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Abstract: Legionella pneumophila is defined as a bacterium that can cause severe pneumonia. It is
found in the natural environment and in water, and is often found in water tanks. It can be an integral
part of biofilms in nature, and the protozoa in which it can live provide it with food and protect it from
harmful influences; therefore, it has the ability to move into a sustainable but uncultured state (VBNC).
L. pneumophila has been shown to cause infections in dental practices. The most common transmission
route is aerosol generated in dental office water systems, which can negatively affect patients and
healthcare professionals. The most common way of becoming infected with L. pneumophila in a dental
office is through water from dental instruments, and the dental unit. In addition to these bacteria,
patients and the dental team may be exposed to other harmful bacteria and viruses. Therefore, it is
vital that the dental team regularly maintains and decontaminates the dental unit, and sterilizes all
accessories that come with it. In addition, regular water control in dental offices is necessary.

Keywords: aerosol; dental medicine; infection; Legionella

1. Introduction

Members of the Legionellaceae family are small, Gram-negative, aerobic bacilli that do
not form spores, are capsule-free, and possess the enzymes catalase and oxidase (Table 1) [1].
Amino acids are their primary carbon and energy sources for bacterial growth in the intracel-
lular environment [2]. Amino acids are catabolized by the Krebs cycle, and gluconeogenetic
enzymes synthesize sugars from the Embden–Meyerhof–Parnas pathway. Legionella is
non-saccharolytic and possesses the enzyme protease. The guanine and cytosine content in
its DNA ranges from 38% to 52% [3].

Of the known 15 serogroups of Legionella pneumophila (L. pneumophila), serogroup 1 is
present in 84% of cases worldwide (Table 2) [4–6]. Serogroups 2 to 15 account for 16 to 20%
of Legionella pneumonia cases [7]. Patients with L. pneumophila of serogroups 2 to 15 showed
typical symptoms of Legionella pneumonia, although Legionella urinary antigen detection
tests were negative [8–10]. In addition, specific differences in the virulence of different
serogroups were observed; for instance, Buse et al. showed a significant difference in the
mobility of L. pneumophila between serogroups [11]. A characteristic of the L. pneumophila
genome is the presence of many different eukaryotic-like proteins and protein domains
that are probably acquired by horizontal gene transfer [12–14].
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Table 1. Classification of Legionella pneumophila.

Characteristics Legionella pneumophila References

Family Legionellaceae [15]
Form bacillus [1]
Coloring per gram Gram (-) [1]
Metabolism Aerobic [1]
pH 5–8.5 [16]

Habitat Aquatic habitats (biofilm, within
multicellular organisms) [17]

Reproduction temperature 25–37 ◦C [18]
Survival temperature 0–63 ◦C [16]
Nutrients Amino acids (L-cysteine), iron [17]
Sensitivity Drying, chlorine, UV radiation [19]

Table 2. Legionella species, serogroup details, and their ability to cause human infection and mortality
rate [7,17,20,21].

Legionella sp. Serogroups Associated
with Human Disease Diseases Mortality Rate

L. anisa Pleural infection
L. bozemanii 1 and 2 Pneumonia
L. cardiaca Native endocarditis
L. cincinnatiensis Pneumonia
L. clemsonensis Pneumonia
L. dumoffii Legionnaires’ disease
Legionella feeleii 1 and 2 Pontiac fever
L. hackeliae 1 and 2 Pneumonia
L. jordanis Endocarditis
L. lansingensis Pneumonia
Legionella longbeachae 1 and 2 Pneumonia
L. maceachernii Pneumonia

