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Abstract: The bacteria inhabiting the gastrointestinal tract contribute to numerous host functions and
can be altered by lifestyle factors. We aimed to determine whether a 6-week training intervention
altered fecal microbiome diversity and/or function in older males. Fecal samples were collected
prior to and following a 6-week twice-weekly supervised resistance training intervention in 14 older
Caucasian males (65 ± 10 years, 28.5 ± 3.2 kg/m2) with minimal prior training experience. Partici-
pants were randomized to receive a daily defatted peanut powder supplement providing 30 g protein
(n = 8) or no supplement (n = 6) during the intervention. Bacterial DNA was isolated from pre-and
post-training fecal samples, and taxa were identified using sequencing to amplify the variable region
4 (V4) of the 16S ribosomal RNA gene. Training significantly increased whole-body and lower-
body lean mass (determined by dual energy X-ray absorptiometry) as well as leg extensor strength
(p < 0.05) with no differences between intervention groups. Overall composition of the microbiome
and a priori selected taxa were not significantly altered with training. However, MetaCYC pathway
analysis indicated that metabolic capacity of the microbiome to produce mucin increased (p = 0.047);
the tight junction protein, zonulin, was measured in serum and non-significantly decreased after
training (p = 0.062). Our data suggest that resistance training may improve intestinal barrier integrity
in older Caucasian males; further investigation is warranted.

Keywords: resistance training; gut microbiome; aging; intestinal barrier integrity

1. Introduction

Several trillion bacteria inhabit the gastrointestinal tract. These bacteria are host to
millions of genes and gene functions and affect various biological processes, from caloric
absorption to immune function [1]. Diet and lifestyle are known factors that influence
host fitness and health [2], providing ample evidence that environment can profoundly
alter the composition of the gut microbiome [3]. Significant alterations in the human gut
microbiome can result in dysbiosis, defined as diminished diversity and abundance of
commensal bacteria along with increased bacteria of potential pathogenicity [4]. Dysbiosis
has detrimental effects on the host [5], including metabolic disturbances, gastrointestinal
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permeability, and systemic inflammation [6]. Certain Gram-negative bacteria can also
induce systemic inflammation via lipopolysaccharide (LPS) [7]. Zonulin functions to
disassemble tight junctions between intestinal epithelial cells, and therefore, is implicated
in intestinal permeability and increased exposure to the immune system [8].

Transformation of the gut microbiome has been observed throughout middle and older
age, most notably via a reduction in diversity and increased susceptibility to pathogenic
infections [9]. The age-related degeneration of muscle tissue (i.e., sarcopenia) is accompa-
nied by changes in microbiota, which has generated interest in the gut–muscle axis [10].
Further, the microbiome can be acutely and chronically altered via exercise [11]. Rodent
studies indicate that dysbiotic and germ-free mice have alterations in muscle fiber size,
physical performance, glucose metabolism, and neuromuscular communication [1,12,13].
Given that resistance training (RT) enhances several of these characteristics in older popu-
lations [14–17], it remains plausible that these adaptations are mitigated, in part, through
training-induced changes in the gut microbiome. However, to our knowledge, only two
human studies exist that examine longitudinal gut microbiome changes with RT [18,19]
and both were carried out in college-aged individuals.

The purpose of this study was to determine if six weeks of RT in older adult partic-
ipants: (i) altered microbiome composition, (ii) changed individual microbes associated
with gut health chosen a priori, and (iii) affected overall metabolic function of microbiota
and metabolism specific to energy harvest and gut health. Participants were randomized
to receive a daily defatted peanut powder supplement providing 30 g protein (n = 8) or no
supplement (n = 6) during the intervention. We hypothesized that six weeks of resistance
training would favorably alter the gut microbiome of older participants, regardless of
peanut protein supplement consumption. Additionally, we hypothesized that resistance
training would improve microbiome diversity and relative abundance of bacterial species
associated with metabolic outcomes. The primary aim of this secondary analysis was to
determine whether resistance training changed the fecal microbiome of participants. To
assess this aim, we analyzed overall composition with alpha diversity and beta diversity
and investigated specific taxa of interest. The secondary aim was to determine whether
resistance training changed functional capacity of the fecal microbiome of participants
related to gut health. We further examined serum biomarkers to determine whether any
changes are corroborated.

