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Abstract Sexually dimorphic behaviors are a feature common to species across the animal

kingdom, however how such behaviors are generated from mostly sex-shared nervous systems is

not well understood. Building on our previous work which described the sexually dimorphic

expression of a neuroendocrine ligand, DAF-7, and its role in behavioral decision-making in C.

elegans (Hilbert and Kim, 2017), we show here that sex-specific expression of daf-7 is regulated by

another neuroendocrine ligand, Pigment Dispersing Factor (PDF-1), which has previously been

implicated in regulating male-specific behavior (Barrios et al., 2012). Our analysis revealed that

PDF-1 signaling acts sex- and cell-specifically in the ASJ neurons to regulate the expression of daf-

7, and we show that differences in PDFR-1 receptor activity account for the sex-specific effects of

this pathway. Our data suggest that modulation of the sex-shared nervous system by a cascade of

neuroendocrine signals can shape sexually dimorphic behaviors.

DOI: https://doi.org/10.7554/eLife.36547.001

Introduction
Behavioral differences between the sexes of animal species can make major contributions to the

reproductive fitness of the organism. While sex-specific behaviors can be readily observed, the

mechanistic basis of such behavioral differences is less well understood. Morphological differences,

including the existence of sex-specific neurons, have been documented in the nervous systems of

many species, but differences in sex-shared neurons have also been implicated in generating sex-

specific behaviors. In particular, how sex-specific behavioral circuits are generated within the features

of the nervous system common to both sexes has been the focus of recent studies in diverse organ-

isms. Studies of the mouse vomeronasal organ (VNO) has suggested that the functional circuits for

both male- and female-specific behaviors such as courtship and aggression are intact in the brains of

both sexes and are modulated by VNO activity in response to pheromone cues (Kimchi et al., 2007;

Stowers et al., 2002). In a similar vein, the Drosophila male pheromone 11-cis Vaccenyl acetate

(cVa) has been shown to be sensed by the same neurons in the two sexes but stimulates distinct sex-

specific behavioral responses (Datta et al., 2008; Kohl et al., 2013; Kurtovic et al., 2007;

Ruta et al., 2010). These examples and others have provided some insight into the sexual dimor-

phisms present in the nervous system and their contributions to behavior, although many open ques-

tions remain (Dulac and Kimchi, 2007; Stowers and Logan, 2010; Yang and Shah, 2014).

In the nematode Caenorhabditis elegans, behavioral differences between the two sexes—her-

maphrodites and males—range from behaviors exclusively performed by one sex, such as egg laying

by hermaphrodites and the mating program of males (Liu and Sternberg, 1995), to those in which

the two sexes differ in their responses to the same stimuli, including differing responses to phero-

mone (Fagan et al., 2018; Jang et al., 2012; Srinivasan et al., 2008), food-related cues

(Ryan et al., 2014), and conditioning to aversive stimuli (Sakai et al., 2013; Sammut et al., 2015).
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While sex-specific neurons regulate corresponding behaviors in C. elegans, the 294 neurons that are

common to the nervous systems of both hermaphrodites and males have emerged as major contrib-

utors to a number of different sexually dimorphic behaviors (Barr et al., 2018; Barrios et al., 2012,

2008; Fagan et al., 2018; Lee and Portman, 2007; Mowrey et al., 2014; Sakai et al., 2013). In

particular, recent work has uncovered sexually dimorphic differences in axonic and dendritic mor-

phology and synaptic connectivity within the sex shared nervous system, which can modulate neuro-

nal circuits and behavior (Hart and Hobert, 2018; Oren-Suissa et al., 2016; Serrano-Saiz et al.,

2017a; Weinberg et al., 2018). In addition, studies of sexually dimorphic gene expression

(Hilbert and Kim, 2017; Ryan et al., 2014; Serrano-Saiz et al., 2017a) and neurotransmitter iden-

tity (Gendrel et al., 2016; Pereira et al., 2015; Serrano-Saiz et al., 2017a, 2017b) have suggested

that sexual differentiation of neurons within the sex-shared nervous system of C. elegans is critical

for the establishment of sexually dimorphic behaviors.

