytic leukemia (AML). This ADC consists of N-acetyl-γ-calicheamicin (a DNA-
damaging agent) covalently attached to humanized anti-CD33 antibody (hP67.6) through
an acid-cleavable hydrazone linker [78]. The 4-(4-acetylphenoxy) butanoic acid moiety
permits conjugation to Lys residues of the hP67.6 antibody over an amide bond and
forms an acyl hydrazone linkage with N-acetyl-γ-calicheamicin dimethyl hydrazide. Upon
internalization of the ADC, the calicheamicin prodrug is released by hydrolysis of the
hydrazone into the lysosomal compartment of CD33-positive tumor cells. The DNA-
damaging agent (enediyne drug) is then activated by reduction of the disulfide bond
(Figure 5). However, the stability of this bond has been enhanced by the introduction of two
methyl groups to the α-carbon bearing the disulfide bonds to prevent premature release of
the calicheamicin metabolite [77]. Initial clinical studies of Mylotarg in relapsed patients led
to its approval in 2000. However, the instability of the linker and heterogeneous nature of
the conjugate caused the premature release of the drug before it reached its target site [79]
and, consequently, the ADC was voluntarily withdrawn from the market by the US FDA in
2010 [80]. However, this ADC was later reapproved for use in 2017 when its benefits were
considered to outweigh its risks [19].

Similarly, collaborative work between Wyeth and Celltech led to the development of
Inotuzumab ozogamicin (CMC-544, Besponsa), a calicheamicin-based ADC that consists
of a recombinant humanized anti-CD22 antibody attached to N-acetyl-γ-calicheamicin
dimethyl hydrazide via the acid-labile (4-(4′-acetylphenoxy)butanoic acid) hydrazone
linker. Although this ADC is closely related to Mylotarg, it showed more stability in both
human plasma and serum (rate of hydrolysis of 1.5–2%/day over 4 days) [81,82]. Used
to treat relapsed B-cell precursor acute lymphoblastic leukemia, Besponsa differs from
Mylotarg in that it targets CD22-bearing antigen cells.
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Reducible Linkers

Reducible or glutathione-sensitive disulfide linkers are alternatives to acid-labile hy-
drazone linkers in ADC design. Disulfide bonds are comparatively stable in circulation yet
are reductively cleaved by intracellular glutathione to release the payload [26]. Glutathione
is a low molecular weight thiol present in the cytoplasm (1–10 mmol/L) and extracellular
environment (2–20 µmol/L in plasma) [6,20,83,84]. The basic premise for the cleavage of
ADCs containing these linkers is the difference in reduction potential in the intracellular
compartment as opposed to plasma, bearing in mind that glutathione is highly released
during cell replication; hence, a high concentration of glutathione can be found in cancer
cells [85]. These linkers generate a neutral payload that can diffuse into neighboring cancer
cells and produce bystander-killing effects [86].

As earlier discussed, disulfide linkers have found significant clinical applications
from their combination with hydrazone in the development of Pfizer’s Mylotarg and
Besponsa. Remarkably, Immunogen reported the fortuitous development of some disulfide-
based ADCs: SAR3419 (antiCD19 maytansine conjugate), IMGN901 (anti-CD56 maytansine
conjugate), and AVE9633 (anti-CD33 maytansine conjugate).

Notably, in 2011, Kellogg et al. reported the synthesis of huC242-SPDB-DM4 (IMGN242),
a disulfide-containing ADC [87], comprises huC242 antibody linked to tubulin. This
ADC inhibits cytotoxin (maytansinoids, DM4) via a disulfide linker with varying levels of
steric hindrance around the disulfide (Figure 6) [87]. Unlike its non-cleavable counterpart
(huC242-SMCC-DM1), huC242-SPDB-DM4 has a DAR > 4, conferring it with higher in vitro
activity. The study of this ADC also revealed its high stability to dithiothreitol reduction
in isolated plasma of CD1 mice. This drug conjugate, with intermediate disulfide bond
stability and two methyl groups on the maytansinoid side of the bond and no methyl groups
on the linker side of the bond, showed a better efficacy than huC242-SMCC-DM1 [87].
An in vivo study of this maytansinoid conjugate also revealed its effectiveness in killing
neighboring non-targeted cancer cells as a result of on-target cleavage of the cytotoxic
metabolites, which diffuse into neighboring cells to elicit a bystander effect.
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Figure 6. Cleavage mode of disulfide linker in huC242-SPDB-DM4. The ADC loses antibodies by
proteolysis and then undergoes disulfide bond cleavage to form the active drug. The drug is then
metabolized with S methyl transferase.