L. micdadei Opportunistic
pneumonia

L. parisiensis Pneumonia

L. pneumophila 1–15
Pontiac fever,

Legionnaires’ disease,
and pneumonia

7–25%

Legionella is found in the natural or artificial aquatic environment [22]. It occurs in
planktonic form or as part of biofilms [23] and has the ability to move into a sustainable but
uncultured state (VBNC) [19]. Elevated temperature, inorganic and organic water content,
and the presence of protozoa play a crucial role in their growth and spread [24]. The most
significant number of Legionella is found in water samples with temperatures from 30 ◦C to
40 ◦C [25]. Infections in humans occur exclusively by inhalation of contaminated aerosols,
which can occur in air conditioning systems, cooling towers, spas, fountains, ice machines,
plant sprayers, dental appliances, and showerheads [26]. The material from which the
pipeline system is built significantly influences the appearance of high concentrations
of bacteria (Figure 1) [5]. The use of copper as a plumbing material has been shown
to help reduce the risk of Legionnaires’ disease, while plastic materials support many
L. pneumophila bacteria [27].
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Legionella can be found in water distribution cooling towers, where it can replicate
within protozoa. It is often Vermamoeba vermiformis that protects Legionella pneumophila
from the effects of heat and disinfectants, which can result in nosocomial infections [28].
Coevolution with multiple protozoan species has resulted in the development of mecha-
nisms that allow L. pneumophila to occupy different hosts, and the possibility of human cell
infection [2,29,30].

Legionella pneumophila is responsible for most cases of legionellosis and is one of the
major causes of community-acquired and nosocomial-acquired atypical cases of pneumonia,
with a mortality rate between 7% and 25% [20,31]. In comparison, the mortality rate
of non-Legionella pneumophila species is 5% [31]. Legionnaires’ disease is a pulmonary
form of legionellosis with an incubation period of two to fourteen days, and involves
severe pneumonia and systemic infection [32,33]. A benign flu-like condition is called
Pontiac fever [34]. It is a non-pneumonic disease with unclear pathogenesis requiring
no antimicrobial treatment [32]. The mortality rate of adequately treated patients with
Legionnaires’ disease varies from 7% to 24%, with immunocompromised and elderly
patients being the most susceptible [34]. It is estimated that 25,000 to 100,000 people are
diagnosed with legionellosis each year in the United States [35]. In North America and
Western Europe, 1–13% of all types of pneumonia were associated with this pathogen [36].

2. History of Legionellosis

The two principal clinical forms of bacterial infection caused by inhalation or aspiration
of the genus Legionella, together with the aerosol in which they are contained, are Pontiac
fever and Legionnaires’ disease [26]. Infections obtain their names from the events after
which they were described. The identification of Legionnaires’ disease was preceded by a
conference of American veterans from the Second World War, the so-called Legionnaire,
in 1976, which, as it turned out, became the source of a previously unknown disease [37];
the tragedy was blamed on the ventilation and air conditioning system of a luxury hotel in
Philadelphia. Participants of the gathering fell ill and suffered from pneumonia, and there
were also fatalities. After this event, the causative agent was isolated in 1977 and named
Legionella [38,39]. Now, it is known that the 1974 event from the same hotel is also linked to
a disease that broke out two years later [40].

This type of bacterium was also responsible for infecting employees and patients of
the Health Department in Pontiac, Michigan, in 1968. Although respiratory symptoms
were present in both cases, the disease here was milder, with no pneumonia or death; it was
called Pontiac fever. A weaker form of the disease in Pontiac could indicate a low infectious
dose, but the infection rate among healthcare workers was 95%. This high infection rate
suggested that the pathogen was spread through the air [3,37,41].

Among the first discoveries related to Legionella spp. was an isolate in 1947 that was
described as a “rickettsia-like” organism, and in 1977, it was identified as the same bacterial
species and serogroup responsible for the disease in Philadelphia [39,42]. Outbreaks
of this disease attract much attention, but it still occurs mainly in individual cases. Its
occurrence has been reported in Europe, the USA, Canada, New Zealand, Japan, Singapore,
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and Australia. The registered case number of infections is increasing despite numerous
guidelines on preventing the spread of Legionella spp. [43]. Today, over 60 species of
Legionella are known. Legionella pneumophila is the most common pathogenic species and
includes 15 serogroups, although most human diseases are caused by the L. pneumophila
serogroup 1 [44]. Other species that are clinically significant for human infection, in addition
to those shown in Table 2, are Legionella feeleii, Legionella micdadei, Legionella longbeachae,
Legionella anisa, Legionella dumoffii, and Legionella bozemanii [21,45,46].