2. Materials and Methods
2.1. Ethics Approval

This study is a secondary analysis of 14 males that completed 6 weeks of resistance
training. The original study investigated the effects of peanut protein supplementation
with resistance training on skeletal muscle hypertrophy in older untrained individuals [20].
Approval was granted by the Auburn University Institutional Review Board (Protocol
# 19-249 MR 1907) prior to any data collection. Study protocol was pre-registered as a
clinical trial (NCT04015479) and conformed to standards set by the latest revision of the
Declaration of Helsinki.

2.2. Participants

Adults 50–80 years of age with minimal resistance training experience were recruited
for this study. Minimal RT was defined as not having performed structured RT for at least
three months prior. Participants were recruited via flier, email inquiry, and newspaper
advertisement and those expressing interest were informed of the study and testing proce-
dures either over the phone or face-to-face at the Auburn University School of Kinesiology.
Eligibility criteria were (i) aged 50–80 years old, (ii) not actively participating in structured
RT for at least 3 months prior, (iii) free of metal implants, and (iv) normal blood pressure
(BP) with or without medication (i.e., <140/90 mm Hg Systolic BP/Diastolic BP). Partic-
ipants were excluded if they met any of the following criteria: (i) known peanut allergy;
(ii) body mass index (BMI) ≥ 35 kg/m2; (iii) exposed to medically necessary radiation in
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the last 6 months; or (iv) a medical condition contradicting participation in a RT program,
giving blood, or donating a skeletal muscle biopsy (i.e., blood clotting disorders or taking
blood thinning medications). Individuals deemed eligible provided written and verbal
consent to participate and completed a medical history questionnaire at the time of consent.
Participants were then scheduled to complete study procedures as described below at the
Auburn University School of Kinesiology. Participants in this analysis were all males with
complete microbiome data that participated in the second cohort of the study in early 2020.

2.3. Study Design

Detailed methods have been described previously [20] and are briefly outlined below
and in Figure 1. Participants reported to the School of Kinesiology on 16 separate occasions.
Visit one (V1) included eligibility screening, obtainment of consent, and completion of a
health history questionnaire. Following attainment of consent documents, participants
were sent home with stool collection kits and food logs. Participants were instructed to
record all food consumed over two weekdays and one weekend day surrounding the stool
sample collection. Stool samples were collected within 24 h of V2 and V16. Participants
were instructed to return the stool sample and food log prior to the first training day. At
the conclusion of V1, participants were randomized to the peanut protein supplement
group or no supplement control group. Visit two (V2; PRE) included a testing battery
involving urine specific gravity (USG) testing, height and weight assessments, assessment
of the right leg vastus lateralis (VL) muscle thickness using ultrasound, a full body dual-
energy X-ray absorptiometry (DXA) scan, a peripheral quantitative computed tomography
(pQCT) scan at the mid-thigh, and strength assessment using an isokinetic dynamometer.
Isokinetic dynamometer and pQCT procedures were performed on the right leg. V3
occurred within 3 days of V2 and included the first muscle tissue sample collection, blood
collection, and resistance exercise bout. The second muscle biopsy was performed at visit
4 (V4). Participants came to Auburn University School of Kinesiology for visits five (V5)
through fifteen (V15), where they completed supervised workouts. At V15, participants
were provided a second stool collection kit and food log form. Roughly 72 h after V15,
visit sixteen (V16; POST) occurred included repeated measures of V2 testing battery, with a
second blood draw and third muscle biopsy. Specific testing methodologies are detailed
below.
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2.4. Pre- and Post-Intervention Testing Battery

Testing sessions occurred during morning hours (05:00–09:00) following an overnight
fast. The exceptions included one participant at V2 and another at V16 who reported to the
laboratory after working hours at 17:00–18:30 following a ~4–5 h fast.

