
TUTORIAL
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Here we present logic modeling as an approach to understand deregulation of signal transduction in disease and to characterize a
drug’s mode of action. We discuss how to build a logic model from the literature and experimental data and how to analyze the
resulting model to obtain insights of relevance for systems pharmacology. Our workflow uses the free tools OmniPath (network
reconstruction from the literature), CellNOpt (model fit to experimental data), MaBoSS (model analysis), and Cytoscape (visualization).
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Finding effective drugs and understanding how they work still
pose considerable challenges with profound effects on
human health. Several options exist to find compounds that
could be used to treat a specific disease, such as target-
based or phenotypic screening approaches.1 More recent
developments in experimental techniques such as shRNA2

and CRISPR-Cas93 or microfluidics4,5 promise to ease the
discovery of new targets and drugs by increasing the number
of targets that can be tested at once and decreasing the
amount of biological material necessary to perform the
experiments. However, a target discovered with such techni-
ques may not necessarily be actionable in the clinical set-
ting.6,7 A compound that showed promising results in the
laboratory may fail to be effective on patients. Understanding
how a drug acts at the systems level is key to increasing the
likelihood of success. Likewise, understanding the molecular
basis driving a disease can be of great help in the search for
its cure.

Mechanistic models can help to better understand a drug’s
mode of action and predict the behavior of a biological system
in response to drugs. The nascent field of Quantitative Sys-
tems Pharmacology aims to address these challenges by
combining mechanistic models with pharmacokinetic model-
ing.8–10 It is known that many diseases involve alterations in
the signaling pathways used by cells to interpret the cues from
their environment.11–14 Likewise, many drugs are designed to
target components of these signaling pathways. These differ-
ent pathways are not merely linear signaling conduits activated
by different stimuli, but are also interconnected via crosstalk
mechanisms to regulate each other, giving rise to signaling
networks.

REGULATORY NETWORKS

The structure and function of signaling networks are complex,
and they are differently deregulated in different biological
contexts in nontrivial ways. Previous clinical studies have
shown that inhibiting the same oncogenes can vary in effi-
cacy, depending on the patient. The best example is the treat-
ment of BRAF mutations in melanoma compared to colon
carcinomas. In melanoma, a particular BRAF activating

mutation, V600E, leads to the activation of signaling path-
ways involved in proliferation. Treatments targeting specifi-
cally the mutation, such as vemurafenib, show an efficient
immediate response in melanomas. However, colon cancer
patients with the same mutation do not respond to the treat-
ment.15 The difference between these two responses to the
drug is due to different cellular contexts. Only present in colon
cancer, a feedback loop on EGFR activation leading to the
activation of the mitogen-activated protein kinases (MAPK)
pathway, through RAS, may be responsible for the poor out-
come. This example highlights the importance of accurately
describing the networks regulating these signaling pathways
and their crosstalks. To ensure efficiency of the drug treat-
ments, a good knowledge of these complex interactions and
how patient mutations affect the cellular fate is necessary.

The regulatory networks used in these models are gener-
ally extracted from databases and the literature. These
sources represent the current knowledge available about
interactions involving the proteins of interest. However, little
information is known about which regulations are specific to
a given cell type or a particular biological context. This
information is important to highlight the specific mecha-
nisms of regulation in different contexts. For example, com-
paring signaling pathways of healthy and diseased cells
allows investigating which mechanisms are deregulated as
a cause or an effect of the disease.16,17 Similarly, the com-
parison of pathway activity in different cells from the same
cancer type allows investigating mechanism of resistance
to drugs, which can be exploited to suggest personalized
therapies.18–20 If experimental data are available, optimiza-
tion procedures can be used to refine the initial networks to
be cell line- or context-specific.

BASICS OF LOGIC MODELING

Mathematical modeling can help to decipher these complex
mechanisms.18 Several modeling formalisms exist to deal
with complex gene regulatory and signaling network struc-
tures.11,21,22 Because models can also provide insights into
a drug’s mode of action, scientists are also working towards
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building bridges between drug design and network modeling
techniques.9,23,24

Among the modeling techniques, logic(al) modeling has
proven to be very versatile and able to provide useful biologi-
cal insights.25–27 It has been applied for studying several bio-
logical phenomena (e.g., developmental processes,28

hematopoiesis,29 or cell fate decision30), but primarily used in
signaling and gene regulation.26 Compared to other modeling
techniques commonly used to describe biological systems,
such as ordinary differential equations based on chemical
kinetics, logic models are better suited to describe medium-
or large-scale networks, where detailed biological knowledge
is often incomplete and where a more schematic representa-
tion of the system can improve the overall interpretability of
the results. However, it is necessary to keep in mind that the
formulation of logic rules implies a simplification of the
described biological system and might not be able to fully
capture the complexity of the underlying system.22

Within the logic formalism, signaling networks are modeled
by defining a signed and directed causal regulatory network
as well as rules to update the state of its components.22,25,27

The sign of the interaction depends on whether it is an activa-
tion or an inhibition, and the direction indicates which node
acts over another one (e.g., in a kinase–substrate interaction
where the kinase activates its substrate, the edge will go from
the kinase to the substrate and its sign will be positive). In
these networks, proteins are represented by nodes and inter-
actions between proteins are represented by edges. The
state of a node can represent its activation status. This way,
the nodes can take different values: 0 (False) or 1 (True), in
the case of Boolean models; or discrete values: 0, 1, 2, or
higher, in the case of multivalued models for representing dis-
tinct activation states. These states are updated following
defined update rules, which take into account the state of
input nodes and the type of interaction (positive or negative).
Several different variations have been developed, ranging
from Petri nets31 to logic-based Ordinary Differential Equa-
tions (ODEs).32 An overview on some of the different formal-
isms available to model signaling networks (interaction
graphs, logical models, and logic-based ODE models) and
the types of analyses that can be achieved with them is
reviewed elsewhere.33 By including nodes corresponding to
the targets of different drugs in these models, their values
can be manipulated in the simulations to find out what would
be the effect of these compounds when applied to the
system.