We have previously demonstrated that daf-7, which encodes a TGFb family neuroendocrine

ligand that regulates diverse aspects of C. elegans behavior and physiology (Chang et al., 2006;

Fletcher and Kim, 2017; Gallagher et al., 2013; Greer et al., 2008; Milward et al., 2011;

Ren et al., 1996; Shaw et al., 2007; White and Jorgensen, 2012; You et al., 2008), is expressed in

a sex-specific and context-dependent manner in the sex-shared ASJ chemosensory neurons and

functions to promote exploratory behaviors (Hilbert and Kim, 2017; Meisel et al., 2014). Regula-

tion of daf-7 expression in the ASJ neurons requires the integration of sensory and internal state

information including the sex and age of the animal, its nutritional state, and the type of bacterial

species it encounters in its environment (Hilbert and Kim, 2017). These stimuli feed into the regula-

tion of daf-7 expression in the two ASJ neurons in a hierarchical manner, which enables the animal

to make behavioral decisions taking into account past experiences as well as its current

environment.

Here, we report the identification of a second neuroendocrine signaling pathway, the Pigment

Dispersing Factor (PDF-1) pathway, which functions to regulate the expression of daf-7 and its

effects on behavior in a sex-specific manner. We show that PDF-1 pathway signaling, which has pre-

viously been shown to be essential for male mate-searching behavior (Barrios et al., 2012), functions

sex-specifically in the ASJ neurons themselves to regulate daf-7 expression. Further, we demonstrate

that the sex-specificity of PDF-1 regulation of daf-7 derives from differences in the activation of PDF-

1 signaling downstream of the PDF-1 receptor gene, pdfr-1, in the ASJ neurons. Our data suggest

that the gating of neuronal responses to neuropeptide modulators through sex-specific restriction of

receptor activity is a mechanism by which sex-specific behaviors can be generated from the largely

sex-shared nervous system of C. elegans.

Results and discussion

PDF-1 neuropeptide signaling regulates the sex-specific expression of
daf-7 in the ASJ chemosensory neurons
To explore the molecular and genetic mechanisms that underlie the sex-specificity of daf-7 expres-

sion, we identified a number of candidate genes that had previously been shown to be involved in

the regulation of mate-searching behavior or other aspects of male physiology and tested mutants

of these genes for effects on daf-7 expression in the male ASJ neurons. Through this approach, we

identified the PDF-1 neuropeptide signaling pathway as a regulator of daf-7 expression in the ASJ

neurons (Figure 1). The PDF neuropeptide signaling pathway is conserved among insects, crusta-

ceans and nematodes. In Drosophila melanogaster, PDF signaling has been well studied for its criti-

cal role in the regulation of circadian rhythmicity (Helfrich-Förster, 1995; Park and Hall, 1998;

Park et al., 2000; Renn et al., 1999), but it has also been shown to modulate geotaxis

(Mertens et al., 2005), pheromone production and mating behaviors (Fujii and Amrein, 2010;

Kim et al., 2013; Krupp et al., 2013). In C. elegans, PDF-1 signaling has been established as an

important regulator of locomotion, roaming behaviors, quiescence, and notably, male mate-search-

ing behavior (Figure 1A; Barrios et al., 2012; Choi et al., 2013; Flavell et al., 2013; Janssen et al.,

2008, 2009; Meelkop et al., 2012).

We observed that males with mutation of either the PDF-1 neuropeptide ligand or its receptor,

PDFR-1, have markedly attenuated expression of daf-7 in the ASJ neuron pair (Figure 1B). The ASI
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Figure 1. The PDF-1 pathway is required for the male-specific expression of daf-7 in the ASJ neurons and its effects on male mate-searching behavior.

(A) PDF-1 signaling activates cAMP production and regulates both roaming behavior and male mate-searching behavior in C. elegans. (B–C) Maximum

fluorescence values of pdaf-7::gfp in the ASJ (B) and ASI (C) neurons of adult male animals. ***p<0.001 as determined by ordinary one-way ANOVA

followed by Dunnett’s multiple comparisons test. Error bars represent standard deviation (SD). ns, not significant. n = 15 animals for all genotypes. (D)

Probability of leaving values for epistasis experiment between daf-7(ok3125) and a PDF-1 overexpressing line. Values plotted are the mean +SEM for

three independent experiments. Significance determined by unpaired t-test with Welch’s correction. ns, not significant. n = 60 total animals for all

genotypes except the daf-7(ok3125); qdEx149 strain where n = 48. (E) Maximum fluorescence values of pdaf-7::gfp in the ASJ neurons of

hermaphrodites after 16 hr on P. aeruginosa. Significance determined by ordinary one-way ANOVA followed by Dunnett’s multiple comparisons test.

