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Review

Mechanisms of HIV-associated lymphocyte
apoptosis: 2010

NW Cummins' and AD Badley*"

The inevitable decline of CD4T cells in untreated infection with the Human immunodeficiency virus (HIV) is due in large part to
apoptosis, one type of programmed cell death. There is accumulating evidence that the accelerated apoptosis of CDAT cells in
HIV infection is multifactorial, with direct viral cytotoxicity, signaling events triggered by viral proteins and aberrant immune
activation adding to normal immune defense mechanisms to contribute to this phenomenon. Current antiviral treatment
strategies generally lead to reduced apoptosis, but this approach may come at the cost of preserving latent viral reservoirs. It is
the purpose of this review to provide an update on the current understanding of the role and mechanisms of accelerated
apoptosis of T cells in the immunopathogenesis of HIV infection, and to highlight potential ways in which this seemingly

deleterious process could be harnessed to not just control, but treat HIV infection.
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The chronic gradual loss of CD4 + T cells in untreated human
immunodeficiency virus (HIV) infection, and the consequent
adverse effects on both innate and adaptive immunity, lead to
the opportunistic infections and malignancies characteristic
of acquired immunodeficiency syndrome (AIDS). Loss
of a cell type can occur by one of the three mechanisms:
(1) decreased production; (2) increased destruction; or
(3) redistribution (Figure 1a). In viral infections, increased
destruction can occur by direct cytotoxicity of infected cells,
programmed cell death (either apoptotic or non-apoptotic)
triggered in infected cells, or programmed cell death in
uninfected, so called ‘bystander’, cells triggered by soluble
or membrane-bound viral or hostimmune factors. In fact, all of
these mechanisms likely contribute to HIV immunopathogen-
esis (Figure 1b); however, the relative contribution of each
mechanism in clinical HIV infection remains unclear.

There is controversy regarding the effect of HIV infection on
thymic output, because a reliable measure of thymic output is
lacking, and a full discussion of the controversy is beyond the
scope of this review. Early studies indicated decreased T-cell
production in the thymus in HIV infection due to a combination
of direct cytopathicity of HIV-infected thymocyte precursors
and apoptosis of uninfected immature thymocytes. This
manifests as thymic atrophy, decreased circulating naive
CDA4T cells, and decreased T-cell receptor rearrangement
excision circles (TRECSs) in circulating T cells in HIV infection.
TREC content is inversely correlated with HIV viral load, and

after initiation of effective antiretroviral therapy returns to
levels comparable with uninfected controls." The usefulness
of TREC content to quantify thymic output has been
questioned, as mathematical models suggest that either
division or death of naive T cells would artificially lower
measured TREC content in the absence of decreased thymic
output. However, by examining the ratio of late TRECs to early
TRECs in peripheral T cells as a marker of intrathymic
proliferation, reduced intrathymic proliferation, and thus
thymic output, is still evident in HIV infection compared with
uninfected controls.? HIV also infects and induces apoptosis
of CD34 + multipotent hematopoietic progenitor cells, there-
by potentially decreasing progenitor cell input into the thymus.

Apoptosis of circulating CD4T cells has not been consis-
tently found to correlate with HIV viral load.® This suggests
several possibilities: (1) not all of the CD4T-cell apoptosis is
driven by active viral replication or the immune response to
such; or (2) the circulating CD4T cells, although the easiest to
quantify, are not necessarily the most physiologically relevant
compartment to gauge functional CD4T-cell loss. Both of
these possibilities are supported by one early investigation of
apoptosis in lymph nodes of HIV-infected persons that showed
increased apoptosis compared with uninfected persons; and
in that study, the majority of the apoptotic cells, defined by
terminal deoxynucleotidyl transferase-mediated dUTP nick
end labeling (TUNEL) staining positivity, were not demon-
strated to be infected.* However, some have questioned
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Figure 1

(a) Simplified diagram of normal CD4 + T-cell homeostasis. The peripheral CD4 + T-cell pool is maintained through a balance of thymopoiesis and activation-

induced cell death. (b) Mechanisms of CD4 + T-cell death in untreated HIV infection. The peripheral CD4 4+ T-cell pool is depleted through decreased thymopoiesis and

excessive apoptosis through multiple HIV viral-specific and non-specific mechanisms

the methods used to determine infection in that study.
Specifically, infected cells were defined by in situ hybridization
of riboprobes more than 2 kbp in length, which are likely to be
degraded in TUNEL-positive cells. The accelerated apoptosis
in HIV-infected lymph nodes affects all functional compart-
ments of the node, and is not limited to just CD4T cells, but
also affects CD8+ T cells and B cells, supporting the
argument for both viral and non-viral factors in enhancing
apoptosis. The importance of apoptosis of CD4T cells in gut-
associated lymphoid tissue will be discussed below.