BIOLOGICAL APPLICATIONS OF LOGIC MODELING

The examples where logic modeling has been applied to
understand biological mechanisms are numerous and go from
the study of T-cell receptor signaling34,35 to cell-fate decision,36

mammalian cell cycle,37 or host immune response.38 In partic-
ular, cancer research has motivated many of the applications
of logic modeling and fostered several methodological devel-
opments, because it requires studying large signaling and reg-
ulatory networks.39 For example, discrete logical modeling has
been used to describe the DNA damage response signal
transduction network in human epithelial cells and predict

candidate target proteins for sensitization of carcinomas to
DNA-damaging agents.39 Also, the ErbB network was
explored with a model built from prior knowledge and protein
phosphorylation data to understand the drug resistance mech-
anisms of breast cancer cell lines.40 Logic modeling was
applied to bladder cancer to investigate the effects of gene
alterations leading to invasiveness.41 However, the use of logic
modeling tools is not limited to cancer applications, and
research in other diseases also benefit from these techniques.
For instance, Boolean modeling was applied to the study of
systemic lupus erythematosus, to stratify patients and find the
best matching treatment.42 It has also been used to study the
immunological response to infections,43 or to understand apo-
ptosis given its relevance in diseases like Alzheimer’s and Par-
kinson’s.30 These and other examples19,44 illustrate the value
of logic modeling to enhance our understanding of the sys-
temic effect of therapies. The models provide a formal tool to
quickly evaluate in silico the effect of targeting one specific
component of the model or explore the effects of possible drug
combinations.20,45–47 It is also possible to assess how
changes in the network (e.g., missing or inactive receptor, etc.)
may affect the effect of a drug.

In this tutorial, we show the different steps involved in logic
modeling on a prostate cancer example that involves some of
the key phosphorylation pathways of this malignancy, and
that we use to predict cell survival in different conditions (Fig-
ure 1). The steps include the building of the signaling net-
work, its improvement using available data, and its simulation
and analysis geared towards obtaining useful biological
insights and predictions. We also present several tools that
are useful for such a workflow, namely, Omnipath48 to con-
struct the signaling network, CellNOpt49 to build a model
trained to data, MaBoSS50 to simulate and predict treatment
response, and Cytoscape51 to visualize some results of the
simulations. It should be noted that many other excellent tools
to model and analyze signaling networks exist, such as Bool-
Sim,52 BoolNet,53 GINsim,54 etc. Many of these are compati-
ble via the SBML-qual format,55 and their development is
coordinated by the CoLoMoTo initiative.56

Selection of a system to study
The decision to use logic models is usually spurred by the
wish to gain a mechanistic understanding of a biological
system for which the size, the lack of knowledge, or both,
precludes more refined approaches such as reaction-based
modeling. The system of study might be a specific pathway,
a cell line, or a disease, for example. The available data
and publications related to the chosen system are usually a
starting point for the following steps.41 In other cases, new
experiments are designed and carried out to provide the
necessary data for modeling.16 For this tutorial, we decided
to study a small signaling network in prostate cancer, and
do so using published data describing the phosphorylation
response of key proteins in prostate cancer cell lines in
response to the addition of several ligands and inhibitors.57

The study providing the data used in this tutorial57 takes
a data-driven approach based on multivariate regression
analysis to predict prostate cancer cell survival from the
phosphorylation levels of 14 key proteins. These proteins
are related to core signaling pathways that drive cell growth

Logic Modeling in Quantitative Systems Pharmacology
Traynard et al.

500

CPT: Pharmacometrics & Systems Pharmacology



in three prostate cancer cell lines in response to various

treatments by ligands or kinase inhibitors. The study

focuses on the MAPK, PI3K, and IKK pathways. Correla-

tions between phosphoproteins and cell survival are dis-

cussed in relation with their known roles in signaling

pathways, with the goal of studying the sources of castra-

tion resistance between the cell lines. The results suggest

that, in prostate cancer, androgen-independent growth and

androgen-mediated signaling are largely driven via MAPK

and PI3K signaling.
We aim to study this system with a modeling approach,

focusing on the data measured in the LNCaP cell line.

Construction of a regulatory network
Constructing a regulatory network is the first step in the

modeling process. A first network, commonly referred to as

the prior knowledge network (PKN), gathers the biological

knowledge already known for the main components involved

in the process being studied as a signed and directed graph.

The PKN is then used for downstream modeling.
When building a PKN, it is critical to know what the essen-

tial elements that should be included in the model are. The

nodes often describe primarily proteins, but they can be con-

sidered as other types of elements such as genes that affect

protein functionality. Elements to include in a cancer model

comprise proteins related to the most frequently mutated

genes, differentially expressed genes, drug targets, and phe-

notypic readouts (e.g., cyclins for cell cycle, caspases for

apoptosis, EMT regulators for EMT, etc.). Many of these usu-

ally surface during the explorative data analysis preceding

the mechanistic modeling. The major players of signaling

pathways known to be deregulated, such as EGFR, RAS,
MEK for the MAPK pathway, or TP53, MDM2, CASP8, and/or
CASP3 for the apoptosis pathway, also need to be consid-
ered. Finally, input nodes that account for the microenviron-
ment (presence or absence of growth factors, nutrients or
ligands, hypoxia conditions, etc.) or for the treatments per-
formed in the experiments and used for the modeling have to
be added. The list of nodes can, of course, evolve throughout
the construction of the network, through the exploration of
published experiments where new genes or proteins are
identified as playing an important role, or the inclusion of
intermediary nodes required to link two processes.