Error bars represent SD. ns, not significant. n = 15 animals for all genotypes. (F) Lawn occupancy of animals on P. aeruginosa after 16 hr. ***p<0.001 as

determined by ordinary one-way ANOVA followed by Dunnett’s multiple comparisons test. Values plotted indicate the mean + SD for three replicates.

Number of animals assayed are as follows: WT (n = 89), daf-7 (n = 66), pdf-1 (n = 117), pdfr-1 (n = 105).

DOI: https://doi.org/10.7554/eLife.36547.002

The following figure supplements are available for figure 1:

Figure supplement 1. The PDF-1 pathway regulates mate-searching behavior via male-specific modulation of daf-7 expression in ASJ and through

parallel mechanisms.

DOI: https://doi.org/10.7554/eLife.36547.003

Figure supplement 2. PDF-1 pathway mutant males can upregulate daf-7 expression in ASJ in response to P. aeruginosa exposure and show intact

pathogen avoidance behavior.

DOI: https://doi.org/10.7554/eLife.36547.004
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chemosensory neurons are established sites of daf-7 expression in both male and hermaphrodite ani-

mals (Ren et al., 1996; Schackwitz et al., 1996), so we asked if the PDF-1 signaling pathway also

regulates daf-7 expression in these neurons. In the PDF-1 pathway mutant males, we observe no dif-

ference in daf-7 levels in the ASI neurons when compared to WT (Figure 1C), suggesting that the

PDF-1 pathway specifically affects the regulation of daf-7 in the ASJ neuron pair.

Expression of daf-7 in the ASJ neuron pair of males is required for the male-specific mate-search-

ing behavioral program (Hilbert and Kim, 2017), while the PDF-1 pathway has similarly been impli-

cated as a regulator of this same behavior (Barrios et al., 2012). Given the role that this PDF-1

pathway plays in regulating the expression of daf-7, we set out to determine if the effects of the

PDF-1 pathway on mate-searching behavior are the result of PDF-1 and DAF-7 functioning through a

single pathway or through separate parallel pathways. Overexpression of the pdf-1 genomic

sequence confers increased mate-searching behavior in male animals (Figure 1D; Barrios et al.,

2012). We introduced a daf-7 mutation into these transgenic PDF-1 overexpressing lines and

observed that the effect of PDF-1 overexpression on mate-searching behavior was suppressed by

loss of daf-7 function (Figure 1D and Figure 1—figure supplement 1A). However, we observed

that overexpression of daf-7 in the ASJ neurons of pdf-1(tm1996) mutant males could not rescue the

mate-searching defects of these animals (Figure 1—figure supplement 1B). Taken together, the

results of this epistasis analysis suggest that PDF-1 regulates mate-searching behavior in males

through the regulation of daf-7 expression in the ASJ neurons and through additional mechanisms

functioning in parallel to DAF-7 signaling.

We have previously reported that daf-7 expression serves a dual role in the ASJ neurons, func-

tioning in males to promote food-leaving behaviors (Hilbert and Kim, 2017), but also being induced

by the presence of Pseudomonas aeruginosa in both sexes to promote pathogen avoidance behav-

iors (Meisel et al., 2014). Given this and our interest in identifying male-specific regulators of daf-7

expression, we asked if the PDF-1 pathway is required for the upregulation of daf-7 expression in

response to P. aeruginosa. We did not observe a requirement for PDF-1 signaling in the induction of

daf-7 expression in the ASJ neurons after 16 hr on P. aeruginosa; both pdf-1 and pdfr-1 mutant her-

maphrodites had equivalent levels of daf-7 expression when compared to control animals

(Figure 1E). Similarly, males that are mutant for either the PDF-1 ligand or receptor (and show little

to no daf-7 expression in their ASJ neurons on E. coli, see Figure 1B) were capable of upregulating

daf-7 expression in ASJ upon exposure to P. aeruginosa (Figure 1—figure supplement 2A). Given

the previously established function of daf-7 expression in the ASJ neurons of hermaphrodites in pro-

moting pathogen avoidance behavior (Meisel et al., 2014), these results predict that mutants in the

PDF-1 pathway should have no defects in their ability to avoid a lawn of pathogenic P. aeruginosa.