Redistribution, with CD4T-cell sequestration in secondary
lymphoid organs, may play an important role in CD4T-cell
decline in HIV infection. Resting CD4T cells, which are not
permissive of HIV infection, exposed to HIV upregulate
CDe62L surface expression, potentially leading to accumula-
tion in lymph nodes and exposure to proapoptotic signals.®
CD4 + CD25 + FoxP3 + regulatory T cells when exposed to
HIV upregulate CD62L, possibly contributing to immunosup-
pression by homing to lymph nodes. Increased splenic
sequestration and apoptotic death of a subset of memory
T cells expressing CCR6 has been demonstrated in progres-
sive HIV disease.®

Correlations between Retroviral-induced Apoptosis and
Immunodeficiency

In an attempt to discern the how and why of apoptosis in HIV
disease, one must begin with the origin of the virus itself.

Cell Death and Disease

HIV infection is the result of episodes of cross-species,
zoonotic transmission of simian immunodeficiency viruses
(SIVs) from African non-human primates. In natural infection
of non-human primates, such as sooty mangabeys, with their
species-specific strain of SIV, progressive CD4T-cell declines
because of apoptosis, and manifestations of secondary
immunodeficiency usually do not occur despite often robust
and chronic viral replication.” However, non-human primate
models of infection in which a strain of SIV is introduced into a
non-natural host often result in CD4T-cell decline and AIDS-
like manifestations. Recent evidence, though, suggests that
SIVepz infection of chimpanzees in the wild is indeed
pathogenically associated with increased mortality and
CDA4T-cell loss, and may be an exception to this general rule.
The role of apoptosis in SIV disease has been reviewed
extensively elsewhere.® Pandrea et al. have offered a
comprehensive model to explain why natural SIV infection
does not generally lead to disease progression, whereas
pathogenic HIV and SIV infections do. They propose that the
presence of acute and chronic inflammatory states, loss of
enteric CD4T cells, and increased T-cell apoptosis and
proliferation that occur in pathogenic SIV infection are the
determining factors in disease progression.? This model is
supported by recent observations that pathogenic lentiviral
infections are associated with chronic-sustained immune
activation and expression of interferon (IFN)-responsive
genes, including tumor necrosis factor-related apoptosis-
inducing ligand (TRAIL), whereas non-pathogenic infections



are not.° Further differences between HIV infection and
non-pathogenic SIV infection, as they relate to mechanisms of
CDA4T-cell apoptosis, are discussed below.

It has long been recognized that some humans infected with
HIV, much like non-human primates with natural SIV infection,
do not develop progressive CD4T-cell decline and progres-
sive disease despite ongoing viral replication, so called long-
term non-progressors (LTNPs). Rates of in vitro spontaneous
apoptosis of CD4T cells in LTNPs are less than in patients with
progressive disease, and approximate those in uninfected
controls. Inconsistent results, however, have been obtained
with mitogen-induced apoptosis. Some clues to why there is
decreased apoptosis in LTNPs compared with progressors
include: decreased T-cell Fas sensitivity;'® higher frequency
of infection with virus with a Vpr R77Q mutation;'" and
decreased expression of IFN«, TRAIL, and death receptor 5
(DRS5) in lymphoid tissues. '?

It is possible that apoptosis affects the four subtypes of
CDAT cells to different degrees in HIV infection, and that this
differential susceptibility could contribute to the immuno-
deficiency associated with infection; however, this has not
been definitively studied. It was recognized early that HIV
infection in vivo is associated with an abnormal shift toward a
predominately Th2 phenotype. Although both Th1 and Th2
cells are susceptible to Fas-mediating apoptosis,' one of the
key players in HIV infection discussed below, Th1 cells when
compared with Th2 cells, are more likely to be productively
infected, and are more susceptible to activation-induced
cell death.’ On the other hand, CD4 + CD25 + FoxP3 +
regulatory T cells, when exposed to HIV in vitro, do not
undergo apoptosis.'® Furthermore, in SlV-infected rhesus
macaques, mucosal regulatory T cells have lower apoptosis-
related gene expression than non-regulatory T cells and are
spared from SIV-mediated cell death.'® Circulating and
mucosal Th17 cells are decreased in HIV-infected patients
compared with uninfected controls,'® whereas SIV-infected
sooty mangabeys maintain normal levels of Th17 cells.'®
Notably, Th17 cells from HIV-infected patients are similarly
susceptible to activation-induced cell death (AICD) as Th1
cells.'® Despite these suggestive lines of evidence, no single
study to date has compared markers of apoptosis across the
four subtypes of CDA4T cells in HIV-infected patients.