Once defined, the selected nodes are linked with edges
that represent direct interactions or indirect regulations, iden-
tified in the literature. When available, the representation of
detailed mechanisms, however, is challenged by the require-
ment to keep a reasonable size for the network, and as a con-
sequence a reduced computation cost for simulations. A
good balance has to be found between detailed mechanistic
descriptions of the key signaling components and more sche-
matic representations for less important processes reduced
to the necessary players. This process often requires careful
consideration of the mechanisms defined as essential for the
question at hand. In addition, some simplification can be
done once the model is built in an automatic manner.
Automatic reduction tools exist to help the process while
preserving the dynamics in the logic formalism,47,58 such as
removing intermediary nodes in linear pathways.

Another complementary approach to sketching the network
from literature knowledge is to use database information.
There exist some pathway databases that depict, in great

Figure 1 Workflow suggested when applying logic modeling to the study of a biological question. In this tutorial we use Omnipath48 for
signaling database mining, CellNOpt49 for model fitting, MaBoSS50 for simulations, and Cytoscape51 for visualization and network anal-
ysis. Different steps of the pipeline include 1) selecting a system and a question of interest and building a first version of the network,
2) choosing a modeling formalism and improving the model with data, and 3) analyzing the model, making predictions and comparing
them to experimental data. The dashed arrow indicates a comparison between the results of the analysis and the experimental data.
Dotted arrows represent feedback of the results into the modeling pipeline. Rounded boxes represent elements that can be considered
part of the different types of the analysis. PKN, prior knowledge network.
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detail, the literature curated signaling pathways. Among these
databases, KEGG,59 Reactome,60,61 BioCarta,62 Wikipath-
ways,63 Signor,64 Signalink,65 ACSN,66 etc., can be cited.
Retrieving information from them is faster than the tedious pro-
cess of reviewing the literature. However, the modeler should
keep in mind the limits of such resources: because they are
not always up-to-date, specific but important information not
included in the databases might be missed. To facilitate the
retrieval of information from all these databases, we use Omni-
path,48 a comprehensive collection of existing manually
curated pathway databases. Omnipath comes with a Python
tool called pypath, developed to query its content, and manipu-
late and filter it easily. This allows us to extract the interactions
that concern only the predefined list of proteins, and execute
complex queries such as retrieving all possible paths between
two proteins.

There are different ways in which the network can be repre-
sented.67 For simplicity, we present our example with a type
of diagram referred to as “entity relations” in the standard for-
mat SBGN,67 where nodes correspond to genes, proteins,
modified proteins, complexes, or phenotypes, and edges are
directed arrows representing activation or inhibition of one
node over the other. This representation provides a simplified
mechanistic view of the processes involved in the disease
where the details of the reactions (degradation, synthesis,
phosphorylation, etc.) are not explicitly represented but rather
pictured as each node having a positive or a negative influ-
ence on other nodes of the network.

In our case study, we build a simple network representing
the signaling cascades involved in the survival of prostate
cancer cells (Figure 2). We aim at validating the network
discussed in the initial publication of the data,57 where two
versions are provided. The first one is an undirected map
containing the proteins whose phosphorylation status are
measured in response to treatment with ligands and inhibi-
tors (Erk1, Erk2, Akt1, Akt2, Akt3, RPS6, GSK3a, GSk3b,
p38, JNK1, JNK2, JNK3, HSP27, Stat3), the ligands (EGF,
IGF1, IL6, TNFa, and DHT) that we select as inputs, and
key components of the PI3K/mTOR and MAPK pathways
(PI3K, mTOR, RPS6, b-catenin, Jak, RAS, MEK, Rac, and
IKK). The second network suggests some possible links
between the androgen receptor (AR) and the PI3K signal-
ing pathway, RPS6, or cell cycle targets.

Using Omnipath, signed interactions between the com-
plete list of proteins used in the two initial networks were
retrieved in order to connect them into a single network.

For instance, the query related to an interaction between
PI3K (PIK3CA) and AKT (AKT1) in Omnipath returns an
activation of AKT1 by PIK3CA from four databases (SignaL-
ink3, Laudanna_effects, Wang, Signor), and an inhibition of
AKT1 by PIK3CA from one database (Laudanna_effects).
We can therefore include in the network an activation of
AKT by PI3K as the most confident interaction. Looking
back at the four literature references associated with the
interaction also confirms the sign and direction. A detailed
description of the network is reported in the Supplementary
Materials, with the python code used with pypath.

In general, one or more phenotypes of interest will be mod-
eled as additional nodes (e.g., survival, apoptosis, prolifera-
tion, etc.) and linked to the rest of the network by appropriate

edges, to facilitate model predictions. In our case study, we
predict cell survival, available along with phosphorylation
data,57 as a phenotypic outcome of the model. Therefore, the
resulting network was extended to describe roughly the regu-
lation of the cell cycle and the apoptotic pathway, both of
which influence an output node called “Survival.” Aiming at
simplicity for this tutorial, we chose a few prominent compo-
nents among the high number of possible apoptotic and pro-
liferative factors that could be included in the PKN. Thus,
Caspase 8, p53, and Caspase 9 represent the possible
modes of activation of the apoptotic pathway, whereas the
proliferative pathways are depicted by MYC and a generic
node named Cell_cycle. For more information on this exten-
sion, see the Supplementary Materials.

The resulting PKN is displayed in Figure 2. Complex
crosstalks exist between pathways and are usually taken
into account in the detailed model. For instance, the apo-
ptotic regulation modeled in another work36 integrates three
highly intertwined pathways activated by death receptors.
For this tutorial, however, the network is kept simple to
focus on core signaling cascades.