2.5. Body Composition Assessments

At V2 and V16, participants wore casual sports attire (i.e., athletic shirt and shorts,
tennis shoes) and reported to the Auburn University School of Kinesiology. Participants
provided a urine sample (~5 mL) to assess USG levels with a handheld refractometer
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(ATAGO; Bellevue, WA, USA). Notably, all participants were considered well hydrated,
indicated by USG values less than 1.020. Height and weight were assessed using a digital
column scale (Seca 769; Hanover, MD, USA) with height and weight collected to the nearest
0.5 cm and 0.1 kg, respectively. Participants then underwent a full body DXA scan (Lunar
Prodigy; GE Corporation, Fairfield, CT, USA) for determination of fat mass (FM) and
total and appendicular lean mass (LM). On the morning of data collection days, quality
assurance testing and calibration were performed to ensure proper operating procedures to
manufacturer specifications. The same technician analyzed scans using the manufacturer’s
standardized software. Test–retest reliability using ICC3,1, SEM, and MD were previously
determined for LM (0.99, 0.36, and 0.99 kg, respectively) and fat mass (0.99. 0.43, and
1.19 kg). After the DXA scan, a pQCT scanner was utilized to obtain a cross-sectional
image of the right thigh at 50% of the femur length (Stratec XCT 3000, Stratec Medical,
Pforzheim, Germany). Scans were acquired using a single 2.4 mm slice thickness, a voxel
size of 0.4 mm, and scanning speed of 20 mm/sec. Images were analyzed for total muscle
density (mg/cm3) and cross-sectional area (mCSA, cm2) using the pQCT BoneJ plugin,
freely available through ImageJ analysis software (NIH, Bethesda, MD, standard). All
scans were performed and analyzed by the one investigator (K.C.Y.). Test–retest reliability
using ICC3,1, SEM, and MD was previously determined for mCSA (0.99, 0.84, and 2.32 cm2,
respectively).

2.6. Right Leg Isokinetic Strength Assessment

Maximal isokinetic right leg extensions were performed on an isokinetic dynamometer
(System 4 Pro, BioDex Medical Systems, Shirley, NY, USA). Participants were fastened
to the dynamometer and the right knee was aligned with the axis of the dynamometer.
Adjustment of seat height ensured the hip angle was approximately 90◦. Prior to peak
torque assessment, warmups consisting of submaximal to maximal isokinetic knee exten-
sions were performed. Participants then completed five maximal voluntary isokinetic knee
extension actions at 60◦/s and 120◦/s, with sets separated by 60 s of rest. Study personnel
provided verbal encouragement for participants during each set. The greatest peak torque
value from the isokinetic extension was used for analysis.

2.7. Resistance Training

Supervised RT sessions were completed twice weekly for six weeks, and all training
sessions were separated by a minimum of 48 h to allow for recovery. Each training session
consisted of five exercises, including seated leg press, leg extensions, lying leg curls, barbell
bench press, and cable pull-downs. Participants performed three sets of 10–12 repetitions
with one minute of rest between sets for each exercise. At the conclusion of each set,
participants rated the level of difficulty where 0 = easy, 5 = moderate difficulty, and
10 = hard [21]. This training method was purposeful in challenging the participants and
ensuring perceived exertion was between 7–9 rating. Values below 7 resulted in modest
weight increase to increase exertion on the next set. Values at 10 (or failure to complete
the set) resulted in removal of weight prior to next set. Participants received verbal
encouragement and support from study personnel throughout training session. Study
personnel supervised all training sessions through duration of the study.

2.8. Food Log Analysis

Participants self-reported food intake for three days (two weekdays and one weekend
day) and returned the food logs at V3 and V16. Participants were encouraged to continue
their current dietary practices for the duration of the study. Study personnel entered the
data from the food logs into the Automated Self-Administered 24-Hour Dietary Assessment
tool (ASA24), which utilizes the United States Department of Agriculture Food and Nutrient
Database for Dietary Studies to provide information for 195 nutrients, nutrient ratios, and
other food components.
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2.9. Fecal Microbiome Analysis