Mediators of Apoptosis in HIV Disease

Apoptosis may be stimulated by environmental stress, toxins,
removal of growth factors, or by one of the three death-
inducing ligands — tumor necrosis factor, FasL and TRAIL.
The roles of each of these mediators in HIV disease, and
their potential for targeted immunotherapy, will be discussed
briefly below.

Fas/FasL. The role of Fas/FasL interactions in the
immunopathology of HIV infection has been studied
extensively and reviewed elsewhere."” In brief, both soluble
and membrane-bound Fas and FasL levels are elevated in
HIV-infected patients compared with uninfected patients and
correlate with disease progression.'® In HIV-infected
patients, Fas expression is increased in CD4 and CD8-
positive T cells and B cells, and FasL expression is increased
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on monocytes, macrophages and natural killer (NK) cells,
both in the peripheral circulation and the lymph nodes.™
Microarray analysis of gene expression in lymph nodes from
HIV-infected patients confirms increased Fas/FasL.?°

HIV-infected cells are more susceptible to Fas-mediated
apoptosis in vitro compared with uninfected cells, but they do
not make up the majority of apoptotic cells in vivo,?' and the
majority of circulating apoptotic peripheral blood mononuclear
cells (PBMCs) from HIV-infected patients do not express
Fas.?? HIV-infected macrophages are able to induce apopto-
sis in T cells from HIV-infected donors, but not from
HIV-uninfected donors, in vitro through Fas/FasL.?! These
observations contribute to the ‘bystander effect’ hypothesis
that proposes that most of the apoptotic cell death occurring in
HIV infection involves uninfected cells responding to infection
in lymphoid tissues.

Interestingly, T cells from chimpanzees infected with HIV do
not undergo apoptosis through Fas ligation.?®> However,
cynomolgus monkeys infected with pathogenic SIV/HIV-C2/1
have increased expression of Fas on CD4 and CDS8T cells,
and FasL on T and B cells compared to before infection.*
Non-progressing patients have significantly lower serum-
soluble Fas concentrations, decreased lymphocyte expres-
sion of Fas and FaslL, and decreased Fas-sensitivity10 than
progressing patients. How the HIV virus influences Fas/FasL
expression will be discussed below. Inhibiting the Fas path-
way with a blocking monoclonal antibody to FasL during the
acute phase of SIV infection in macaques attenuated disease
progression in one study.?® There have been no human trials
of Fas/FasL agonists or antagonists in the treatment of HIV
infection to date because of significant toxicities in pre-clinical
studies.

Tumor necrosis factor-a. The important role of TNFa in the
pathogenesis of HIV infection and its associated compli-
cations, particularly enhancing viral replication and mediating
apoptosis of CD4T cells, has been studied extensively
and recently reviewed elsewhere.?® Table 1 summarizes
the results of the prospective trials performed with the
TNFo inhibitors, pentoxifylline, ketotifen, thalidomide and
etanercept. Overall, no significant beneficial immunologic
effect has been demonstrated with specific inhibition of
TNFo; and several of the agents have significant adverse
effects, including a paradoxical increase of the HIV viral load.

On the other hand, recombinant TNF« has been investi-
gated in preclinical and phase I/11 trials with the goal of clearing
latently infected cells, but is unlikely to be a clinically useful
option because of significant-related toxicities.2”

TRAIL. TRAIL is a member of the TNF superfamily that has
been implicated in mediating apoptosis of CD4T cells in HIV
infection through its interactions with its death-inducing
receptors, DR4 and DR5, on infected and uninfected
T cells. HIV infection of CD4T cells results in increased
expression of TRAIL and DR5 compared with uninfected
cells.?® HIV infection of dendritic cells and macrophages
results in increased expression of TRAIL, which can then
induce apoptosis in uninfected bystander T cells.2®
HIV-infected patients have elevated serum levels of
TRAIL2® and increased expression of DR5 on circulating
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Table 1 Studies on modulation of death-receptor-mediated apoptosis in HIV infection