Translation into a logic model
As shown in Figure 1, the PKN, or interaction graph, can
be directly studied with structural analysis, or translated
into a logic model to extend the scope of the analysis.
Structural analysis include topological analyses such as
degree and centrality measures, pathway searches, feed-
back and feedforward loop identification, or characterization
of minimal cut and intervention sets.68 Cytoscape51 is a
graph visualization and analysis tool that provides access
to many of these methods. The translation of the interaction
graph into a logic model allows formally studying how sig-
naling information flows through the network and how per-
turbations of its components affect this flow.33

In a logic model, nodes of the regulatory network are
assigned a state: active/true or inactive/false in the case of
Boolean models. A set of logic rules are assigned to the
edges, which determine how the state of each node will be
updated as a function of the state of the nodes that influ-
ence them. When a node has two upstream activators, if its
activation depends on the simultaneous presence of its two
upstream nodes, the two inputs will be linked by an AND
gate. If its activation depends on either of the two upstream
nodes, the two input nodes will be linked by an OR gate.
Inhibition of a node by an upstream node is described with
a NOT gate. Combining AND, OR, and NOT gates, we can
express any logical function as a sum of products, also
known as disjunctive normal form.

In some cases, when a node has several upstream reg-
ulators, it may be unclear if they act in combination or
alone. In other words, they may act through any combina-
tion of logic gates. In those cases, we can instantiate the
different possible rules and use experimental data to find
the appropriate representation of the interaction.47 It is
thus possible to find an appropriate translation of the regu-
latory network to a logic model that can be used for simu-
lation purposes.

An example of a complex logic rule (Figure 2b) in our case
is the one regulating the “Survival” node. The upstream
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nodes for “Survival” are “Cell cycle,” “MYC,” “Caspase8,” and

“Caspase9” nodes. To activate “Survival,” the “Cell cycle”

node needs to be active, but the presence of either Caspase

8 or Caspase 9 can inhibit survival. However, if MYC is also

active, both caspases need to be active in order to inhibit

survival.
This can be written in the following way:
Survival 5 1 if (Cell_cycle AND ((NOT Caspase8 AND

NOT Caspase9) OR (MYC AND (NOT Caspase8 OR NOT

Caspase9)))
Altered variants (often referred as “mutants”) of the model

can then be generated by replacing the logic rule defining the

regulation of a component by a constant (0 or 1 in the Bool-

ean case), to model inhibiting or activating perturbations,

such as drug treatments or gene mutations.

The Boolean version of logic modeling might be somewhat
restrictive in terms of the scenarios it can represent due to its
limitation to binary states. Extensions have been developed
to overcome this limitation. In this tutorial we will show two of
these alternatives with two selected tools: CellNOpt,49 which

implements logic-based ODEs, and MaBoSS,50 a tool for
continuous time Boolean modeling.

The logic-based ODE approach deals with the conversion
of logic functions that only accept binary inputs to continuous

Figure 2 (a) Prior knowledge network (PKN) derived from public resources, including interactions connecting nodes which are mea-
sured (in blue) or perturbed (stimulated in green and inhibited in red) in the experimental data.57 The network was further expanded to
include more components from the apoptotic pathway (p53, Caspase8, and Caspase 9) and Myc for the cell cycle activation and their
regulation of Survival. Network layout is generated with Cytoscape.51 (b) Examples of logic rules used to convert the network to a logic
model. All other nodes in the model with more than one input edge are modeled with a simple OR gate.
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functions that replicate their behavior. By allowing continuous
values for state and time, quantitative time course data can
be matched. There are several approaches to build such
ODEs,32,52 and we use here the one of Wittman et al.32

Because the number of variables and parameters for a given
system is much smaller than ODE systems derived from a
mechanistic (biochemical) description, logic-based ODE
models can include a larger number of biological compo-
nents. Therefore, logic-based ODEs are particularly useful
when dealing with: 1) a medium-scale network, where only a
qualitative biological knowledge of the system under investi-
gation is available, which can be easily interpreted with the
logic formalism, and 2) quantitative (and possibly time-
course) data resulting from experiments which can be well
described with the ODE formalism. The software CellNOpt 49

provides the necessary tools to transform a logic model into a
logic-based ODE model and find a set of good parameters by
fitting the model to the available data.

MaBoSS is a C11 software that simulates continuous
time Markov processes on a Boolean network.50 In contrast
to deterministic continuous approaches, such as logic-based
ODEs, this formalism handles the asynchronous updates of
the states of the nodes in a stochastic way and generates a
population of trajectories as sequences of Boolean states.
Transition rates can be associated with each node, and prob-
abilities of network states can be estimated given a set of ini-
tial probabilities. The main result consists of the Boolean
state distribution after reaching an asymptotic behavior, and
the implicit time provided by sequence steps allows consider-
ing transient dynamics. The size of the population of trajecto-
ries can be adapted to the scale of the network, under the
control of probability errors, which makes MaBoSS useful
even for very large networks.

In the next section, we take the regulatory network built
previously, with the logic gates already selected based on
literature information, and we use some of the available
experimental data to find the appropriate weights for an
ODE version of the logic model. These weights will also be
used as some of the transition rates of the continuous time
Markov process model.

Training with data
The purpose of using data to train a network is to obtain a bet-
ter representation of our system, since information available in
the literature and databases may be incomplete, and specify a
generic model to a particular biological system. For example,
different cell types may share the same signaling networks but
with some differences in their wiring, and this may not be
reported in the literature. That way, networks can be refined to
be cell line- or context-specific by comparing model simula-
tions with experimental data and refining model parameters
until simulations are able to reproduce the measurements.
This process is named “model training” and corresponds to
solving an optimization problem where an objective function
that captures how well the model can describe the data is mini-
mized. This optimization can be performed automatically using
different algorithms.

The most useful data to train a model are measurements of
the states of model variables under different conditions, if
possible tracing their dynamic behavior. In networks, nodes

typically represent proteins or complexes and a commonly

used measurable proxy of their activation or deactivation are

posttranslational modifications such as phosphorylation.