Stool samples were collected with a commode specimen collector and sterile collection
tubes. Samples were sealed and placed in participants’ freezer immediately for preservation.
Upon receipt of the frozen sample, stool was stored at −80 ◦C until processing. Fecal mi-
crobial DNA was isolated using Zymo Research kits (Irvine, CA, USA, Cat. #D6010). DNA
samples were prepared, and polymerase chain reaction (PCR) amplified variable region 4
(V4) of the 16S rRNA gene. The 250 bp PCR amplicon library from barcoded individual
paired samples (primers described here: [22,23]) were sequenced on an Illumina Miseq (San
Diego, CA, USA) [23,24]. Reads per sample ranged from 16,076 to 109,833, with a mean
of 61,774 reads per sample. The QIIME 2 pipeline was used for all further processing and
DADA2 [25] was employed to generate amplicon sequence variants (ASVs) to the species
level, as described below [23,26–30]. Raw data files underwent FASTQ conversion using
a MiSeq reporter; [23]. UCLUST clustered sequences into ASVs (previously operational
taxonomic units [OTUs]) with a similarity threshold at 97%. Taxonomic assignments were
issued using the Mothur classifier; SILVA database (v 138.1) [31] ASVs with an average
abundance <0.005% were not included in the final table and remaining ASVs were grouped
to summarize varying hierarchical levels.

Microbiome alpha diversity was measured using Observed Species, Whole Tree Phy-
logeny, Shannon Index, and Simpson Index. Beta diversity was measured using Bray
Curtis, Unweighted Unifrac, and Weighted Unifrac metrics to determine overall compo-
sitional change in the entire sample from baseline to follow-up. Kruskal–Wallis one-way
analysis of variance (ANOVA) tests were performed to compare PRE and POST values of
all ASVs. False discovery rate (FDR) correction was employed to minimize error due to
multiple comparisons. Species chosen a priori included the following, which are listed
by function in Table 1. These species were chosen because of their previous association
with metabolic pathways and function. Relative abundance values were non-normally dis-
tributed, log-transformed, and PRE to POST changes were assessed using paired samples
t-tests.

Functional genes were predicted based on a MetaCYC database of metabolic path-
ways [32] by PICRUSt2 (phylogenetic investigation of communities by reconstruction of
unobserved state 2) [33] based on 16S rRNA sequencing data [34]. Longitudinal change in
functional gene analysis was compared by Welch’s t-test with Bonferroni correction using
the software STAMP 2.1.3 [35]. A priori selected MetaCYC pathways associated with SCFA
production (L-glutamate degradation V [via hydroxyglutarate]; L-lysine fermentation to acetate
and butanoate; Bifidobacterium shunt; hexitol fermentation to lactate, formate, ethanol, and acetate;
pyruvate fermentation to acetate and lactate II; acetylene degradation; 4-aminobutanoate degrada-
tion V; acetyl-CoA fermentation to butanoate II; pyruvate fermentation to butanoate; succinate
fermentation to butanoate; pyruvate fermentation to propanoate I), mucin production (GDP-
mannose biosynthesis), and mucin degradation (D-galactarate degradation I; superpathway of
hexuronide and hexuronate degradation; D-galacturonate degradation I; D-glucarate degradation I;
superpathway of D-glucarate and D-galactarate degradation; lactose and galactose degradation I;
galactose degradation I [Leloir pathway]) were analyzed using paired sample t-tests.

2.10. Serum Assays

Trained phlebotomists obtained blood in a 5 mL serum separator tube (BD Vacutainer,
Franklin Lakes, NJ, USA). Approximately 30 min following collection, tubes were cen-
trifuged at 3500× g for 5 min. Aliquots were then placed in 1.7 mL polypropylene tubes and
stored at −80 ◦C until batch processing. Serum zonulin was analyzed using a commercially
available antibody-based colorimetric kit (Abcam, Cambridge, MA, USA; cat #: ab219048).
Serum LPS was also analyzed using a commercially available antibody-based colorimetric
kit (Mybiosource, San Diego, CA, USA; cat #: MBS9716036). Coefficient of variation values
for all duplicates were 4.2% for zonulin and 18.0% for LPS.
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2.11. Statistical Analysis