3. Virulence Factors

The development and clinical form of the disease depend on the number of bacteria
in the aerosol, the serogroup to which they belong, the virulence factors, and the person’s
immunity. Therefore, in addition to preventing the colonization of water bodies, it is
also essential to determine the virulence factors of Legionella spp. [47]. Initial adhesion
to cell surface receptors is associated with the bacterium’s surface structures, namely
pili (fimbriae), lipopolysaccharides, and proteins [48]. Potential invasiveness is increased
by flagellar motility and toxin production [46]. Microbial pathogenicity enhances the
possibility of long-term intracellular survival and replication in alveolar macrophages,
thereby increasing infectivity while bypassing the patient’s immune system [49].

3.1. Surface Virulence Factors

Surface virulence factors that affect the virulence of Legionella spp. and enhance infectivity
are lipopolysaccharide (LPS), flagella, pili, and outer membrane proteins [46,47,49–51].

The LPS is located on the outer envelope of the outer membrane and is crucial in
interacting with various host immune cells, as well as in intracellular traffic modulating [22].
The LPS molecule consists of an O-specific chain, a nucleus, and a lipid A component,
combined with an endotoxin with a relatively low toxic potential. LPS contains many
extended, branched fatty acids and O- and N-acetyl groups. It is highly hydrophobic and
differs from the lipopolysaccharides of other Gram-negative bacteria [51,52].

Legionella spp. move, in most cases, by means of a polar and/or lateral flagella
consisting of a basal body, a hooked structure, and a filament [53]. Motility may be
crucial for dispersing in the lungs of patients, as such forms of L. pneumophila have been
detected in alveolar parts [46,51,52,54]. The gene responsible for expression depends on
the temperature, availability of nutrients, and viscosity of the medium in which they reside.
Although flagella are not a condition for intracellular proliferation, they enhance host cell
invasion regardless of attachment to it [51,52]. Pili can be divided into two forms: the
long form, measuring 0.8 to 1.5 µm, and the short form, measuring 0.1 to 0.6 µm. The PilE
protein is an integral part of the long form of type IV pili. It is involved in binding and
adhesion to host cells. Prepilin peptidase (PilD) is another protein liable for the production
of type IV pili. It is crucial for successful intracellular proliferation. This protein is also
involved in secretion type II [51,52].

Legionella spp. outer membrane proteins are essential for phagocyte entry and sur-
vival. The Macrophage Infectivity Potentiator (MIP) displays peptidyl–prolyl cis/trans
isomerase activity and is necessary for the early stages of intracellular infection and sur-
vival in macrophages, protozoa, and pulmonary epithelium [55]. Due to the MIP gene’s
characteristics not being found in other Legionella genes, it is possible to identify clinical and
environmental strains of L. pneumophila and other Legionella spp. by MIP sequencing [51,56].

The major Outer Membrane Protein (MOMP) has porin properties, and is required
for bacterial interaction with CR1 and CR3 receptors on monocytes and other phago-
cytes [57]. Factors of both the host and bacteria that facilitate initial adherence and entry of
Legionella spp. into the cell, are essential [57].

3.2. Secreted Factors

Legionella spp. secretes various pigments, toxins, and enzymes [58]. Moreover, Le-
gionella spp. secretes more than 18,000 proteins containing eukaryotic-like domains, called
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effector proteins, through secretion systems [13]. Many effector proteins are secreted into
the host cell, facilitating Legionella intracellular replication [13]. These secretion systems are
essential virulence factors in L. pneumophila.