Perturbations of the system by stimulating the pathway with

ligands and/or inhibiting the proteins with targeted drugs or

antibodies provide information about the dynamics, which is

not available from static data.
Protein phosphorylation upon perturbation is commonly

measured using mass-spectrometry or antibody-based tech-

niques. For a detailed description of the advantages and dis-

advantages of these techniques, we refer to Saez-Rodrigues

et al.11 Briefly, with antibody-based techniques, only a maxi-

mum of a few dozen phosphorylation sites can be measured

at the same time. Additionally, antibodies are selected to be

specific for a phosphosite, which implies making assumptions

on which the phosphorylation site represents the activity of

each node. With mass-spectrometry techniques, this issue is

overcome by the possibility of measuring thousands of phos-

phorylation sites at the same time. However, the application

of mass-spectrometry to the investigation of dynamic signal-

ing pathways has so far been limited by the relatively low

number of experimental conditions, due to the expensive and

laborious nature of this technology when compared with

antibody-based techniques. Accordingly, modeling efforts

with this type of data have been scarce,69 but this is likely to

change in the near future with the rapid development of the

technology.70

In the data considered for our example,57 the LNCaP pros-

tate cancer cell line was perturbed with combinations of

ligands (EGF, IGF1, IL6, TNF, DHT; in green in Figure 2) and

kinase inhibitors targeting nodes in the network (PI3K, MEK,

IKK, mTOR, p38; in red in Figure 2) for a total of 44 different

conditions. The study also included data from perturbation

with docetaxel, which we did not consider, as little variation in

the phosphoproteome was reported in the docetaxel condi-

tion as compared to controls. Docetaxel is known to target b-

tubulin, which is related to the cytoskeleton and has no clear

effect on our network of interest. However, it is known that

cytotoxic treatments can also rewire cell signaling net-

works.71 More measurements in the docetaxel condition

could allow studying cell signaling rewiring with logic models

through network optimization.
Data were measured at three timepoints (30 min, 4 h, and

24 h) using an antibody-based technique to measure key

phosphosites of eight proteins in the network (AKT, RPS6,

GSK3, ERK, AKT, p38, JNK, HSP27, Stat3; in blue in

Figure 2). Since the antibody used for GSK3 measures an

inhibitory site, the sign of the regulatory interactions to and

from GSK3 were inverted. We chose to consider only the first

two timepoints (30 min and 4 h), as signaling through phos-

phorylation changes works on a fast time scale (affecting a

wide part of the cell on the order of minutes) and is expected

to reach a semisteady-state within the first few hours. Consid-

ering a longer time scale might also require taking into

account slower effects, such as transcription regulation, that

would lead to changes in the levels of proteins and thereby to

a rewiring of the network. We use these data to train cell line-

and context-specific logic model, as detailed in the next

paragraphs.
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Training the logic-based ODE model with CellNOpt
First, the PKN is interpreted as a logic-based ODE as
described in Wittmann et al.32 and implemented in the R pack-
age CellNOptR.49 The dynamic of each node is described by
an ODE as a function of its regulators. For example, for the
rate of change of the variable representing AKTactivity the cor-
responding ODE is:

dAKT=dt5sAKT ðfðPI3K ; kPI3K!AKT Þ2AKT Þ

where parameter sAKT represents the life-time of the node
AKT. When sAKT 5 0, dAKT/dt will also be 5 0, meaning that
AKT remains at the basal value, i.e., its initial condition. The
transfer function f(PI3K, kPI3K ! AKT) represents the regula-
tion exerted by PI3K, and is a monotonically increasing sig-
moid in the variable PI3K (in the range {0,1}). The increase
rate depends on the parameter kPI3K ! AKT defining the
strength of the regulatory interaction. When kPI3K ! AKT 5 0
the dynamic of AKT is independent from PI3K.20

Second, some of the nodes and edges in the logic model
are not identifiable (i.e., corresponding parameters cannot
be precisely estimated) based on the available experimental
data and are automatically compressed, as described in
Saez-Rodriguez et al.47 and implemented in CellNOptR,49

in order to reduce the size of the model. These include the
so-called noncontrollable elements, which are the ones that
are not affected by any of the perturbed or measured spe-
cies (e.g., the node “Stress” and its regulation to Rac) and
the nonobservable elements, which are the ones down-
stream of all the measured or perturbed nodes (e.g., the
node “Caspase8” and its regulation by TNFR).

Third, data are stored using the MIDAS format72 (see Sup-
plementary Materials) and then normalized between 0 and 1
to be in the same range of model simulations. Here, the nor-
malization is performed separately for each measured spe-
cies (different antibodies can have different affinities and
corresponding data should therefore in general be normalized
separately), by computing the log2 of the fold change of each
perturbed condition with respect to the basal (unperturbed)
state, and then linearly scaling the resulting values between 0
and 1, with 0.5 corresponding to the basal state (i.e., the 0 in
the log2 fold change). In this way, all initial conditions are set
to 0.5 (which is the basal state, or the state at time 0) and data
at time 30 min and 4 h can remain at the unperturbed state or
show an increased or a decreased activity. More complex nor-
malization procedures, involving saturation effects, are imple-
mented in CellNOptR and can be used, for example, in the
case of strong outliers in the data, which would otherwise
mask smaller effects.

Fourth, the model is trained to the experimental data by
looking for the parameter set which minimizes the discrep-
ancy between model simulation and experimental data in
terms of sum of squares of the difference between measured
and simulated data (namely, RSS, residual sum of squares).
We assume that the wave of activation of signaling pathways
upon stimulation reaches semisteady-state within the first
few hours. Hence, an additional term (SSpenalty) is included to
penalize simulations that do not reach steady-state within the
time range observed in the experimental data. The resulting
optimized cost function (Q) can be schematically written as:

Q5
X

conditions

X
species

ðmeasured2stimulatedÞ21SSpenalty

This optimization problem (code available as Supplemen-

tary Materials) is solved using a global population-based

optimization method based on enhanced scatter search, as

implemented in the MEIGO software.73 As the optimization

problem is nonconvex, we solved the problem 10 times with

different initial random guesses for the parameter values in

order to further reduce our chances of ending the solution

process in a bad local optimum (the local minima reached

were actually very similar; coefficient of variation across the

10 runs 5 0.009).
Fifth, we consider as the best model the one that better

fits the experimental data in terms of minimum RSS across

the 10 runs (Figure 3a) and verify that experimental data

are well described (Figure 3b) (best model is available as

Supplementary Materials). If the fit is not good, the initial

PKN has to be refined, as there might be missing interac-

tions that are supported by the experimental data. This

refinement can be performed with a revision of information

from literature or databases, or using a combination of

data-driven approaches.74 After refinement of the PKN,

model training must be repeated. In our case, the fit is

good, as shown in Figure 3b,c, where measured values

are plotted against model simulations showing a good

agreement for most of the measured conditions. Impor-

tantly, the model is able to represent in the simulations

most of the conditions where data show a strong increase

or decrease with respect to the basal value (i.e., 0.5).
Additionally, we performed bootstrapping to assess the var-

iability of the optimal model when the optimization is repeated

(300 times), using for training the data resampled with

replacement. In order to assess the statistical significance of

the trained models, we also repeated the optimization in two

types of randomized conditions: 1) data randomization (data

shuffling across all timepoints, measured species and condi-

tions), while keeping as scaffold the network derived from

prior knowledge (repeated 300 times); 2) network randomiza-

tion (using BiRewire75 to preserve network properties), while

maintaining for training the measured data (repeated 100

times). As shown in Figure 3d, both randomizations showed

a significant (P-values, one-sided t-test <10226) decrease in

performance when compared to the bootstrapped distribution

or to the best model, regardless of the metric used for

comparison (mean squared error, MSE 5 RSS/N with N size

of the training data; coefficient of determination, COD 5

1-SSres/SStot, where SSres is the residual sum of squares and

SStot is the total sum of squares; Pearson correlation, r).

Thus, these results prove that experimental data and the prior

knowledge network are indeed informative and that our best

model performs significantly better than random. The results

of bootstrap analysis can also be used to assess the variabil-

ity of the optimized parameters, highlighting which parame-

ters or parts of the network are not well constrained, and

possibly suggesting new targeted experiments which would

better constrain the problem. Other approaches to address

this problem consist in the use of regularization techniques to

induce sparsity of the network, thus improving the identifiabil-

ity of essential parameters.20
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Figure 3 (a) Optimized model with node and edge parameter values represented in grayscale. Dotted lines correspond to compressed
nodes and edges which are removed before training the model, as not identifiable from the experimental data. (b) Top panels show
four examples of fit of optimal model simulation to experimental values. For each measured phosphoprotein in each experimental con-
dition, color scale is used to represent the mean squared error (MSE). (c) Scatterplot of simulations using the optimal model with
respect to experimental data, showing good correlation. (d) Comparison of best model with the results of model optimization after boot-
strap (repeated 300 times), network randomization (100 times), and data randomization (300 times) using different scoring metrics, i.e.,
MSE, coefficient of determination (COD), Pearson correlation (r).
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After assessing the quality of our optimized model, we

can use it for further analyses. One thing we observe is

that IGF1-R, TNFR, and IKK are associated with null s
parameters, which means that they become independent

from their regulator activities. The system therefore does

not depend on the inputs IGF-1 and TNFa. Moreover, IL6-R

is associated with a very small value for sIL6-R, suggesting

that the dynamics of the system will predominantly depend

on pathways activated by EGF.

Simulation of a logical model in different conditions
We have just shown how it is possible to use experimental

data to train and refine our PKN modeled using logic-based

ODEs. Some nodes and interactions, however, were omit-

ted because no data were available to determine their

underlying parameters. In this section, we will use continu-

ous time Markov processes on a Boolean network to pre-

dict the effect of perturbations in a semiquantitative

manner, including those that we could not include in the

logic-based ODE model. In particular, we will focus on the

probability of survival that can be predicted and compared

to experimental observations.
We use the software MaBoSS50 to compute time trajecto-

ries in this graph: continuous time Markov processes generate

a population of sequences (1,000 in this case) of asynchro-

nous transitions between states of the system. Such stochas-

tic simulations can exploit continuous values in addition to the

Boolean formalism: the proportion of trajectories found in a

state represents the probability of reaching this state, and

converges toward an asymptotic value. Initial probabilities of

inputs (values between 0 and 1) represent environmental con-

ditions and ligand treatments. The relative probability needed

to reach the activated output node “Survival” in a perturbed

condition compared to the unperturbed condition can be

related to the relative proportion of surviving cells after treat-

ment compared to the control experiment.
Moreover, as previously mentioned, MaBoSS allows us

to associate transition rates with each variable activation or

inactivation. Although we keep the inactivation transition

rates to the default value of 1, we can assign the values

given by the parameters s obtained in the optimized logic-

based ODE model to the transition rates associated with

node activations. Interactions associated with a null

strength, an extreme situation, can be removed from the

model: it is the case for the activation of JNK by Rac and

the activation of AR by AKT whose strengths are close to 0

(kRac ! JNK 5 6.7e-05, kAKT ! AR 5 8.4e-04). Finally, treat-

ment with targeted inhibitors can be encoded as alterations

of the model variables. In the next section, these alterations

will be refined to take into account dose–response.
To validate the model, we first aim at verifying the main

experimental observations reported in Lescarbeau and

Kaplan57 on the global behaviors of LNCaP cells across the

different treatment conditions,57 indicated on the first row of

Table 1. For this purpose, the model is simulated until an

asymptotic state is reached. Initial states are random for all

nodes, including inputs, with the exception of “Stress,”

which is not related to the treatments and is therefore kept

at the value of 0. We introduce several perturbations to the

model to reproduce the effect of drug treatments. These

simulations are explained below. Figure 4 details the simu-

lation outputs for the unperturbed model (control condition)

and the final survival probabilities in different conditions are

summarized in Table 1. MaBoSS also computes an error

associated with each probability, which remains smaller

than 0.016 in each condition, showing that the differences

between results in different conditions are statistically signif-

icant. Detailed simulations with probability errors are given

in the Supplementary Materials.
Androgen treatment with DHT was experimentally shown