In addition to bioinformatics approaches related to microbiome metadata mentioned
above, key dependent variables included PRE and POST values of bacterial genera pre-
sented in Table 1. Secondary dependent variables included PRE and POST values for DXA
LSTM, pQCT-determined mid-thigh muscle thickness, knee extensor peak torque, and
self-reported dietary macronutrient intakes. All statistical analyses were performed using
SPSS v26.0 (IBM Corp, Armonk, NY, USA, default). For all normally distributed dependent
variables over time, independent samples t-tests were performed. Wilcoxin sign-rank tests
were performed on the non-normally distributed biomarker data. Statistical significance
was established as p < 0.05, and relevant p-values are depicted in-text or within figures.

3. Results
3.1. Participant Characteristics and General Training Adaptations

Participants included in the present study (n = 14) were Caucasian and, on average,
65 ± 9 years old (age range 51–78 years old) with a BMI of 28.1 ± 3.1 kg/m [2]. Participants
were removed from the study if they missed more than one training session, so all attended
11 or 12 sessions and there were no drop-outs in this 6-week cohort.

Figure 2 presents training adaptations in participants. Total training volume through-
out the 6-week study was 99,439 ± 30,926 kg. Briefly, dual X-ray absorptiometry (DXA)
whole and lower body lean mass (LM) and leg extensor peak torque significantly increased
(p < 0.05), and mid-thigh mCSA determined by pQCT showed no change (p = 0.002). Two-
way ANOVAs indicated changes in these variables with training did not differ between
participants in the peanut supplement group (n = 8) and non-supplement group (n = 6)
(interaction p-values were >0.05 for all variables).
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3.2. Dietary Recall Data

Figure 3 presents 3-day food recall data prior to study initiation (PRE) and during the
last week of training (POST). In short, self-reported protein and fiber intake significantly
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increased (p < 0.05), while carbohydrate, fat, and caloric intake showed no significant
changes. Two-way ANOVAs indicated changes in protein and fiber intakes increased
significantly, but there were no differences between groups (interaction p-values were >0.05
for all diet variables).

Sports 2022, 10, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 3. Self-reported food log data. PRE and POST values for total calories and grams of macro-
nutrients (n = 11; three participants did not provide reliable food logs). 

3.3. Changes in Microbiome Diversity with Resistance Training 
Microbiome quality control (Phred score and rarefaction curve) as well as beta diver-

sity plots are presented in Supplementary Figures S1–S3. Bray Curtis, Weighted and Un-
weighted Unifrac analyses indicated beta diversity did not differ from PRE to POST (p > 
0.500 for all). Kruskal–Wallis ANOVA indicated no taxa changed from PRE to POST after 
FDR correction. Alpha diversity metrics did not change from PRE to POST, and are pre-
sented in Figure 4. Additionally, independent samples t-tests indicated change scores did 
not differ between participants in the peanut supplement group (n = 8) and non-supple-
ment group (n = 6) (p-values were >0.10 for all variables). 

Figure 3. Self-reported food log data. PRE and POST values for total calories and grams of macronu-
trients (n = 11; three participants did not provide reliable food logs).

3.3. Changes in Microbiome Diversity with Resistance Training

Microbiome quality control (Phred score and rarefaction curve) as well as beta di-
versity plots are presented in Supplementary Figures S1–S3. Bray Curtis, Weighted and
Unweighted Unifrac analyses indicated beta diversity did not differ from PRE to POST
(p > 0.500 for all). Kruskal–Wallis ANOVA indicated no taxa changed from PRE to POST
after FDR correction. Alpha diversity metrics did not change from PRE to POST, and
are presented in Figure 4. Additionally, independent samples t-tests indicated change
scores did not differ between participants in the peanut supplement group (n = 8) and
non-supplement group (n = 6) (p-values were >0.10 for all variables).

3.4. Microbial Taxa of Interest

Of the fifteen a priori selected taxa in Table 1, ten had an abundance that could be
detected and filtered. Median and interquartile ranges for these taxa are displayed in
Table 1. Independent samples t-tests indicated log-transformed change scores in these
variables did not differ between participants in the peanut supplement group (n = 8) and
non-supplement group (n = 6) (p-values were >0.10 for all variables).
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Table 1. Bacterial species associated with metabolic outcomes and their relative abundance before
and after six weeks of resistance training.