Although Lorvotuzumab mertansine (IMGN901) is still in phase II clinical trials,
researchers at Immunogen have reported an anti-CD56 effect. IMGN901 consists of a
potent maytansinoid attached to a CD56-binding monoclonal antibody through a disulfide
linker (Figure 7) [88].
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3.1.2. Enzyme-Cleavable Linkers

Chemically labile linkers often have limited plasma stability, thereby leading to pre-
mature drug release. In this regard, as an alternative strategy, enzyme-cleavable linkers
have achieved clinical success in controlled drug release. Unlike chemically labile linkers,
enzyme-cleavable ones take advantage of the high concentration of unique hydrolytic
enzymes in cellular compartments to degrade peptides and carbohydrates.



Pharmaceutics 2022, 14, 396 9 of 27

Peptide-Based Linkers

Peptide-based linkers, also known as lysosomal protease-sensitive linkers, such as
valine–citrulline (Val–Cit), phenylalanine–lysine (Phe–Lys), and valine–alanine (Val–Ala)
dipeptide linkers, are the most widely used linkers in ADC design. This strategy utilizes
intracellular protease, such as Cathepsin B, which recognizes and cleaves a dipeptide bond,
thus leading to the release of the cytotoxic drugs [89]. Due to unsuitable pH conditions
and serum protease inhibitors, peptide-based linkers show greater systemic stability, with
rapid enzymatic release of the payload in the target cell [90]. Exploring these types of
linkers in ADC development often requires a conjugating spacer molecule due to the bulky
nature of payload. The reagent most commonly used for this purpose is para-aminobenzyl
carbamate (PABC) (Figure 8), which shows self-cleavage capacity, thereby facilitating the
release of the unmodified payload [70].
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conjugate.

Developed by Seattle Genetics/Millennium, FDA-approved Brentuximab vedotin
(BV; Adcetris) is a good example of an ADC in which this linker has been explored with
marked clinical success. BV consists of MMAE conjugated to an anti-CD30 antibody via
a self- immolative protease (cathepsin B-sensitive) Val–Cit- para-aminobenzyl carbamate
(PABC) linker [20,55]. BV is internalized into CD30-expressing cells, and the dipeptide
bond undergoes proteolytic cleavage followed by self-immolation via a 1,6 elimination of
PABC to release MMAE (Figure 9). Although ADCs containing this linker are generally
stable in physiological conditions, an unidentified serine protease is known to cleave the
linker in mouse plasma [20,91]. BV gained accelerated approval in 2011; however, due
to several adverse effects (neuropathy, neutropenia, anemia and thrombocytopenia), its
approval was halted [92,93]. However, after a series of modifications, it was fully approved
in 2015, and it is considered suitable for the treatment of Hodgkin’s lymphoma [94,95].