Consistent with this expectation, we observed that while daf-7 mutant hermaphrodites fail to avoid

a lawn of pathogenic bacteria, the pdf-1 and pdfr-1 mutant hermaphrodites appear wild-type for

their ability to perform this behavior (Figure 1F). Similarly, pdf-1 and pdfr-1 mutant males also dis-

played robust pathogen avoidance despite their defects in the male-specific mate searching behav-

ior (Figure 1—figure supplement 2B; Barrios et al., 2012). These data suggest that the PDF-1

signaling pathway acts sex-specifically to regulate daf-7 expression in the ASJ neurons and its effects

on downstream sexually dimorphic behavioral programs.

PDF-1 signaling acts cell-autonomously in the ASJ neurons to promote
daf-7 expression
The PDF-1 neuropeptide ligand is secreted from multiple neurons in the head region of the animal

where a similarly large number of neurons express the PDFR-1 receptor (Barrios et al., 2012;

Janssen et al., 2009; Meelkop et al., 2012). To identify the relevant site of action for this pathway

in the regulation of daf-7 expression in males, we used the pdfr-1(ok3425) mutant animals and intro-

duced pdfr-1 cDNA transgenes into specific neurons using heterologous cell-specific promoters. We

observed that while the pdfr-1 mutant males lack daf-7 expression in the ASJ neurons, introduction

of a genomic DNA fragment carrying the pdfr-1 locus fully rescued this phenotype and restored daf-

7 expression in the ASJ neurons (Figure 2A and B). Furthermore, we observed that expression of

pdfr-1 under the control of the ASJ-specific trx-1 promoter was sufficient to rescue daf-7 expression

in the ASJ neurons of the mutant male animals, suggesting that PDF-1 signals to its receptor, PDFR-

1, in the ASJ neurons to influence daf-7 expression specifically in the male (Figure 2A and B).

Hilbert and Kim. eLife 2018;7:e36547. DOI: https://doi.org/10.7554/eLife.36547 4 of 15

Research advance Neuroscience

https://doi.org/10.7554/eLife.36547


To assess the necessity of pdfr-1 function in ASJ for the regulation of daf-7 expression in males,

we knocked down pdfr-1 expression in the ASJ neurons via cell-specific RNAi (Esposito et al.,

2007). We observed that animals with RNAi targeting pdfr-1 in the ASJ neurons exhibited reduced

daf-7 expression in ASJ comparable to what we observed with ASJ-specific RNAi of GFP, our posi-

tive control (Figure 2C). Additionally, we generated transgenic animals carrying a floxed copy of the

Figure 2. PDF-1 signaling is necessary and sufficient in the ASJ neurons for the regulation of daf-7 expression in

male C. elegans. (A) pdaf-7::gfp expression in pdfr-1(ok3425) mutant (top), genomic rescue (middle), and ASJ-

specific rescue (bottom) male animals. Filled arrowheads indicate the ASI neurons; dashed arrowheads indicate

the ASJ neurons. Scale bar indicates 50 mm. (B) Maximum fluorescence values of pdaf-7::gfp in the ASJ neurons of

pdfr-1 rescue males. ***p<0.001 as determined by ordinary one-way ANOVA followed by Dunnett’s multiple

comparisons test. Error bars represent SD. n = 15 animals for all genotypes. (C) Maximum fluorescence values of

pdaf-7::gfp in the ASJ neurons of WT males (black) and animals with ASJ-specific RNAi of either GFP (green) or

pdfr-1(gray). ***p<0.001 as determined by ordinary one-way ANOVA followed by Dunnett’s multiple comparisons

test. Error bars indicate SD. n = 15 animals for all conditions. (D) Maximum fluorescence values of pdaf-7::gfp in

the ASJ neurons of WT, pdfr-1(ok3425) mutants, and animals with floxed pdfr-1 rescued under the control of a 5

kb distal reporter as reported in Flavell et al. (2013) (left three columns). pdfr-1 function was removed either in all

neurons or specifically in ASJ using cell-specific expression of Cre recombinase (right three columns). ***p<0.001

as determined by ordinary one-way ANOVA followed by Dunnett’s multiple comparisons test. ns, not significant.

Error bars indicate SD. n = 12–15 animals for each condition.