Agent

Mechanism of action

Dose

Clinical outcomes assessed

Clinical effects

Clinical studies on TNF inhibitors

Pentoxifylline

Ketotifen

Thalidomide

Etanercept

Preclinical studies
on fas inhibitors
Monoclonal
antibody to
FasL

Antagonist — blocks

TNFo-induced activation

of NF-xB

Antagonist — inhibits
TNFo release from
PBMCs

Antagonist —
decreases TNFo
expression

Antagonist — soluble
p75 TNF receptor:
Fc fusion protein

Antagonist — blocks
Fas/FasL interaction

In vitro studies on TRAIL

Leucine-zipper
recombinant
human TRAIL
Recombinant
human TRAIL

Mapatumumab,
Lexatumumab

Monoclonal
antibody to
TRAIL

Agonist

Agonist

Monoclonal

agonistic antibodies to
TRAIL receptors
Antagonist

400 mg TID orally for 8 weeks

400 mg TID orally for 12 weeks

800 mg TID orally for 8 weeks

800 mg TID orally for 6 weeks

400 mg TID orally for 16 weeks

1.5mg/min intravenously for 6 h

400 mg TID orally for 24 weeks
400 mg TID orally for 6-20
months

4 mg daily orally for 84 days

100 mg QID orally for 12 weeks

200 mg once daily orally for
4 weeks

100 mg daily orally for 24 weeks
200 mg daily orally for 4 weeks

10 mg intravenous infusion
once in combination with
HAART and riL2

25 mg intravenously twice
weekly for 4 weeks

4mg/kg intravenously one
week before, at the time of,
and 1, 2, and 3 weeks after
acute

SlVmac infection

1 pg/ml for 12h

5ng/mL

3ug/mL

1 mg intraperitoneally 9 days
after HIV infection

TNF expression and HIV viral load

TNF expression and HIV viral load

TNF expression and HIV-viral load

TNF expression; cellular immune
responses; fever, weight, fatigue,
and well-being.

CD4 count; mitogen-stimulated
cytokine production; HIV-viral load

Dose tolerance and ex vivo LPS-
induced TNF production
Caspases 1 and 8 levels in blood
Symptoms and CD4 counts

Body composition; TNF« release
from PBMCs and serum
concentrations

Weight gain, CD4 count, and
viral load

Oral ulcer resolution, QOL, plasma
TNFo, and TNF« receptors,
HIV-viral load

CD4 count, TNFa, and TNFa
receptor levels

Immune activation, TNF« levels
and HIV-viral load

HIV-viral load, serum levels of
proinflammatory cytokines

Clinical response to antituberculous
therapy, CD4 count, and viral load

B and T-cell death, cytotoxic
T lymphocyte and antibody
responses,

viral set point

Viral RNA, proviral DNA, and p24
antigen production in PBMCs from
HIV-infected patients treated ex vivo
Recoverable virus from PBMCs from
HIV-infected, -suppressed patients
treated ex vivo with TRAIL
Apoptosis of PBLs from HIV-infected
patients treated ex vivo

Apoptosis of CD4 T cells in human
PBL-transplanted NOD-SCID

Decreased TNF expression; no effect
on HIV replication

Decreased TNF and HIV viral load in
AZT- and PTX-treated patients
compared with either agent or alone
Decreased TNF expression; no effect
on HIV replication

No effects. Increased Gl side effects.

Transient improvements in CD4
count, viral load, and cytokine
production.

No effect on TNFa production at
maximally tolerated dose
Decreased caspases 1 and 8 levels
Improved symptoms and weight;
transient increase in CD4 count
Transient weight gain; inhibited TNF«
release from stimulated PBMCs but
no difference in serum levels
Improved weight gain, no change
in viral load, or CD4 count

Increased oral ulcer resolution;
unexpected increases in plasma
TNFu, soluble TNF« receptors, and
HIV-viral load

No significant clinical effects noted

No effect on TNFa; increase in HIV
viral-load and immune activation

No changes in already suppressed
TNF and viral load; decrease in IL6
and CRP levels

Non-significant trend in improved
responses to antituberculous therapy
and improvements in CD4 count
without change in HIV-viral load

Attenuated acute SIVmac disease
and improved survival

Increased apoptosis and decreased
viral RNA, proviral DNA, and p24
antigen production

Decreased recoverable virus from
latently infected PBMCs

No effect on apoptosis in ex vivo
PBMCs from HIV-infected patients.

Decreased CD4 T-cell apoptosis.