The type I secretion system known as Lss consists of the ABC transporter (ATP-binding
cassette), a membrane-fusion protein, and an outer-membrane protein [59]. The lss gene
cluster, lssXYZABD, which includes the ABC transporter and membrane fusion protein,
was found in all L. pneumophila strains [50].

Secretion system type II, termed Lsp and often referred to as the general secretory path-
way, contains numerous degradation enzymes, including RNase, two acid phosphatases,
zinc metalloprotease, etc. [60,61]. The L. pneumophila type II secretion system has 12 compo-
nents. Some components are the prepilin peptidase pilD, the outer membrane secretin and
ATPase lspDE, and the pseudopilins lspFGHIJK, lspC, and lspLM [57]. The Lsp secretion
system is essential for L. pneumophila survival at low temperatures [50].

The type III secretion system is a protein-transport mechanism that translocates cy-
toplasmic substrates directly into the host cytoplasm [62]. It contains flagellum-encoding
genes [59] and secretins as part of a type II secretion system, homologous to the DotD
protein in a type IVB secretion system [63].

Another important secretory system is the type IV secretory system. There are two sub-
classes of the type IV system—IVA (called Lvh) and IVB (called Dot (defect in organelle traf-
ficking) /Icm (intracellular multiplication)) [59]. The Dot/Icm secretory system is encoded
by the Dot/Icm genes [63]. The Dot/Icm secretion system secretes more than 300 different
effector proteins into the host cell and is crucial for the virulence of L. pneumophila [13].
Therefore, the Dot/Icm secretion system constitutes around 10% of the L. pneumophila
proteome, suggesting that the effectors include a significant determinant of L. pneumophila
survival [50]. The Dot/Icm system is vital for establishing a replicator niche and avoiding
lysosomal/endocytic fusion [64]. The action of bacterial degradation enzymes ultimately
leads to the death and lysis of host cells and damage to lung tissue [65,66]. In addition,
the Dot/Icm effector proteins are required to translocate the Legionella-containing vacuole
across the membrane [23]. The Lvh secretion system contains genes encoding mobility fac-
tors and enzymes [59]. It may have a role during intracellular replication of L. pneumophila
and thus complement Dot/Icm function [50]. In addition, the Lvh can functionally replace
defective Dot/Icm [67].

Type II and IVB secretion systems are found in all Legionella strains, while the type I
secretion system is exclusive for L. pneumophila [65]. In addition, type II and IVA secretion
systems are found in some Legionella strains [59]. However, some effector proteins of type II,
III, and IVA secretion systems are homologous to the components of the type IVB secretion
system, and are therefore not found in all Legionella strains [63]. Secretory systems are
essential for virulence, and Legionella species that have additional secretory systems have
increased pathogenicity [59].

The brown pigment, or pyomelanin, is one of the frequently studied secreted factors.
It is a polymer formed with homogenetic acid (HGA), produced by bacteria with oxy-
gen [68]. The lly gene is necessary for its formation [69]. Mutagenesis of Lly gene does not
affect intracellular replication within amoebae or macrophage-like host cells [69]. Secreted
HGA becomes toxic in the presence of oxygen [70]. Pyomelanin protects Legionella from
possible light-induced damage and helps it to obtain iron, an essential micronutrient for its
survival [51,58].

3.3. Biofilm

Nowadays, the increased use of drugs (especially antibiotics) has led to bacterial resis-
tance, a significant problem in patient treatment [71]. The biofilm is one of the protective
mechanisms that increases the resistance of bacteria to specific external agents [72,73].
Legionella spp. is characterized by the ability to survive in a biofilm and achieve high viru-
lence and resistance, even after severe physical and chemical treatments [74]. In addition,
many biological factors influence the persistence of the biofilm [75]. As such, the biofilm
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allows more excellent adhesion of specific bacterial species through various stages, from ini-
tiation to maturation of the biofilm and the formation of an extracellular matrix [74,76–78].
Survival of Legionella spp. under oligotrophic conditions with a lower content of organic
matter and nutrients requires the incorporation of Legionella into the microbial community
with other bacteria [79,80]. On this basis, it is possible to explain the increased numbers of
Legionella spp. in artificial habitats such as hot water systems [81]. Bacteria in these com-
munities participate in interactions such as the food chain formation or the congregation
continuation. The microorganisms in the biofilm may also repel other microbes that are
unlikely to contribute to the community [58,80].