DOI: https://doi.org/10.7554/eLife.36547.005
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pdfr-1 cDNA under the control of a 5 kb region of the endogenous pdfr-1 promoter, which has been

previously reported to rescue roaming behaviors in the C. elegans hermaphrodite (Flavell et al.,

2013). We observed that this construct partially rescued daf-7 expression in the ASJ neurons of

pdfr-1(ok3425) mutant males, and ASJ-specific expression of the Cre recombinase suppressed the

rescuing effects of this transgene (Figure 2D), strongly suggestive that PDFR-1 activity in the ASJ

neurons is required for daf-7 expression. These results indicate that the PDF-1 signaling pathway

functions cell-autonomously in the ASJ neuron pair to regulate the sexually dimorphic expression of

daf-7.

The PDFR-1 receptor is a secretin-family G-protein coupled receptor (GPCR), which has been

shown to stimulate Gas signaling and upregulation of cAMP production in transfected cells as well

as in both Drosophila melanogaster and C. elegans neurons (Figure 1A; Flavell et al., 2013;

Hyun et al., 2005; Janssen et al., 2008; Lear et al., 2005; Mertens et al., 2005; Shafer et al.,

2008). Using a gain-of-function variant of the adenylate cyclase, ACY-1 (Flavell et al., 2013;

Saifee et al., 2011; Schade et al., 2005), we asked if activation of the pathway downstream of

PDFR-1 specifically in ASJ was sufficient to rescue the defects in daf-7 expression that we observe in

the pdfr-1 mutant males. We observed that in pdfr-1 mutant males with transgenic expression of the

acy-1(gf) cDNA only in the ASJ neurons, daf-7 expression was fully rescued (Figure 3A). This ability

to bypass PDFR-1 by activation of cAMP production specifically in the ASJ neuron pair further sug-

gest that the PDF-1 signaling pathway acts directly on the ASJ neurons in order to regulate daf-7

expression in male animals. Given the hierarchical nature of the regulation of daf-7 expression in the

male ASJ neurons (Hilbert and Kim, 2017), we asked if acy-1 function may serve a broader role

coordinating the many inputs of this hierarchy into changes in daf-7 expression. We previously

reported that starvation of adult male animals efficiently suppresses daf-7 expression in the ASJ neu-

rons in wild-type animals (Hilbert and Kim, 2017; Figure 3B). Notably, ASJ-specific expression of

the acy-1(gf) variant in starved males did not suppress the effects of starvation on daf-7 expression

in ASJ (Figure 3B), suggestive that the effects of starvation act downstream of or in parallel to

PDFR-1-ACY-1 signaling.

Figure 3. ACY-1 acts downstream of PDFR-1 to regulate daf-7 expression in male ASJ neurons. (A) Maximum fluorescence values of pdaf-7::gfp in the

ASJ neurons of males expressing the gain-of-function ACY-1(P260S) cDNA specifically in ASJ. ***p<0.001 as determined by unpaired t-test with Welch’s

correction. Error bars represent SD. n = 15 animals for all genotypes. (B) Maximum fluorescence values of pdaf-7::gfp in the ASJ neurons of WT and

ASJ-specific acy-1(gf) expressing fed (filled circles) and starved (open circles) males. ***p<0.001 as determined by unpaired t-test with Welch’s

correction. Error bars indicate SD. n = 15 animals for all conditions.

DOI: https://doi.org/10.7554/eLife.36547.006
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Sex differences in PDF-1 receptor activity underlie the sex-specific
regulation of daf-7 transcription in ASJ
The sex-specificity of the effects of the PDF-1 pathway on daf-7 regulation and mate searching

behavior is intriguing given very little evidence of differences in the expression or function of this

neuropeptide pathway between the two C. elegans sexes (Barrios et al., 2012; Janssen et al.,

2008, 2009). It was recently shown that pdf-1 is produced by the newly identified male-specific

MCM neurons and is required for the regulation of sex-specific learning in males, but interestingly,

ablation of these neurons has no effect on mate-searching behavior (Sammut et al., 2015). Never-

theless, we wondered if there might be unidentified sex differences in the signaling or expression of

this PDF-1 neuropeptide pathway in neurons such as ASJ, which would confer its sex-specific effects

on the regulation of daf-7 gene expression. To this end, we asked if activation of the PDF-1 signaling

pathway in the ASJ neurons of hermaphrodites might be sufficient to drive daf-7 expression inappro-

priately in these animals. We first looked at hermaphrodite animals carrying the same ASJ-expressed

acy-1(gf) transgene and observed significant upregulation of daf-7 expression in the ASJ neurons of

these hermaphrodites (Figure 4A). We next asked whether we could observe daf-7 expression in the