Taxa Interaction Source Relative Abundance 1 or Count 2 p

Bacillus subtilis
Increases gut integrity, heat stress
resistance, dopamine production,

and strength
[36,37] PRE

POST
n = 0
n = 0

Lactobacillus rhamnoses Increases strength, reduces reactive
oxygen species [37–39] PRE

POST
n = 0
n = 0

Lactobacillus reuteri Increases strength [37,38,40,41] PRE
POST

n = 1
n = 1

Escherichia coli Decreases gut integrity [42] PRE
POST

0.000283 (0, 0.00186)
0 (0, 0.003265) 0.889

Clostridium scindens Increases gut integrity, protects
against C. difficile [43,44] PRE

POST
0 (0, 0.000592)
0 (0, 0.001626) 0.398

Lactobacillus plantarum Increases strength [45] PRE
POST

n = 0
n = 0

Streptococcus thermophilus Increases gut integrity, neurological
protection [46]

PRE

POST

0.003458
(0.001321, 0.027733)

0.003960
(0.001469, 0.007512)

0.975

Bifidobacterium breve Increases gut integrity [47,48] PRE
POST

n = 0
n = 0

Bifidobacterium longum
Promotes vitamin formation and

uptake, SCFA upregulation,
neurological repair

[37,47,49,50] PRE
POST

0.001971 (0, 0.009559)
0.001139 (0, 0.008170) 0.889

Bifidobacterium bifidum Vitamin formation and uptake [47] PRE
POST

n = 2
n = 2

Lactobacillus acidophilus Increases gut integrity [51] PRE
POST

n = 0
n = 0

Bifidobacterium animalis Enhances insulin sensitivity via
GLP-2 activity [47] PRE

POST
n = 1
n = 0

Clostridium symbiosum SCFA production, neurological
protection, reduces inflammation [49] PRE

POST
0 (0, 0.000131)
0 (0, 0.000140) 0.173

Faecalibacterium
prausnitzii

SCFA production, neurological
protection, reduces inflammation [49] PRE

POST
0 (0, 0)

0 (0, 0.000086) 0.715

Lactobacillus fermentum SCFA production, neurological
protection, reduces inflammation [49] PRE

POST
n = 1
n = 1

1 Median, (25th percentile, 75th percentile). 2 Number of samples in which relative abundance was greater than
zero. Abbreviation: SCFA, short-chain fatty acid.
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3.5. MetaCYC Pathway Changes

Three MetaCYC pathways changed from PRE to POST (Figure 5). EC:3.5.1.90 increased
and is associated with Vitamin B12 metabolism; EC:1.1.1.136 and EC:5.1.3.23 decreased
and are associated with LPS production [52,53]. Scores for a priori chosen pathways are
displayed in Table 2. While short-chain fatty acid and mucin degradation did not change
with training, mucin biosynthesis increased with training (p = 0.047). Independent samples
t-tests indicated change scores in these variables did not differ between participants in the
peanut supplement group (n = 8) and non-supplement group (n = 6) (p-values were >0.10
for all variables).
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Figure 5. MetaCyC pathways that significantly changed from PRE to POST intervention. EC:3.5.1.90,
cobinamide amidohydrolase; EC:1.1.1.136, UDP-N-acetylglucosamine 6-dehydrogenase; EC:5.1.3.23,
UDP-2,3-diacetamido-2,3-dideoxyglucuronic acid 2-epimerase.

Table 2. Changes in separately interrogated MetaCyC pathways.

Pathway Pathway Score Significance

SCFA production PRE
POST

9309 ± 3523
10,567 ± 4126 p = 0.254

Mucin biosynthesis PRE
POST

24,676 ± 11,287
31,424 ± 15,240 p = 0.047

Mucin degradation PRE
POST

15,354 ± 4873
18,665 ± 6987 p = 0.082

Mean and standard deviation of PRE and POST MetaCyC pathways (n = 14). Abbreviation: SCFA, short-chain
fatty acid. Bolded p-values are considered statistically significant (p < 0.05).