to cause a 38% increase in survival as compared to the

control condition. This survival advantage was essentially

abrogated when treated in combination with the PI3K inhibi-

tor: the slightly decreased survival caused by PI3K inhibitor

treatment was only increased by 25% with the addition of

DHT. To show that the model is able to reproduce experi-

mental results, we run simulations with an initial probability

of 0.5 for the control, or 1 for the DHT input, and with or

without an inhibition of PI3K. Initial values for other inputs

are kept random. We compare the survival probability when

the system has reached asymptotic solutions. We find a

survival probability of 0.68 for the control condition (unper-

turbed trained model, random values for inputs including

DHT), and an increase of probability in the condition

DHT 5 1 (probability of survival is 0.87). We also observe a

decrease of survival probability with respect to control

when the model is perturbed with a complete inhibition of

PI3K (survival probability: 0.33). Consistent with experimen-

tal observations, the survival probability in this condition is

slightly increased with the addition of DHT (survival proba-

bility: 0.63), but is not reestablished to the control value.
Interestingly, performing the same simulations on the

Boolean model derived from the prior knowledge network

shows no survival advantage induced by DHT on the

untrained model, suggesting that there is an advantage in

training the model to experimental data.

Table 1 Comparison between experimental data and model simulations for both untrained and trained model

Control DHT51

DHT51

and PI3Ki PI3Ki mTORi

Androgen

depleted (DHT50)

DHT50

and PI3Ki

Experimental observations 1.00 1.38 0.75 0.60 0.78 0.50 NA

Survival probability,

untrained model

0.86 0.86 0.61 0.61 0.59 0.74 0.59

Survival probability,

trained model

0.68 0.86 0.63 0.33 0.53 0.53 0.06

First row: proportion of surviving cells measured in the data57 (NA, not available). Second row: Survival probabilities for simulations in different conditions, with

random inputs, with the untrained model (model derived from PKN). Third row: Survival probabilities for the same simulations with the trained model.
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The decreased survival probability for the trained model

with inhibited PI3K in the condition of random DHT (the

probability of survival is 0.33) compared to the condition

DHT 5 1 (the probability of survival is 0.63) suggests a

greater dependency of androgen-independent survival to

the PI3K pathway rather than the MAPK pathway in the

trained model. This can be verified by simulating the model

with inhibited PI3K in the condition DHT 5 0. In that case

the survival probability is very low (probability 0.06). There-

fore, androgen-independent survival is dependent on PI3K

pathway, while androgen-mediated growth also relies on

the MAPK pathway.
The experimentally observed effect of mTOR inhibitor

treatment on survival was lower than that of PI3K inhibitor

treatment, with a relative increase of cell survival between

these two conditions of 31%. Our simulations with the trained

model reproduce this trend, with a higher survival probability

(0.53) predicted when the model is perturbed with an mTOR

knockout. In contrast, inhibiting PI3K or mTOR has the same

effect on survival probability with the untrained model.
Finally, the relative survival measured in experiments in

androgen-depleted conditions was reported to represent

more than 50% of the one in normal growth media condi-

tion (control).
Here again, simulating the model with DHT 5 0 confirms

this observation, with a predicted survival probability of

0.53, 76% of the probability in the unperturbed model.
We have seen in the previous section that although the

PKN encompasses the different pathways discussed in the

work by Lescarbeau and Kaplan,57 training the model on

the experimental data points toward a predominant role for the

pathways activated by EGFR. This finding is validated by the

stochastic simulations of the trained model. Indeed, simula-

tions in different conditions predict survival probabilities that

reproduce the main dynamical observations reported on

LNCaP cells.57

Simulations of drug treatments and application to

patient data
Beyond the validation of mechanistic hypotheses, the model

can be used to predict the effect of new inhibitions, which

can suggest new drug treatments or combinations of drugs.
The simulation of partial inhibitions that can be related to
the dose–response data can be encoded with the introduc-
tion of new nodes inhibiting directly possible drug targets in
the model. For instance, the inhibition of PI3K can be
enforced with a new input node “Anti_PI3K,” which inhibits
PI3K. The probability chosen for “Anti_PI3K” represents the
strength of inhibition on PI3K. It allows us to assess the
effect of low concentrations of inhibitors.

We compare the survival probability predicted by simula-
tions of the model with random input values when inhibiting
each node of the model separately, with three levels of inhibi-
tion: 0.1, 0.5, and 1 (full inhibition). The results are displayed
in Figure 5. As expected, the inhibitions of MYC, PI3K, or
AKT have the most effect on survival for each inhibition level.

We note that the inhibition of p38 is predicted to increase
survival, consistent with experimental observations.57,76,77

However, the observation that Erk and Stat3 have an
important role in LNCaP cells57 is not verified, as it has no
influence on survival in the model. This suggests that the
network should be further extended with a description of
the effect of Stat3 on downstream proteins in order to
account for this experimental observation.

Beyond single drug predictions, predicting efficacy and
specificity of drug treatments and drug combinations within
specific tumor contexts and for individual patients is a major
challenge, especially for diseases characterized by a high
heterogeneity, such as prostate cancer.78 Multiple perturba-
tions are easily introduced in logic models and can address
this problem.

As a possible first step in this direction, we suggest to sys-
tematically compare the effect between single and double
perturbations.79 A drug–drug interaction denoting synergy or
antagonism is found when the phenotypic quantitative effect
of a double perturbation deviates from the effect predicted by
the simple linear additive combination of single perturbations,
and can suggest candidate targets for drug combinations.
Each interaction is thus associated with a score:

s/ðA; BÞ5
f AB
/ 2ðf A

/1f B
/ Þ

f/

Figure 4 Outputs of MaBoSS simulations with random initial states. (a) Time trajectories of unperturbed model (WT) or model treated with
PI3K inhibitor (iPI3K) and mTOR inhibitor (imTOR), with arbitrary time units. (b) Barplot of final state distribution for the unperturbed model.
The probability of seven final model states are shown (Caspase 8-Myc state means that the two variables are present, all the others are 0).
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where f A
/ and f B

/ are phenotype / (here survival) fitness

values (asymptotic probabilities) of single perturbations, f AB
/

is the phenotype fitness of the double perturbation, and f/
is the phenotype fitness of the unperturbed model.