ASJ neurons of hermaphrodite animals with heterologous expression of pdfr-1 in only the ASJ neu-

rons. Strikingly, we found that in hermaphrodites with overexpression of pdfr-1 cDNA in the ASJ

neurons, daf-7 expression was also upregulated similar to what we observed in the acy-1(gf) trans-

genic strains (Figure 4B). We also quantified daf-7 expression in the ASJ neurons of hermaphrodites

carrying the genomic pdfr-1 fragment with all of the endogenous regulatory sequence and observed

no upregulation of expression in those animals. This control suggests that daf-7 expression in ASJ

cannot be triggered simply as the result of overexpression of pdfr-1 (Figure 4B), rather, these results

suggest that expression of PDFR-1 specifically in the hermaphrodite ASJ neurons is sufficient to

allow daf-7 expression in these neurons.

We note that establishing the neuronal expression pattern of pdfr-1 has been challenging

because of the apparent complexity of defining putative regulatory regions of the gene

(Barrios et al., 2012; Flavell et al., 2013; Janssen et al., 2008). We sought to examine the tran-

scription of pdfr-1 in male and hermaphrodite animals using fluorescence in situ hybridization (FISH).

We generated fluorescent probes for a region of the pdfr-1 coding sequence that is shared among

all isoforms and verified the specificity of these probes for the pdfr-1 coding sequence by examining

expression in the pdfr-1(ok3425) deletion mutant, where we observed no fluorescent signal (Fig-

ure 4—figure supplement 1B), and in our ASJ-specific rescue lines, where we could only observe

fluorescence in the ASJ neurons (Figure 4—figure supplement 1D). Imaging of pdfr-1 transcription

in WT animals revealed a diffuse expression pattern with fluorescent signal observable in muscle tis-

sue as well as in neurons, but with few cells having strong signal and many cells with only scattered

fluorescent spots, including the ASJ neurons (Figure 4—figure supplement 1A). To corroborate

and confirm these observations, we also imaged pdfr-1 transcripts in animals carrying our genomic

rescuing fragment, which amplified probe fluorescence throughout the nervous system and muscle

(Figure 4—figure supplement 1C). We expect that because of the intact endogenous regulatory

sequence on this genomic fragment, the mRNA localization we observe in this strain should still be

representative of the wild-type expression pattern of pdfr-1. While we observe qualitative differen-

ces in the abundance of pdfr-1 mRNA in the ASJ neurons between males and hermaphrodites, we

did not detect pdfr-1 mRNA in all male animals examined. We observed puncta of pdfr-1 mRNA in

the ASJ neurons of about 20% of adult male animals (Figure 4—figure supplement 1E and F),

whereas similarly aged hermaphrodites did not have a corresponding subpopulation of animals with

puncta of pdfr-1 mRNA. Further analysis of the expression pattern of pdfr-1 will be required to defin-

itively identify any sexual dimorphism in the expression of this gene. Nevertheless, our functional

studies demonstrating that PDFR-1 expression in the ASJ neurons is both necessary and sufficient

for daf-7 expression suggest that the expression or activity of the PDFR-1 receptor may be regulated

in a sexually dimorphic manner in these neurons.

The PDF-1-DAF-7 neuroendocrine signaling cascade regulates sex-
specific behavior through the sex-shared ASJ neurons
Building on our previous work on the sexually dimorphic regulation of the neuroendocrine gene daf-

7 and its role in promoting male decision-making behaviors (Hilbert and Kim, 2017), we have
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presented here a set of experiments which implicate the PDF-1 neuropeptide signaling pathway as a

critical male-specific regulator of daf-7 expression in the ASJ neurons. Our data suggest that sexually

dimorphic regulation of the PDF-1 receptor, PDFR-1, may serve as a gating mechanism, allowing the

ASJ neurons of adult male C. elegans to respond to the PDF-1 ligand. We suggest that this ligand-

receptor interaction activates a downstream signaling cascade in ASJ terminating in the transcrip-

tional activation of daf-7, which in turn promotes male-specific decision-making behaviors