An alternative to the Val–Cit linker is the protease-cleavable Val–Ala dipeptide linker,
which is being used in the development of many pyrrolobenzodiazepine-containing ADCs.
Currently in phase III clinical trials, Rovalpituzumab tesirine (Rova-T; SC16LD6.5) is a
biomarker-specific ADC for the exclusive targeting small-cell lung cancers expressing
Delta-like protein 3 (DLL3) antigen [96]. Rova-T is made up of SC16 antibody conjugated
to a pyrrolobenzodiazepine (PBD) payload via a PEG8 spacer, namely a Val–Ala linker.
However, the bulky nature of the drug calls for the use of a self-immolative PABC to afford
the straightforward release of the payload. Similar to BV, Rova-T first undergoes proteolytic
cleavage of the Val–Ala linker followed by self-immolation of PABC to release the PBD
payload (Figure 10) [97].
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Glycosidase-Sensitive Linkers

β-Glucuronidase-cleavable linkers
Glycosidases, such as β-glucuronidases, are a class of hydrolytic lysosomal enzymes

that degrade β-glucuronic acid residues into polysaccharides. They are found exclusively
in the lysosomal compartment of the cell, and they work under hydrophilic environments
to release payloads from conjugates. Similar to cathepsin B, β-glucuronidases are secreted
in the necrotic areas of some tumors. Remarkably, these molecules are enzymatically active
in the extracellular environment. Given this property, in 1988, Tietze et al. addressed for
the first time the activity of β-glucuronidase-responsive prodrugs on neighboring tumor
cells [69].
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Moreover, in a comprehensive study, Jeffrey and coworkers evaluated the properties of
β-glucuronic-based acid linkers ADCs. Using highly potent microtube inhibitors (MMAE
and MMAF) and a DNA-damaging agent (doxorubicin), β-glucuronidase-susceptible
ADCs were designed by covalent conjugation of the cytotoxic agents to the antibody via a
β-glucuronide linker attached to a self-immolative PABC spacer molecule (Figure 11) [98].
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The introduction of the self-immolative spacer enhances linker stability and allows safe
release of the potent cytotoxin [99]. The resultant β-glucuronide MMAF drug conjugates
gave a DAR of 8.3 with low levels of aggregation and a half-life of 81 days, far greater
than that of the dipeptide linkers. Apart from the use of auristatins and doxorubicin, this
strategy has also been employed in targeting special classes of cytotoxic agents such as
anthracyclines, camptothecin derivatives, taxanes, hedgehog inhibitors, nitrogen mustards,
and histone deacetylase inhibitors [69]. Most of these drug conjugates contain the self-
immolative PABC spacer molecule between the β-glucuronide linker and the drug moiety,
thereby offering straightforward release of the payloads upon internalization [69]. The
release of the drug therefore proceeds in two steps: (i) the enzymatic hydrolysis of the
glycosidic bound; and (ii) the spontaneous decomposition of the linker, leading to the
release of the active compound (Figure 12) [70].
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β-Galactosidase-cleavable linkers
Another class of hydrolytic lysosomal enzymes is β-galactosidase, which degrades

β-glycosidic linkage formed between a galactose and its organic moiety. Kolodych and
coworkers recently described both the in vitro and in vivo activities of β-galactosidase-
cleavable ADCs. The study revealed that galactosidase-based drug conjugates have greater
therapeutic efficacy in isolated mouse plasma compared to the approved Trastuzumab
emtansine used for the treatment of breast cancer [100]. Similar to β-glucuronidase,
β-galactosidase is overexpressed in certain tumors, where it hydrolyzes β-galactoside
(Figure 13).
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Phosphatase-Cleavable Linkers