Abbreviations: AZT, azidothymidine; CRP, C-reactive protein; Gl, gastrointestinal; HIV, human immunodeficiency virus; NOD-SCID, non-obese-severe-combined
immunodeficiency mice; PBLs, peripheral blood lymphocytes; PBMCs, peripheral blood mononuclear cells; PTX, pentoxifylline; QID, four times daily; QOL, quality of
life; SIV, simian immunodeficiency virus; TID, three times daily; TNF, tumor necrosis factor; TRAIL, TNF-related apoptosis-inducing ligand
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PBMCs compared with uninfected patients. Plasmacytoid
dendritic cells from HIV-infected, viremic patients express
TRAIL and are able to induce apoptosis in uninfected but not
infected CDA4T lymphocytes. HIV-infected patients also
demonstrate elevated TRAIL and DR5 in lymphoid tissues.*°
Initiation of HAART in infected patients decreases serum
TRAIL levels, as well as TRAIL and DR5 expression on
circulating CD4T cells.?®3° However, in lymphoid tissues,
infected patients on HAART exhibit decreased TRAIL
expression, but not DR5 expression, compared with untreated
infected patients.®® In a mouse model of HIV infection using
human peripheral blood lymphocyte (PBL)-transplanted
non-obese diabetic severe-combined immunodeficiency
mice, treatment with neutralizing anti-TRAIL monoclonal
antibody decreased CD4T-cell apoptosis compared with
untreated infected animals.®'

Treatment of HIV-infected PBLs and monocyte-derived
macrophages with recombinant TRAIL results in decreased
HIV burden compared with control-treated cells in vitro,
suggesting this might be an approach for therapy.®* Recom-
binant human TRAIL and agonistic monoclonal antibodies to
DR4 and DRS5 are currently in phases | and Il clinical trials for
cancer chemotherapy where induction of apoptosis in
malignant cells is the goal of the therapy. A theoretical
concern of TRAIL agonist therapy in HIV disease is that
although HIV-infected cells may be killed by such therapy,
uninfected bystander T cells may also undergo apoptosis,
thereby, worsening immune suppression. However, treatment
of PBLs from HIV-infected patients in vitro with recombinant
human TRAIL decreases recoverable virus without a detect-
able change in quantity or function of the lymphocytes.®3

Chronic immunologic stimulation in HIV disease. After
responding to any neoantigen, contraction of previously
expanding immune cell populations is necessary; one
mechanism that is used is the induction of apoptosis of
activated immune cells — activation induced cell death (AICD).
Widespread and chronic activation of the immune system
during HIV infection is characterized by generalized
lymphadenopathy, increased circulating levels of B
lymphocytes, activated T lymphocytes, NK cells, antigen-
presenting cells, hypergammaglobulinemia and other serum
markers of immune activation in HIV-infected patients
compared with uninfected patients. The contribution of
chronic immunologic stimulation to HIV pathogenesis is
supported by observations of circulating activated (HLA-
DR-+) monocytes and activated (CD38+) CD8T cells
correlating with CD4T-cell loss and disease progression.*
Chronic immunologic stimulation leads to AICD in CDA4T cells
via both death receptor (Fas)-dependent and -independent
mechanisms. However, the increased AICD seen in HIV
disease is not limited to CDA4T cells, as it is hypothesized to
contribute to CD8T-cell exhaustion as well, a process that may
be associated with the expression of programmed death-1
(PD-1) on activated CD8T cells in HIV-infected patients.>®
The sources of chronic immunologic stimulation in HIV are
multiple and can include persistent viral replication, effects of
circulating HIV proteins and virus like particles, opportunistic
infections, and reactivation of other latent viral infections.
Also, absolute counts of regulatory T cells decrease over time
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in progressive HIV infection, and this correlates with immune
activation.®® Recent attention has focused on the depletion of
CDA4T cells in the gastrointestinal tract, leading to increased
microbial translocation and circulation of microbial cellular
components, including lipopolysaccharide and bacterial DNA,
the levels of which correlate with HIV disease progression.®”
Systemic exposure to microbial by-products could lead to
activation through Toll-like receptor signaling, thereby pro-
moting AICD and contributing to the loss of CDA4T cells outside
of the Gl tract.®® Systemic microbial by-products may also
inhibit T-cell expansion and function by upregulating PD-1
expression and IL-10 production by monocytes.®®

Pharmacological attempts at modulating immune activation
in HIV disease with the goal of increasing CD4T cells counts
with corticosteroids, cyclosporine, cyclooxygenase 2 inhibi-
tors, mycophenolate mofetil and chloroquine have either been
unsuccessful or demonstrated only modest benefits in short-
term surrogate endpoints.