(Figure 4C, left). We hypothesize that the relative lack of expression or activity of pdfr-1 in the her-

maphrodite ASJ neurons prevents the activation of this pathway and consequently daf-7 expression

is not induced under normal growth conditions in adult hermaphrodites (Figure 4C, right). Strikingly,

heterologous expression of the PDF-1 receptor in the hermaphrodite ASJ neurons was sufficient to

drive daf-7 expression in an inappropriate physiological context (the hermaphrodite nervous

Figure 4. Heterologous activation of the PDF-1 pathway in ASJ is sufficient to activate daf-7 transcription in adult hermaphrodites. (A) Maximum

fluorescence values of pdaf-7::gfp in the ASJ neurons of WT hermaphrodites and hermaphrodites where ACY-1 has been activated (via the gain of

function P260S mutant) specifically in ASJ. ***p<0.001 as determined by unpaired t-test with Welch’s correction. Error bars represent SD. n = 15 animals

for both genotypes. (B) Maximum fluorescence values of pdaf-7::gfp in the ASJ neurons of hermaphrodites overexpressing pdfr-1 from either a

genomic fragment or under the control of a heterologous ASJ-specific promoter. ***p<0.001 as determined by ordinary one-way ANOVA followed by

Dunnett’s multiple comparisons test. Error bars represent SD. ns, not significant. n = 15 animals for all genotypes except pdfr-1(ok3425); qdEx151 where

n = 10 animals. (C) Model for the sex-specific regulation of daf-7 expression in the ASJ chemosensory neurons by the PDF-1 signaling pathway.

DOI: https://doi.org/10.7554/eLife.36547.007

The following figure supplement is available for figure 4:

Figure supplement 1. FISH imaging of endogenous pdfr-1 mRNA transcripts.

DOI: https://doi.org/10.7554/eLife.36547.008
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system). All together, our data suggest that the PDF-1 pathway plays an integral role in facilitating

sex-specific differences in gene expression and behavior.

While recent work has revealed sexual dimorphisms at the level of gene expression, neuronal con-

nectivity and neurotransmitter release in the sex-shared nervous system of C. elegans (Hart and

Hobert, 2018; Hilbert and Kim, 2017; Oren-Suissa et al., 2016; Pereira et al., 2015; Ryan et al.,

2014; Serrano-Saiz et al., 2017a, 2017b; Weinberg et al., 2018), the role of neuromodulators and

other neuroendocrine signals in facilitating sex-specific responses of neurons in the shared neuronal

circuitry has been relatively unexplored. Here, we propose a model in which two pathways, the PDF-

1 and DAF-7/TGFb pathways, act in concert as a neuroendocrine signaling cascade to regulate sex-

specific behavior within the context of the sex-shared ASJ neurons (Figure 4C). Our data suggest

that the PDF-1 pathway functions in tuning the response of the ASJ neurons to this endogenous neu-

romodulator in a sex-specific manner. Interestingly, recent work in mice has uncovered a similar phe-

nomenon wherein the neuromodulator oxytocin facilitates sex-specific social preference in male

mice by modulating the ability of subsets of neurons to respond to social cues (Yao et al., 2017).

The parallels between this work and ours underscore the role of neuroendocrine signaling through

sex-shared nervous system components in shaping sexually dimorphic neuronal activity and behavior

in evolutionarily diverse animals.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Gene
(Caenorhabditis elegans)

pdf-1 NA WBGene00020317

Gene (C. elegans) pdfr-1 NA WBGene00015735

Gene (C. elegans) daf-7 NA WBGene00000903

Gene (C. elegans) acy-1 NA WBGene00000068

Genetic reagent
(C. elegans)

ksIs2 PMID: 11677050 WBTransgene00000788 pdaf-7::gfp

Recombinant DNA
reagent

Moerman Fosmid
Library

Source Bioscience WRM0629dH07, WRM0627cG01,
WRM0641dA07, WRM068aD11

Recombinant DNA
reagent

pPD95.75 Fire Lab C. elegans
Vector Kit

Addgene plasmid # 1494

Recombinant DNA
reagent

pCFJ90 PMID:18953339 Addgene plasmid # 19327 pmyo-2::mCherry, used as
co-injection marker