These belong to another vital class of enzyme-cleavable linkers expressed exclusively
to target enzymes in the lysosomal compartment. These linkers target pyrophosphatase
and acid phosphatase enzymes, which hydrolyze pyrophosphates and terminal monophos-
phates into their respective alcohols. Kern and coworkers reported the usefulness of a
phosphate-bridged Cathepsin B-sensitive linker in delivering glucocorticoids to tumor
cells [101]. By using the PABC spacer molecule, they developed an aqueous, soluble phos-
phate drug conjugate comprising the Val–Cit-PABC cleavable linker. Upon proteolytic
cleavage of the dipeptide linker (Val–Cit), PABC is self-eliminated, leading to the hydrolysis
of the terminal phosphate by phosphatase to release the payload (Figure 14). An in vitro
study of ADCs containing this linker revealed that they showed high blood stability, rapid
lysosomal cleavage, and aqueous solubility. While these properties thus support the appli-
cability of this linker in bioconjugation and ADCs containing lipophilic payloads, there is
no in vivo proof to validate this approach. Moreover, this linker system increases the space
of ADC payload options by exploiting the attachment of a payload via the aliphatic alcohol
of the phosphate group.
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Recently, in similar but more elaborate research, Kern and coworkers reported the
synthesis of highly soluble pyrophosphate-containing ADCs for the targeted release of
glucocorticoids to immune cells [54,101]. By exploiting the biorthogonal property of
the linkers, a phosphate diester was introduced into an alkyl chain. The drug conjugates
underwent dual-enzymatic cleavage of pyrophosphatase and acid pyrophosphate to release
the glucocorticoid (Figure 15). Nevertheless, as a proof of concept, it is significant for this
linker to have been proven beyond merely in vitro laboratory analysis, using α-hCD70 and
glucocorticoids as the delivery vehicle and payloads, respectively.
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3.2. Non-Cleavable Linkers

Non-cleavable linkers are divided into two groups, namely thioether or maleimido-
caproyl (MC). They consist of stable bonds that prevent proteolytic cleavage and ensure
greater plasma stability than their cleavable counterparts. ADCs containing this type of linker
depend on the complete lysosomal enzymatic degradation of the antibody to release payloads
after internalization, resulting in the simultaneous detachment of the linker [93,102]. This
linker strategy has been successfully explored by Genentech/Immunogen, with clinical
approval of Trastuzumab emtansine (Kadcyla/T-DM1). This ADC contains a non-cleavable
SMCC (N-succinimidyl-4-(maleimidomethyl) cyclohexane-1-carboxylate) linker connecting
a warhead DM1 cytotoxin to Lys residues of anti-HER2 mAb Trastuzumab (Figure 16).
This drug conjugate displayed greater activity than the conventional Trastuzumab-DM1,
or Trastuzumab conjugated to other maytansinoids via reducible disulfide linkers [56].
Similarly, Monomethyl auristatin F (MMAF) drug conjugates with non-reducible thioether
linkers were found to be more stable than Val–Cit conjugates and they also preserved
their potency [51]. Of note, non-cleavable linkers allow for the alteration of the chemical
properties of the small molecule in order to tune affinity for the transporter or improve
potency [51,103]. The comparative advantage of non-cleavable linkers over their cleavable
counterparts is their increased plasma stability [104]. Overall, non-cleavable linkers offer
a greater therapeutic window than cleavable linkers since the payload derivative from
non-cleavable ADCs can kill the target cells [51,103].
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3.3. Conjugation Strategies

The success of an ADC depends mainly on the conjugation strategy. Two main types
of conjugation are used in ADC design, namely chemical and enzymatic approaches. Most
ADCs exploit the presence of Lys and Cys residues at the junction sites of the antibody,
which can be modified for directional coupling. A typical IgG1 antibody molecule has
roughly 90 Lys residues, of which approximately 30 can be modified for conjugation,
implying that between 1 and 30 payloads can be covalently coupled to the antibody. The
amine group of Lys and sulfhydryl of Cys are used for the chemical conjugation of the
antibody-linker [77].

Generally, amide coupling is the method of choice for the chemical conjugation of
payload and antibody Lys residues using activated carboxylic acid esters as linkers. This
type of coupling gives a high-yielding ADC. The primary amine in Lys easily reacts with
N-hydroxysuccinimide (NHS) esters introduced into the drug-linker, forming a stable
amide, and a great number of commercial linkers rely on this method (Figure 17) [16,105].
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Figure 17. The mechanism for the formation of amide attachment sites through N-
hydroxysuccinimide (NHS).