3.6. Serum Zonulin and Lipopolysaccharide Changes

We opted to assay select serum markers of gut integrity (zonulin and LPS) since mucus
is vital for intestinal barrier integrity and MetaCyC pathway analysis indicated mucin
biosynthesis increased with RT. Zonulin levels non-significantly decreased with training
(p = 0.062, Figure 6), and LPS levels did not change with training (p = 0.937, Figure 6).
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4. Discussion

To our knowledge, this is the third study to examine how resistance training affects
the fecal microbiome and is the first study of its kind completed in an older population.
The 6-week training program increased whole- and lower body LSTM and knee extensor
strength and was, therefore, considered effective. Although most taxa and diversity metrics
remained unaffected with training, MetaCYC pathway analysis indicated mucin biosyn-
thesis capacity increased. This finding was strengthened with follow-up analysis showing
that serum zonulin was slightly downregulated. Hence, while RT-induced changes in the
composition of the gut microbiome were minimal, the changes that did occur provide
evidence that gut epithelial cell barrier function may have been improved. These findings
are discussed in greater detail below.

Several human studies have examined the effects of endurance training on the gut
microbiome. Allen et al. [54] conducted a six-week endurance training intervention in
18 obese and 14 lean individuals. The authors found that the microbiome composition
(as measured by beta diversity) was different between lean and obese individuals at the
beginning of the study, and those differences were reduced following exercise intervention,
although changes were dependent on BMI status. Specifically, the obese group had signifi-
cant increases in Bacteroides spp. and Faecalibacterium spp. Given that our participants were
overweight on average (28.1 ± 3.1 kg/m2), results from Allen et al. could help explain the
minimal observed microbiome changes in our cohort. Alternatively, Munukka et al. [55]
observed modest changes in overall community composition following a six-week en-
durance training intervention in 18 overweight women. Our results align more with those
of Munukka et al., wherein we also found minimal changes in gut microbiome composition.
However, our training involved resistance exercises rather than endurance exercises, as
seen in Allen et al. and Munukka et al.

Cronin et al. [19] performed an eight-week combined aerobic and resistance training
intervention study where 90 participants were randomized to one of three groups: exercise-
only, exercise with a whey protein dietary supplement, and whey protein supplementation
only. Again, the authors reported no significant changes in taxonomic composition or
metabolic pathways following the intervention. Byruca et al. [18] examined how either
endurance training or RT for 8 weeks affected the gut microbiome in healthy, younger
adults. Interestingly, endurance exercise elicited more robust changes in the microbiome
relative to RT, indicating that RT either does not affect the microbiome or does so in a more
subtle manner. Our data largely agree with the data by Cronin and colleagues, as well as
the data by Byruca and colleagues, in that neither microbiome diversity nor individual
bacteria interrogated were altered with RT. The reason RT does not impact the microbiome
compared to endurance training is currently unknown. However, this may be due to the
stress imposed on the gastrointestinal system with endurance versus resistance training. It
has been reported that 30–50% of endurance athletes complain of gastrointestinal stress
during exercise, and sources of such stress can be related to mechanical perturbations,
increases in core temperature, and reductions in visceral blood flow [56]. Moreover, it has
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been estimated that an exercise bout lasting greater than 2 h at 60% VO2max appears to
be the threshold whereby significant gastrointestinal perturbations manifest, irrespective
of fitness status [57]. Hence, we posit that resistance exercise bouts likely do not meet a
gut-stress threshold, and that this is likely why resistance training does not robustly affect
the gut microbiome.