HIV proteins and apoptosis. Many of the proteins that are
encoded by the HIV genome, including gp120, Tat, Nef, Vpr,
Vpu and HIV protease, have been found to have pro- and/or
antiapoptotic qualities (listed in Table 2 and depicted in
Figure 2). Each of these proteins will be reviewed below. It is
important to note that the actual in vivo concentrations of
these proteins seen in HIV infection are largely unknown, and
that in vitro experiments involving overexpression of a
particular protein, or exogenous treatment with high protein
concentrations, may not be truly reflective of in vivo effects.

Gp120 and apoptosis. Gp120 is the glycoprotein
expressed on the HIV envelope that binds to the CD4
receptor and either CXCR4 or CCR5 coreceptors facilitating
viral attachment and, along with Gp41, entry into the cell.
Both membrane-bound and soluble gp120 binding to CD4
leads to apoptosis of infected and uninfected CD4T cells.
However, ligation with CD4 is not required, and of the
coreceptors, gp120 signaling through CXCR4 is a more
potent apoptotic stimulus than CCR5. Several mechanisms
have been proposed for gp120’s proapoptotic effect,
including through upregulation of Fas, FasL, and TNFa
expression;*® molecular mimicry with Fas;*' upregulation of
TRAIL receptors DR4 and DR5;*? induction of cell cycle
arrest at the G2 phase;*® generation of reactive oxygen
intermediates;**  reduced  expression of  Bcl-2;*°
phosphorylation of mTOR and p53;*® increased expression
of the proapoptotic protein PUMA;*” and activation of p38.*3
Membrane-bound Gp120 may also induce apoptosis through
syncytia formation, although the role of syncytia formation in
in vivo infection is controversial.

Although it is currently unclear which of these potential
mechanisms predominates in in vivo HIV infection, it is clear
that Gp120 is pluripotent, able to induce apoptosis in other
types of cells, including CD8T cells, neurons, human vascular
endothelial cells, cardiomyocytes, proximal renal tubular cells,
hepatocytes, oral keratinocytes, lung endothelial cells, breast
cancer cells, osteoblasts, and prostate cancer cells.

Tat and apoptosis. The HIV-1 transactivator protein, Tat,
that promotes HIV-LTR (long terminal repeat) transcription
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Table 2 HIV encoded proteins and their reported pro- and antiapoptotic impact

Pro- or
antiapoptotic

Protein Reported mechanisms

Gp120 Proapoptotic  Molecular mimicry with Fas
Upregulation of Fas, FasL, and

TNFo expression

G2 cell cycle arrest

Generation of reactive oxygen species
Downregulation of Bcl-2 expression
Phosphorylation of mTOR and p53
Upregulation of PUMA expression
Upregulation of TRAIL-R1 and -R2
Induction of syncytia formation

Activation of p38

Tat Proapoptotic ~ Upregulation of FasL expression
Upregulation of Bax expression
Upregulation of caspase 8 expression
Microtubule alteration

Oxidative stress

Upregulation of RCAS-1 expression

Antiapoptotic  Decreased susceptibility to TNF« and Fas
Upregulation of Bcl-2 expression
Decreased susceptibility to TRAIL
Downregulation of caspase 10
expression

Upregulation of c-FLIP expression

Vpu Proapoptotic  Increased susceptibility to Fas

Inhibition of NF-xB

Upregulation of Fas and FasL expression
Downregulation of Bcl-2 and Bcl-XL
expression

Lysosomal permeabilization and
Cathepsin-D release

Upregulation of PD-1

Nef Proapoptotic

Inhibition of ASK-1
Inhibition of Bad
Inhibition of p53

Anti-apoptotic

Vpr Pro-apoptotic  Binding to ANT/VDAC leading to
mitochondrial depolarization
Binding to Bax leading to mitochondrial

depolarization

Anti-apoptotic  Suppression of NF-«B proinflammatory
cytokine production

Upregulation of Bcl-2 and downregulation
of Bax expression

Protease Pro-Apoptotic Cleavage of Bcl-2

Cleavage of Caspase 8 creating
pro-apoptotic Casp8p41

has pleiotropic effects on apoptosis of CD4T cells. Tat is
produced early in the life cycle of the virus, but also is
secreted by infected cells and taken up by uninfected T cells
via clathrin-mediated endocytosis.*® Both pro- and
antiapoptotic effects have been demonstrated in vitro,
depending upon cell lines used, use of endogenous
expression vectors or exogenous administration, dose of
Tat administered, whether the cell is infected or not, and
oxygen level. Treatment of uninfected Jurkat T-cell lines with
low doses (pM) of Tat results in apoptotic resistance to TNF,
Fas® and TRAIL,®' decreased expression of caspase 10,%2
and increased expression of Bcl-2 and ¢c-FLIP®? compared
with untreated cells. However, treatment of uninfected T-cell
lines and PBMCs with higher doses (nM-mm) of Tat can
increase FasL,%® caspase 85 Bax®® and RCAS-1%®