For Legionella spp., biofilm formation is essential for survival [25]. Like many other
microorganisms, it responds to environmental factors that significantly affect biofilm forma-
tion and/or colonization. Temperature is an influential agent affecting biofilm colonization
and can affect the biofilm determinants produced by Legionella spp. In vitro, monotypic
biofilms at 37–42 ◦C consist of filamentous bacteria, but at 25 ◦C, they are thinner and
dominated by rod-shaped bacteria. Legionella cell length is associated with ppGpp signaling.
A biofilm at 37 ◦C is much more solid than at 25 ◦C, and interestingly, at 25 ◦C, it is more
prone to better adhesion potential [29,82]. Specific genes may also regulate biofilm forma-
tion, such as the putative twin-arginine translocation pathway involving the tatB and tatC
genes [83]. In the same case, expression of the MIP gene has been found to promote biofilm
creation at an early stage, when Legionella spp. does not require a host for growth [83,84].

Quorum sensing (QS) in Gram-negative bacteria regulates the gene expression of
various bacterial processes, including biofilm formation [85]. Bacteria that show QS sig-
naling are usually found in artificial aquatic systems and may regulate biofilm production
in the environment [86]. The QS autoinductor used by Legionella pneumophila is LAI-1
(3-hydroxypentadecan-4-one), which produces and detects the Lqs system and contains the
autoinductive synthase LqsA, homologous sensory kinase LqsS, and the LqsR response
regulator [87]. The quorum sensing autoinducer (3-oxo-C12-HSL) possessing P. aeruginosa
inhibits L. pneumophila biofilm formation [88]. This effect is associated with a decrease in
LqsR. This suggests that QS could play a role in the dispersion of L. pneumophila during the
later stages of biofilm development [89]. Several biological factors such as microbial com-
munities, temperature, and specific genes regulate L. pneumophila biofilm production. These
factors should suppress biofilm formation to reduce colonization in aqueous systems [74].

3.4. Legionella and Protozoan Interactions

Certain species of protozoa are crucial for the growth of Legionella in natural and
artificial environments [90]. Accordingly, the presence of Legionella in these environments
depends on the spectrum of protozoa present in the host [91]. Acanthamoeba, Hartmannella,
and Naegleria are most commonly isolated from Legionella-contaminated water systems [92].
Other protozoa associated with Legionella are Saccamoeba, Vexillifera, and Platyamoeba [93].

Propagation within the amoeba L. pneumophila increases the ability to produce polysac-
charides, which increases its ability to form a biofilm (Figure 2) [74]. Protozoa provide
nutrients for intracellular Legionella and protect them from adverse environmental influ-
ences. Bacteria survive high temperatures, disinfection procedures, and drying inside
the Acanthamoeba cyst [19]. L. pneumophila can use protozoa to colonize new habitats, so
inhaled protozoa are an effective mode of transmission to humans [94]. Thus, the symbiosis
of Legionella and protozoa contributes to the infection process itself [22]. After intracel-
lular replication within the protozoan, L. pneumophila shows more excellent resistance to
stress [30,95]. During coevolution with protozoan cells, L. pneumophila acquires highly
sophisticated and diverse strategies for taking over the host cell process [96,97]. It secretes
hundreds of effectors into the host cell, controlling host signaling pathways and key cel-
lular processes [57,98,99]. L. pneumophila can also alter host transcription and translation
processes and utilize epigenetic mechanisms in the cells in which it is found to counteract
host responses [100].