Quiroga and colleagues conducted a 12-week combined strength and endurance train-
ing program in obese children (7–12 years old) and investigated the changes in gut microbial
composition and metabolic function [58]. A group of healthy weight children were also
included in the study but did not participate in the training regimen. Results suggested
an improvement in gut microbiome function via modified systemic metabolites related to
body composition following 12-week training program. Primarily, there was decreased
abundance of classes of bacteria (i.e., Clostridia, Flavobacteria, and Actinobacteria) follow-
ing the exercise intervention. Furthermore, the exercise program resulted in an increase in
genera Blautia, Dialister, and Roseburia, displaying a gut microbial profile more similarly
resembling the healthy control group. Additionally, abundance of Roseburia was associated
with systemic acetate levels, which is the major SCFA generated with gut fermentation [59].
These results differ from our current study in that the strength and endurance training
intervention positively altered the gut microbiome via decreased detrimental bacteria.
However, our research was conducted in older adults, not in young prepubescent children.
Research suggests gut microbiomes of older individuals may be less malleable [60,61].
Our training program did not include endurance exercise, which could contribute to the
differences in results, as previously discussed.

While the aforementioned studies were the first to interrogate how resistance exercise
alters the gut microbiome, the current data add unique insight, given that: (a) this is the
first study performed in an older population and (b) Byruca and colleagues only presented
markers of microbiome diversity, whereas we added additional insight with MetaCYC
pathway analysis. With regard to the latter, decreases in two LPS biosynthetic pathways
were observed and bacteria with genes involved in mucin biosynthesis were increased
during the intervention. Given this finding, it was important to determine whether markers
of intestinal barrier integrity were altered with training. Interestingly, while serum LPS
levels were not significantly altered, we observed a trend in decreased serum zonulin
levels following the RT regimen. Zonulin is a protein that is critical for the formation of
tight junctions between intestinal epithelial cells. It is generally thought that higher serum
zonulin levels indicate potential “gut leakiness” due to increased intestinal permeability [8].
Hence, these findings provide evidence that resistance training could improve intestinal
barrier integrity because of the modest but seemingly meaningful alterations in gut bacteria
responsible for mucin production. While exciting, this hypothesis needs to be further
validated through additional experimentation. In particular, time-course studies where
multiple blood draws and fecal samples are collected and more extensively analyzed for
intestinal integrity biomarkers will provide critical insight.

We also observed a significant increase in protein and fiber intake among participants,
which alone could have contributed to changes in the gut microbiome composition and
function. Protein increased from roughly 1 to 1.3 g/kg and fiber increased from 44% to 63%
of the US Institute of Medicine recommended 38 g/day [62]. A recent study in younger
adult male cyclists observed increases in Bacteroides but no change in Faecalibacterium over
ten weeks when protein intake increased from 1.9 to 2.2 g/kg with protein supplementa-
tion [63]. Combining these findings with those observed in the Allen et al. study discussed
above, both higher protein intake and resistance training could have contributed to the
functional changes in the microbiome observed in our study.

Experimental Considerations

This study has various limitations. Firstly, only older Caucasian males were studied.
Thus, we are uncertain as to whether these findings extrapolate to older females or persons
of other ethnicities. Secondly, we acknowledge that our sample size (n = 14) was small,
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however this was strengthened by the longitudinal nature of the study, which can inform
studies designed to determine the effects of resistance training on the microbiome. Addi-
tionally, while the training program was effective in increasing whole-body LM and lower
body strength, the intervention was relatively short. Hence, it is unknown if long-term
resistance training (e.g., years or decades) would elicit more notable shifts in the gut mi-
crobiome. Fecal samples were collected at various times throughout the day, so it is also
possible that timing of collection may have contributed to false positives or negatives in our
analyses. Our data were also limited by the use of 16S methods and the number of bacterial
species identified (~160). In this regard, there are over 1000 bacterial species in the gut
microbiome [64], and replicating our approach with advanced sequencing and informatic
techniques (e.g., metagenomics) is warranted. Finally, analyzing the gut microbiome via
stool sampling may not adequately represent bacterial colonization of the large intestine,
and this too must be considered when interpreting these data. Nonetheless, our data
suggest that resistance training may improve intestinal barrier integrity in older Caucasian
males. Further investigation is warranted.
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10.3390/sports10050065/s1, Figure S1: Phred scores of study samples (n = 28) indicating >99.9%
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Principal Coordinate Analysis (PCoA) plots of Beta Diversity (Bray Curtis), p = 0.819.
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