Cell Death and Disease

@ (Eocp0 @ Powase > >

““.:‘.:". Downregulates

(W) Mef (¥ ver ——= Inhibits

Figure 2 This figure depicts select interactions of HIV proteins with the
mitochondrial pathway of apoptosis demonstrated in in vitro studies, demonstrating
the both complexity and duplicity of these pathways. Which of these potential
mechanisms occurs in vivo, and the relative importance, though, is less clear

expression, and cause oxidative stress®” compared with
untreated cells. Tat can also bind to tubulin, resulting in
microtubule alteration and Bim-mediated mitochondria-
dependent apoptosis.>®

The role of Tat in inducing or inhibiting CD4T-cell apoptosis
in vivois unclear. Tat is present in concentrations in the serum of
HIV-infected patients approximating the in vitro antiapoptotic
doses.®® On the other hand, HIV infection of human monocytes
and macrophages, or treatment with exogenous Tat, results in
upregulation of TRAIL expression in these cells, which can then
induce apoptosis in uninfected bystander T cells.®° Interestingly,
chimpanzee T cells treated with exogenous Tat are resistant to
Tat-mediated apoptosis,®" and macrophages from chimpan-
zees, sooty mangabeys and African green monkeys do not
upregulate TRAIL expression in response to Tat.®?

Vpu and apoptosis. Vpu is an HIV-encoded accessory
protein that downregulates the CD4 receptor, thereby
preventing superinfection of infected cells and allowing
efficient budding of newly produced virus. Vpu may also
play a significant role in CD4T-cell apoptosis in HIV infection.
In vitro overexpression of Vpu in Jurkat T cells increases
susceptibility to Fas-mediated apoptosis.®® This may be
because expression of Vpu in HIV-infected or -transfected
cells inhibits NF-xB-mediated expression of antiapoptotic
genes.’* Deletion of Vpu from an HIV NL4-3 proviral
construct significantly decreases CD4T-cell depletion in
ex vivo-infected human lymphoid tissue compared with



the wild-type parent virus.®® Interestingly, in the SHIV/
pig-tailed macaque model of HIV infection, Vpu proteins
from different HIV-1 subtypes are associated with different
rates of CD4T-cell loss over time, arguing for a pathogenic
effect in vivo.®®

Nef and apoptosis. Nef is a multifunctional HIV-encoded
protein expressed early in the life cycle of the virus,
responsible for downregulating CD4 receptor and MHC-I
expression as well as enhancing viral replication. Nef-
expressing T cells demonstrate upregulated Fas and
FasL,%” decreased Bcl-2 and Bcl-XL expression,®®
increased PD-1 expression,®® and undergo apoptosis by
both caspase-dependent or -independent mechanisms.
Endogenous Nef produced in infected cells can cause
lysosomal permeabilization, with release of cathepsin-D
into the cytosol and consequent outer mitochondrial
membrane rupture.”® Nef is also secreted from HIV-
infected cells via exosomes.”! Exogenous administration of
Nef to uninfected CD4T cells results in Fas-independent
apoptosis, possibly by associating directly with the T-cell
receptor, CXCR4 and SDF-14"2 to induce apoptosis through
unknown mechanisms.