Microorganisms 2022, 10, 255 7 of 15

Microorganisms 2022, 10, x FOR PEER REVIEW 7 of 16 
 

 

of Legionella and protozoa contributes to the infection process itself [22]. After intracellular 
replication within the protozoan, L. pneumophila shows more excellent resistance to stress 
[30,95]. During coevolution with protozoan cells, L. pneumophila acquires highly sophisti-
cated and diverse strategies for taking over the host cell process [96,97]. It secretes hun-
dreds of effectors into the host cell, controlling host signaling pathways and key cellular 
processes [57,98,99]. L. pneumophila can also alter host transcription and translation pro-
cesses and utilize epigenetic mechanisms in the cells in which it is found to counteract 
host responses [100]. 

 
Figure 2. The life cycle of Legionella pneumophila. Legionella reproduces only inside other cells. Bacte-
rial-feeding amoebae also live in the environment where Legionella is found. After the Legionella is 
eaten by the amoeba, it is encapsulated inside the amoeba, where it continues to grow and multiply. 
By releasing Legionella bacteria from the amoeba, they can disperse into the environment and form 
a new biofilm with other bacteria, or humans can inhale them. In humans, this cycle is repeated, but 
in this case, the human lung cells are infected. 

Upon internalization, intracellular bacteria reprogram the endosomal–lysosomal 
pathway of host degradation [101]. The multiplication of Legionella bacteria within a mat-
uration-blocked vacuole, which fails to acidify and fuse with lysosomes, shows many sim-
ilarities to human phagocytic cell infection [102]. It includes the recruitment of the rough 
endoplasmic reticulum surrounding the membrane-bound vacuole. Interaction with pro-
tozoa is thought to be the driving force in the evolution of Legionella pathogenicity. In 
recent years, tremendous progress has been made in unraveling the mechanisms by which 
intracellular pathogens attack host cells and establish intracellular infections [103]. 

4. Legionella pneumophila in Dental Practice 
Dental staff may be at high risk of Legionella infection, and therefore, an occupational 

risk assessment is required. In addition to many dentists, other healthcare professionals 
in the dental clinic, such as dental assistants and hygienists, are also exposed to the occu-
pational risk of Legionella infection. It is estimated that the occupational risk of Legionella 
infection may affect 1 to 2 million healthcare professionals worldwide [104]. 

Based on research in dental offices conducted in 1986 in Austria, the presence of Le-
gionella pneumophila serogroup 1 was determined in 10% of water supply systems. The first 
death of a dentist due to Legionnaires’ disease was in 1995, and Legionella was discovered 
in the plumbing system of his office [104]. In 2012, an 83-year-old patient from Italy died 
of Legionnaires’ disease, and the source of the infection was contaminated water in the 

Figure 2. The life cycle of Legionella pneumophila. Legionella reproduces only inside other cells.
Bacterial-feeding amoebae also live in the environment where Legionella is found. After the Legionella
is eaten by the amoeba, it is encapsulated inside the amoeba, where it continues to grow and multiply.
By releasing Legionella bacteria from the amoeba, they can disperse into the environment and form a
new biofilm with other bacteria, or humans can inhale them. In humans, this cycle is repeated, but in
this case, the human lung cells are infected.

Upon internalization, intracellular bacteria reprogram the endosomal–lysosomal path-
way of host degradation [101]. The multiplication of Legionella bacteria within a maturation-
blocked vacuole, which fails to acidify and fuse with lysosomes, shows many similarities
to human phagocytic cell infection [102]. It includes the recruitment of the rough endoplas-
mic reticulum surrounding the membrane-bound vacuole. Interaction with protozoa is
thought to be the driving force in the evolution of Legionella pathogenicity. In recent years,
tremendous progress has been made in unraveling the mechanisms by which intracellular
pathogens attack host cells and establish intracellular infections [103].