Cys are present in the antibodies and form disulfide bridges. Under careful reduction
conditions, the disulfide bridge can be reduced by tris(2-carboxyethyl) phosphine (TCEP)
or DL-dithiothreitol (DTT) to afford reactive thiol groups; meanwhile, intrachain disulfide
bonds retain their unique state. The free thiol groups as attachment sites on the antibodies
are then conjugated with a small linker molecule through various chemical reactions, such
as Michael additions, disulfide formation, and a-halo carbonyl alkylations (Figure 18) [105].

Pharmaceutics 2022, 14, x FOR PEER REVIEW 17 of 29 
 

 

 
Figure 18. Mechanism for the formation of the sulfyhydryl attachment site. 

Several reports have revealed that a major challenge with the use of the maleimide-
based strategy is its susceptibility to the premature release of payload through the retro–
Michael reaction in the presence of blood thiols [105]. However, another reaction associ-
ated with the succinimide–thioether rings is hydrolysis, which converts the succinimide–
thioether into succinic acid. This second side-reaction could help to prevent the retro-Mi-
chael reaction by firmly binding the conjugate to be thiol-stable (Figure 19) [106–108]. A 
new strategy recently developed by Lahnsteiner and coworkers to overcome the retro-
Michael exchange is the formation of a stable 6-membered ring via transcyclization of the 
succinimide–thioether ring (Figure 20) [109]. 

 
Figure 19. Side-reactions undergone by the succinimide–thioether moiety. 
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Several reports have revealed that a major challenge with the use of the maleimide-
based strategy is its susceptibility to the premature release of payload through the retro–
Michael reaction in the presence of blood thiols [105]. However, another reaction associ-
ated with the succinimide–thioether rings is hydrolysis, which converts the succinimide–
thioether into succinic acid. This second side-reaction could help to prevent the retro-
Michael reaction by firmly binding the conjugate to be thiol-stable (Figure 19) [106–108].
A new strategy recently developed by Lahnsteiner and coworkers to overcome the retro-
Michael exchange is the formation of a stable 6-membered ring via transcyclization of the
succinimide–thioether ring (Figure 20) [109].
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4. Approved ADCs and ADCs in Clinical Trials

The importance of ADCs for cancer treatment is exemplified by the increasing number
of these drugs on the market and in clinical studies for the treatment of solid tumors and
hematologic malignancies [33,110]. There are currently 12 approved ADCs on the market
(Table 2); however, considerable research efforts into the development of new ADCs are
ongoing. Over 80 ADCs are now in clinical trials, and several others have been terminated
due to linker instability and/or toxicity issues, among other factors [40,111]. The elements
of approved ADCs are detailed in Table 2, while Table 3 covers selected examples of the
ADCs in late-stage clinical trials.

Figure 21 shows chemical structures of some recently approved ADCs.
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Table 2. Antibody-drug conjugates approved.

API Trade Name Developer mAb Linker Cytotoxin Target
Antigen Indication(s) Phase

Gemtuzumab
ozogamicin Mylotarg Pfizer Hp67.6 (Hz IgG4) Hydrazone Calicheamicin CD33 Acute myeloid

leukemia

Approved 2000 [112],
withdrawn 2010 [113];
reapproved 2017 [19].

Brentuximab
vedotin (SGN-35) Adcetris Millennim/Takeda/

Seattle Genetics
cAC10 (SGN-30,

Ch-IgG1) Dipeptide (VC) MMAE CD30
Hodgkin lymphoma,
systemic anaplastic

large cell lymphoma

Accelerated approval 2011
[87]; full approval 2015

[114].