However, not all in vitro effects of Nef are proapoptotic. Nef
can directly interact with and inhibit the proapoptotic serine/
threonine kinase ASK-172 as well as p53,”* and can lead to
inhibitory phosphorylation of the proapoptotic protein Bad by
p21-activated kinase.”® Nef also inhibits apoptosis in HIV-
infected monocyte-derived macrophages through phosphor-
ylation of Bad.”®

An overall in vivo proapoptotic effect of Nef, though, is
suggested by animal models of HIV. Treatment of mice with
Nef-derived peptides leads to increased CD4T-cell apoptosis
compared with untreated mice,”” and transgenic mice that
express human CD4 and HIV proteins develop an AIDS-like
illness that is dependent on Nef.”® SIV Nef, on the other hand,
increases Bcl-2 expression in transfected Jurkat cells
compared with non-transfected cells, and inhibits cell cycle
progression and Fas-mediated apoptosis.”® In non-patho-
genic SIV infection, Nef may function to downmodulate the
TCR to prevent activation-induced cell death.®°

Vpr and apoptosis. HIV Vpr is an accessory, virion-
associated protein with many functions, including induction
of G(2)/M cell cycle arrest upon infection of the cell. The
mechanisms of G(2) arrest by Vpr, induction of apoptosis and
contribution to the immunopathogenesis of HIV infection
have been reviewed extensively recently.®' Briefly, Vprs
in vitro pleiotropic effects on apoptosis are species, cell type,
and concentration dependent, and vary based on HIV
subtype and whether the TCR has been activated or not.%2
Vpr expressed in low levels early after infection is
antiapoptotic  via  suppression of NF-xB-dependent
proinflammatory cytokine production,®2 as well as
upregulation of Bcl-2 and downregulation of Bax.®®
However, later, after G(2) arrest, Vpr can induce apoptosis
by binding to either Bax or ANT and VDAC in the
mitochondrial membrane, causing release of cytochrome ¢
and activation of caspases 9 and 3.8* Vpr expression in
CDAT cells also results in increased expression of NKG2D
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ligands, rendering infected CDA4T cells susceptible to
NK-cell-mediated killing.8®

The contribution of Vpr to CD4T-cell loss in vivo was
supported early by the demonstration of extracellular Vpr in
serum from HIV-infected patients. Mice transgenic for the
HIV-1 Vpr gene show enhanced CD4T-cell apoptosis com-
pared with wild-type mice. Also, the R77Q polymorphism in
Vpr, which is associated with decreased apoptotic-inducing
ability in vitro, is overrepresented in LTNPs compared with
typical progressors.'' Ex vivo infection of human lymphoid
tissue with R5-tropic HIV with directed mutation at R77Q
exhibits decreased CD4T-cell apoptosis compared with wild-
type virus.®® The proapoptotic potential of HIV-1 Vpr is being
exploited in preclinical studies on various types of cancer.

HIV protease and apoptosis. In the life cycle of the virus,
the HIV protease cleaves the Gag/Pol polyprotein into
functional subunits for production, maturation and budding
of new virions. In vitro expression models demonstrate
that HIV protease also has the ability to cleave several
cellular targets to induce apoptosis, including Bcl-2.8” Our lab
has demonstrated that the HIV protease is also able to
cleave procaspase 8 to generate a proapoptotic cleavage
fragment 41kDa in size — Casp8p41 — both in vitro and
in vivo.®® Casp8p41 is able to induce apoptosis in infected
CD4T cells via a mitochondrial dependent pathway,®°
although the exact target on the mitochondria for its effect
has yet to be identified. T cells expressing a procaspase
8 engineered to be resistant to HIV protease cleavage are
resistant to apoptosis upon infection with HIV, suggesting
that this mechanism is necessary for apoptosis of
HIV-infected cells.®

Future Directions and Unanswered Questions

Many fundamental questions remain regarding apoptosis in
the immunopathogenesis of HIV infection. Does apoptosis
occur chiefly in infected cells or uninfected bystander cells in
clinical HIV infection? Answering this question is of paramount
importance if one is to either pharmacologically enhance or
inhibit apoptosis. Itis likely that apoptosis is occurring to some
degree in both cellular populations, and thus further research
is needed to find heretofore undiscovered regulators of
apoptosis that are altered in productively and latently HIV-
infected cells compared with uninfected cells that could serve
as novel targets for intervention. Of the many mechanisms of
HIV-induced apoptosis demonstrated in in vitro and in vivo
models, which ones actually exist and are clinically relevant in
human infection? If one attempts to inhibit one particular
apoptotic pathway in bystander cells, will that drive the
emergence of an alternative pathway to the same end? Are
there clinically relevant biomarkers of ongoing-apoptotic
activity, viral apoptosis-inducing ability, or host apoptosis
susceptibility, which can be used to predict disease progres-
sion, response to antiviral therapy, or development of antiviral
resistance? As effective preventive strategies, either with
vaccination or microbicide, are lacking, viral-specific targets
for development of new classes of antiviral therapy are
dwindling, and drug resistance is rising; there is urgent need to
address these fundamental issues in HIV pathogenesis.
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