4. Legionella pneumophila in Dental Practice

Dental staff may be at high risk of Legionella infection, and therefore, an occupational
risk assessment is required. In addition to many dentists, other healthcare professionals
in the dental clinic, such as dental assistants and hygienists, are also exposed to the
occupational risk of Legionella infection. It is estimated that the occupational risk of Legionella
infection may affect 1 to 2 million healthcare professionals worldwide [104].

Based on research in dental offices conducted in 1986 in Austria, the presence of
Legionella pneumophila serogroup 1 was determined in 10% of water supply systems. The first
death of a dentist due to Legionnaires’ disease was in 1995, and Legionella was discovered
in the plumbing system of his office [104]. In 2012, an 83-year-old patient from Italy died of
Legionnaires’ disease, and the source of the infection was contaminated water in the dental
office she visited [105]. In addition, in the same year, an elderly, immunocompromised
man in Sweden died due to Legionella in the cup filler outlet used for rinsing at the dental
ward [106]. Legionella pneumophila is fatal in many cases [20]. However, the cause of the
fatal outcome related to the dental practice was determined only in the patients shown.
According to a study by Kevorkyan et al., antibodies to Legionella were significantly higher
in medical and dental professionals than in non-professionally exposed subjects [107]. The
possibility of contamination in a dental unit water system with microorganisms has been
discussed since the beginning of dental chair use. Due to the constant exposure of patients
and staff in the dental team to the aerosol produced during operations, the microbial quality
of the water is critical. Water supply systems might contain opportunistic and pathogenic
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bacteria, mostly Gram-negative species that pose a particular risk in immunocompromised
individuals [108,109]. The water systems of the dental unit can be initially contaminated
through water coming into the system or by pulling and sucking saliva and other fluids
from the patient’s mouth. Dental chairs can receive water through a public water supply
network or special tanks built into the chair to pour liquid. Other factors that might
influence this are the work unit’s model and the time of its construction, whether there is
a built-in system against the return flow of patient fluids, infection prevention measures,
used disinfection methods, etc. [109,110].

The guidelines for the allowable number of bacteria in the dental unit’s water are differ-
ent and mostly coincide with the number of microorganisms allowed in the drinking water.
In Europe, this number is up to 100 colony-forming units per milliliter of water (CFU/mL).
The American Dental Association (ADA) set the allowable number of microorganisms in
the water for dental supply at ≤200 CFU/mL, while the Centers for Disease Control and
Prevention (CDC) recommended that the number be ≤500 CFU/mL [109–114]. The risk of
infection arises because most instruments that are necessary for work in dentistry, such as
micromotors, turbines, sonic and ultrasonic scalers, water/air syringes, etc., produce an
aerosol in the inhalation zone. The presence of Legionella spp. in saliva and dental plaque
biofilm has also been shown [115,116].

To reduce the possibility of infection and protect staff and patients in the dental office,
it is necessary to try to prevent contamination of the hydraulic system of the dental unit.
Some of the measures that can be achieved are: a dental unit that can be connected to sterile
or distilled water (Figure 3); flushing water through the instruments at the beginning and
end of the working day, and also between each patient to prevent cross-contamination
and water stagnation; continuous disinfection; procurement of thick filters, etc. [117]. For
this reason, dentists are required to conduct a legal risk assessment of their hydraulic
systems, identify and assess the sources of risk, and prepare guidelines for the prevention
and control of the risk of Legionella infection. Furthermore, they must monitor the quality
of their hydraulic systems once a year to ensure that the hydraulic systems are free of
Legionella [117].
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Particular attention should be paid to prevention measures in these times of the COVID-
19 pandemic. COVID patients are more susceptible to secondary infections for several months
during recovery. Lock-down and government measures such as staying at home and delaying
the procedures also result in prolonged water standing in the dental unit’s supply tanks.
Hence, the biofilm accumulation in the system is more likely [116,118,119].