Trastuzumab
emtansine Kadcyla Roche/Genetech Trastuzumab (Hz

IgG1)
Non-cleavable

(SMCC) DM1 HER2 HER2-positive breast
cancer Approved 2013 [115,116]

Inotuzumab
ozogamicin Besponsa Pfizer G5/44 (Hz IgG4) Hydrazone Calicheamicin CD22 Acute lymphoblastic

leukemia Approved 2017 [117,118]

Moxetumomab
pasudotox-tdfk Lumoxiti AstraZeneca Anti-CD22 Hydrazone Pasudotox-

tdfk CD22 Relapsed hairy cell
leukemia Approved 2018 [119,120]

Polatuzumab
vedotin (RG7596,

TAB-897,
DCDS4501A

Polivy Genentech/Roche Anti-CD79b (Hz
IgG1) Dipeptide (VC) MMAE CD79b

Relapsed or refractory
diffuse large B-cell

lymphoma

Approved 2019
[19,121,122]

Enfortumab
vedotin Padcev Agensys/Astellas Enfortumab Dipeptide (VC) MMAE Nectin4 Solid and urothelial

tumors Approved 2019 [122–124]

Trastuzumab
deruxtecan Enhertu AstraZeneca/Daiichi

Sankyo
Trastuzumab
(Herceptin)

Non-cleavable
(mc) Deruxtecan HER2 HER2-positive breast

cancer Approved 2019 [125,126]

Sacituzumab
govitecan Trodelvy Immunomedics hRS7 IgGk Acid-labile ester SN-38 Trop-2

Triple-negative breast
cancer, urothelial and

other cancers

Approved May 2020
[127–132]

Belantamab
mafodotin-blmf Blenrep GlaxoSmithKline

(GSK) IgG1 Non-cleavable
(mc) MMAE BCMA Multiple myeloma Approved 2020 [132–136]

Loncastuximab
tesirine-lpyl Zynlonta ADC Therapeutics Anti-CD19 Dipeptide (VA) PBD CD19 Large B-cell lymphoma Approved 2021 [137,138]

Tisotumab vedotin
tftv Tivdak Seagen Inc Tisotumab Dipeptide (VC) MMAE Tissue factor Metastatic cervical

cancer Approved 2021 [139,140]
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Table 3. Selected ADCs currently in clinical trials.

ADC Name Developer mAb Linker Cytotoxin Target Antigen Indication(s) Phase

Rovalpituzumab
tesirine Sanofi/ImmunoGen Anti-DLL3

(Rovalpituzumab) Dipeptide (VC) PBD dimer DLL3 Small-cell lung cancer III [141–143]

Glembatumumab
vedotin

Seattle Genet-
ics/Celldex/Progenics CR-011 (Hu IgG2) Cleavable dipeptide MMAE gpNMB Metastatic breast cancer and

melanoma II/III [144,145]

PSMA ADC Seattle
Genetics/Progenics

Anti-PSMA (Hu
IgG1) Cleavable dipeptide MMAE PSMA Prostate cancer II [121]

Pinatuzumab vedotin Roche/Genentech Anti-CD22 (Hz IgG1) Cleavable dipeptide MMAE CD22 Diffuse large B-cell lymphoma,
follicular non-Hodgkin lymphoma II [121]

Telisotuzumab
vedotin AbbVie/Pierre Fabre ABT-700 Cleavable dipeptide MMAE ABT-700 Advanced solid tumors cancer and

non-small cell lung cancer II [146,147]

Ladiratuzumab
vedotin SGN-LIV1A Seattle Genetics Anti-LIV1 (Hz IgG1) Cleavable dipeptide MMAE LIV-1 Breast cancer, lung cancer II [148]

Mirvetuximab
soravtansine ImmunoGen M9346A Cleavable disulfide DM4 FOLR1 Ovarian, endometrial, non-small

cell lung cancer III [149,150]

Lorvotuzumab
mertansine ImmunoGen huN901 (Hz IgG1) Cleavable disulfide DM1 CD56 Leukemia II [88]

Coltuximab
ravtansine ImmunoGen huB4 (Hz IgG1) Cleavable disulfide DM4 CD19 Diffuse large B cell lymphoma,

acute lymphocytic leukaemia II [93,151,152]

Indatuximab
ravtansine Biotest/ImmunoGen Nbt062, Anti- CD138

(Ch IgG4) Cleavable disulfide DM4 CD138 Multiple myeloma II [153]