The synergistic or antagonistic interactions associated
with the highest score (absolute value higher than 2.3) are

represented as a graph in Figure 6, and the table of syner-
gistic scores is available in the Supplementary Materials.

Blue interactions denote a negative effect on survival
(synergy) and predict efficient drug combinations, while

antagonistic interactions (in green) have a positive effect on
survival and show possible resistance.

The intensity of the color is proportional to the score

value. Nonsymmetric interactions are represented by an

arrow. In that case, the source node is responsible for the
predominant effect: it is the most efficient single treatment
in synergistic interactions, and it confers the resistance in
antagonistic interactions.

Computational predictions of drug–drug interactions is
especially useful for larger networks, since they can be used
to inform high-throughput screenings, thereby decreasing the
scope and hence cost of experiments.

Here, the graph contains several synergistic interactions
between loss-of-function perturbations on the Ras and PI3K
pathways, which characterize their parallel influence on the
survival probability and predict that combinations of drugs
targeting both pathways have a major impact on cell survival.

Moreover, such interactions can also be interpreted as
genetic interactions between mutations (knockout or overex-
pression), associated with epistasis scores. Genetic interac-
tions provide insights into relationships between different
biological functions, and highlight mutation properties such
as sensitivity or resistance predicted by the model. Patient
genetic profiles can then be exploited to predict resistance
mechanisms and identify personalized treatments. For exam-
ple, Figure 6 shows that an activating mutation of RAS indu-
ces a sensitivity to p53 targeting. In contrast, a gain-of-
function mutation of AKT provides a resistance to PI3K-
targeted treatment.

CONCLUSION

In this tutorial, we outlined a methodology using logic modeling
to better understand and predict the way a system responds to
different perturbations. The workflow we present is generic
and flexible enough to be adapted to many different other
cases. Once we have chosen a system to model, the first step
is to build a network based on what is known about the system
(PKN). Here, public databases and resources like Omnipath
help to gather and relate known information. When appropriate
experimental data are available, they can be used to refine the
PKN. Tools like CellNOpt help us in this process. Finally, with a
functional model, using tools like MaBoSS, we can simulate
different cellular and experimental conditions and predict the
effect of pharmacological interventions.

Figure 5 Probability of the node “Survival” predicted by the model for different node inhibitions. Survival probability in the control case
(unperturbed model) is marked with a gray line.

Figure 6 Network of synergistic and antagonistic interactions
computed for the trained model, with random initial conditions
(except for Stress 5 0), with Survival as quantitative phenotype.
Red triangles represent gain of function alterations and green
glyphs represent loss of function alterations. Edges between two
alterations show that a combined alteration has a drastic
decreasing (in blue) or increasing (in green) effect on the Sur-
vival probability when compared to single alterations.
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In all these processes, the construction of the network is

crucial in accurately predicting drug effects.
Although not all the tools used here work under the same

programming environment, the use of standard formats, in par-

ticular SBML-qual,55 facilitate the communication between

them. To get the most out of Omnipath, the use of its related

Pypath python package is recommended. While the advanced

features of CellNOpt are available in R (a wrapper for python is

also available), MaBoSS is a command line software and

Cytoscape is mainly a standalone application.
To help with finding the correct network structures, exper-

imental data coming from technology such as antibody-

based arrays and/or mass spectrometry is of invaluable

help. But having access to these data is not always feasi-

ble. Both of these approaches require a high amount of cell

material, which is not a problem when dealing with cell

lines or patient material available in large amounts (e.g.,

blood samples), but becomes a limiting factor when only a

small amount of cells are available, such as in the case of

biopsies or resections from solid tumors. Approaches for

functional ex vivo screening of patient samples are currently

being developed and recent works focus in particular on the

investigation of new fast reporters80 and microfluidic-based

technologies that exploit small volumes to test a large num-

ber of drug combinations.81 These methods are so far lim-

ited to the investigation of the activity of only one node in the

network. On the other hand, single timepoint omics data

measured on patient samples provide constraints on many

nodes for model training, with mutations integrated as pertur-

bations and expression data as initial conditions or steady

state goals.
While new technology is being developed to predict drug

response in patients, cell lines and in silico systems are being

successfully exploited to show how differential responses to

drugs can derive from a different wiring of the signaling net-

work and how systems pharmacology approaches provide

useful tools for personalized medicine. In particular, a number

of recent studies have successfully studied logic models to

investigate signaling pathways and suggest effective drug

combinations which were then validated in vitro and/or

in vivo.18–20,45 Mathematical models calibrated using cell

lines have also been proved effective in predicting clinical

patient outcomes.82

Overall, network-based models allow us to formalize this

reasoning into a mechanistic computational model, and infer

conclusions about a drug’s effects from quantitative simula-

tions in a principled manner. For this purpose, logic modeling

is a useful approach to capture biological mechanisms in a

simplified manner.23 While this simplicity can render models

unable to accurately describe important molecular mecha-

nisms,83 it allows us to model larger signaling networks than

more detailed approaches such as reaction-based differential

equations. Due to this scalability, we expect logic modeling to

become an increasingly used approach in systems pharma-

cology to gain valuable insights, powered by new develop-

ments in data acquisition techniques.
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SUPPLEMENTARY MATERIALS

Supplementary materials can be found on GitHub at https://
github.com/saezlab/CPT_QSPtutorial. Supplementary files
include: model files, codes for CellNOptR and for pypath,
results of analyses (logic-based ODE parameters, MaBoSS
simulations and genetic interactions), and a description of a
step-by-step model extension using pypath.
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