4.1. Resistance of L. pneumophila Biofilms to Biocides

L. pneumophila poses a constant threat to human health in anthropogenic water
sources [21]. Due to the intracellular lifestyle within protozoa, it is difficult to assess
whether the resistance of L. pneumophila in environmental biofilms is due to the struc-
ture of the biofilm, its association with amoebae, or both [120]. However, the fact is that
L. pneumophila, which is found in biofilms, is highly resistant to the action of biocides [74].

Numerous disinfection methods were used to limit the growth of L. pneumophila,
but none succeeded in complete eradication; namely, recolonization occurred very soon
after treatment [120,121]. In addition, some studies showed that the biocide action on the
L. pneumophila biofilm could lead to the transition of the bacterium to the VBNC state [74].
The most common biocides used in L. pneumophila water disinfection protocols are chlorine
and chlorine derivatives. However, they show efficacy only on planktonic cells, but not on
biofilm [122].

Two reasons for this are the resistance of L. pneumophila to disinfectants; one is due to
its ability to survive within the biofilm, and the other is that it possesses an intra-amoebic
lifestyle [29]. Namely, vesicles containing intracellular L. pneumophila released by the
amoeba are resistant to biocidal treatments. It is important to note that these vesicles
remain viable for several months [74]. Chlorine dioxide, unlike chlorine, can penetrate
the biofilm and can also inactivate free-living amoebae which L. pneumophila inhabits.
Therefore, it is concluded that chlorine dioxide can be used as a secondary disinfectant to
reduce the risk of Legionnaires’ disease in hospital systems [19].

The use of phages in the treatment of biofilm infections is known in many bacterial
pathogens [123], so the addition of specific phages can be used to control the growth
of L. pneumophila. However, the phage can degrade polysaccharides and destabilize the
biofilm [124].

The antimicrobial activity of silver has long been known, and silver is an increasingly
frequent target of research to find new antimicrobial agents [125]. When it comes to a
significant reduction in the volume of L. pneumophila biofilm, silver nanoparticles have
shown outstanding results [126].

Natural compounds that have demonstrated antimicrobial efficacy on Legionella strains
are antimicrobial peptides, biosurfactants, and essential oils [19]. Different filtration meth-
ods are possible, but as filters have a certain lifespan, this could significantly increase the
cost of maintenance in the hospital system [127].

4.2. Antimicrobial Therapy

Legionella possesses the enzyme ß-lactamase. Therefore, beta-lactam antibiotics are in-
effective in treating legionellosis [128]. For that reason, azithromycin and fluoroquinolones,
including levofloxacin and moxifloxacin, are recommended for Legionella pneumonia in
some guidelines [129,130]. In addition, treatment of legionellosis is long-term, from 7 to
14 days, while the symptoms themselves are not present for too long [131,132].

5. Conclusions

In dental offices, along with many other potential causes of infections for both staff
and patients, there is a possibility of exposure to the bacterium Legionella pneumophila,
which can cause severe pneumonia—Legionnaires’ disease. Vulnerable patients are the
immunocompromised and elderly, and chronic disease patients such as those with chronic
obstructive pulmonary disease, cardiovascular disease, and diabetes. Legionella infection
could be fatal for patients on hemodialysis and with kidney transplants. Smoking and
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alcoholism are risk factors for Legionnaires’ disease. The most common reservoir of Le-
gionella in dental practices are water tanks, and the route of spread is through contaminated
aerosol generated during the use of dental instruments. Understanding the molecular
mechanisms responsible for intra-amoebic related resistance is necessary, and would result
in the development of new strategies for eradicating L. pneumophila. It is essential to know
the breeding characteristics of L. pneumophila, as well as its virulence factors, and spread
methods. Knowing the hygienic measures and that disinfectants can be used to prevent the
spread of L. pneumophila is imperative. It is necessary to carry out water control, appropriate
sampling in dental offices, and microbiological processing of samples.
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