Anetumab ravtansine Bayer Health Care Antimesothelin (Hz
IgG1) Cleavable disulfide DM4 Mesothelin Mesothelioma and other solid

tumors II [115,154]

SAR566658 Sanofi DS6 (Hu IgG1) Cleavable disulfide DM4 CA6 Triple-negative breast cancer II [155,156]

Depatuxizumab
mafodotin AbbVie ABT-806 Non-cleavable (mc) MMAF EGFR Glioblastoma and other

EGFR-positive tumors III [129]

Naratuximab
emtansine ImmunoGen K7153A humanized

IgG1
Non-cleavable

(SMCC) DM1 CD37 Diffuse large B cell lymphoma and
follicular lymphoma II [121]

AGS-16C3F Agensys/Astellas Anti-AGS16 (Hu
IgG2a) Non-cleavable (mc) ENPP3 ENPP3 Renal cell carcinoma II [157]
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5. ADC Mechanism of Action

The mechanism of action of the ADC is shown in Figure 22. Relying on its ability to
specifically recognize a well-expressed antigen, the ADC acts similarly to a shuttle that
selectively delivers cytotoxic agents into the tumor cell via receptor-mediated endocytosis.
Upon effective internalization of the ADC-antigen complex, it is fused with the endosome,
which cleaves the complex, leading to the simultaneous recycling of the antigen and
transport of the ADC to the lysosome. The ADC then undergoes lysosomal degradation
to release the cytotoxin. This cytotoxin then binds to its target, leading to apoptosis or
cell death via either DNA intercalation (route 1 and route 3) or binding to microtubulins
(route 2) (Figure 13) [46]. Due to the complexity of the ADC internalization process, the
localization of the tumor antigen on the cell surface is highly relevant to achieve efficient
ADC binding [158].
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6. Conclusions and Prospects 
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Figure 22. Mechanism of action of ADCs: ADC binds to a cell-surface antigen that is ideally specific
to a cancer cell. Upon binding, the ADC-antigen is internalized into the tumor cell. When the complex
is degraded, it releases the cytotoxin, which then binds to its target to cause cancer cell apoptosis.

6. Conclusions and Prospects

Ten ADCs have been approved by the FDA in the last five years (Gemtuzumab
ozogamicin was first approved in 2000, withdrawn in 2010, and reapproved in 2017), which
means that approximately 4% of all drugs approved during these years (240 drugs have
been approved in total) are ADCs. However, the importance of ADCs in the context of the
current toolbox to treat diseases is best exemplified by the large number that are in clinical
phases. This pipeline assures that many more ADCs will be approved in the coming years,
thereby fueling research in this field. In this regard, special attention must be given to the
linker used. A suitable linker remains the mainstay of a successful ADC. In this context, a
linker must remain stable in circulation and guarantee the safe release of the payload in
the cell (such as release by restriction endocluease in lysosome or release after antibody
degradation). Chemically cleavable (hydrazone, disulfide) linkers, enzymatically cleavable
(peptide-based, β-glucuronide-based) linkers, and non-cleavable (thioether, maleimido
caproyl) linkers are currently those most commonly used in ADC design. Given that linkers
generally influence the stability, toxicity, pharmacokinetic properties, and pharmacody-
namics of ADCs, considerable care must be taken in their selection for ADC design. In
addition, the linker must take into consideration the reactive groups on the cytotoxic drugs,
including the mAb and derivative functional groups.

Most ADCs in clinical stages use the common Lys and Cys residue motifs for their
conjugation. In this context, researchers are currently directing significant effort toward
studying new linkers. For instance, photo-sensitive ADC linkers and biorthogonal cleavable
linkers are emerging classes that are still under study [126]. Although these linkers have
some advantages, such as specificity, potency, and low toxicity, ADCs containing them are
yet to gain regulatory approval.

Despite the huge progress made in the development ADCs, it is still difficult to
postulate the exact market size of these pharmaceutical agents in the near future. However,
it is envisaged that the development of new linkers will enlarge the design of new ADCs to
further bolster the scope of oncology.
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