Recombinant DNA
reagent

pZH42 this paper pdf-1 genomic DNA in pUC19

Recombinant DNA
reagent

pZH48 this paper ptrx-1::pdfr-1(cDNA, b isoform,
no STOP codon)::F2A::mCherry::
unc-54 3’UTR

Recombinant DNA
reagent

pZH53 this paper ptrx-1::ACY-1(P260S)::unc-54 3’UTR

Recombinant DNA
reagent

pZH58 this paper pdfr-1p(distal, 5 kb)::loxP::pdfr-1
cDNA(B isoform)::loxP::unc-54 3’UTR

Recombinant DNA
reagent

pZH59 this paper ptrx-1::nCre

Recombinant DNA
reagent

pJDM30 PMID: 25303524 ptrx-1::daf-7

Recombinant DNA
reagent

pSF11 PMID: 23972393 ptag-168::nCre, gift of
C. Bargmann and S. Flavell

Commercial assay
or kit

NEBuilder HiFi DNA
Assembly Master Mix

NEB E2621

Software, algorithm GraphPad Prism GraphPad RRID:SCR_002798

Other Alexa Fluor 647 DHS
ester

Invitrogen/Thermo
Fisher Scientific

A20006 dye used for conjugation
of FISH probes
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C. elegans strains
C. elegans strains were cultured as previously described (Brenner, 1974; Hilbert and Kim, 2017).

For a complete list of strains used in this study please see Supplementary file 1.

Cloning and transgenic strain generation
For the pdf-1 overexpression transgene, a 6.5 kb region of sequence containing the pdf-1 promoter,

coding sequence and 3’UTR were amplified from the fosmid WRM0641dA07 from the Moerman fos-

mid library. This fragment was cloned into the pUC19 vector backbone by Gibson assembly

(Gibson et al., 2009) to generate plasmid pZH42. ASJ-specific overexpression of daf-7 transgenes

in the pdf-1(tm1996) mutant background were established by reinjection of the plasmid pJDM30

which contains daf-7 cDNA under the control of the trx-1 promoter (Meisel et al., 2014).

For the ASJ-specific pdfr-1 rescue construct, the B isoform of the pdfr-1 cDNA with no stop

codon was amplified from cDNA generated with an Ambion RetroScript kit using primers based on

previously described annotation of the isoform (Barrios et al., 2012). The trx-1 ASJ-specific pro-

moter was amplified as previously described (Hilbert and Kim, 2017). An F2A::mCherry fragment

was amplified off a plasmid that was a gift from C. Pender and H.R. Horvitz. All fragments were

cloned into the pPD95.75 backbone with an intact unc-54 3’UTR by Gibson assembly to generate

plasmid pZH48. Genomic rescue of pdfr-1 was done by injection of the WRM0629dH07 fosmid from

the Moerman fosmid library.

Cloning for cell-specific RNAi experiments was carried out similarly to the method previously

described (Esposito et al., 2007). A 1.2 kb fragment of the ASJ-specific trx-1 promoter was ampli-

fied from the fosmid WRM0627cG01 from the Moerman fosmid library with overlap to either pdfr-1

or GFP in either the sense or antisense direction. A 1.8 kb exon rich region of the pdfr-1 coding

sequence was amplified from the fosmid WRM0629dH07. A 1 kb fragment containing part of the

GFP coding sequence was amplified from the plasmid, pPD95.75. The GFP and pdfr-1 fragments

were cloned in the sense and anti-sense directions with the trx-1 promoter into the pUC19 plasmid

backbone using Gibson Assembly. PCR with nested primers was then used to amplify only the pro-

moter and gene sequence off the plasmid backbone and these PCR products were purified and

used for injections. Both sense and anti-sense PCR products were injected at a concentration of 20

ng/mL along with pCFJ90 (Frøkjaer-Jensen et al., 2008) at 2.5 ng/mL and 1 kb ladder as carrier

DNA.

For the floxed pdfr-1 rescue strain, the pdfr-1 cDNA was amplified with primers carrying loxP

sequences on either side. The 5 kb pdfr-1 promoter was amplified from the fosmid WRM068aD11.

These fragments were cloned into a pPD95.75 backbone with an intact unc-54 3’UTR by Gibson

Assembly to generate plasmid pZH58. ASJ-specific Cre lines were generated by swapping the trx-1

promoter into the plasmid pSF11 (gift of S. Flavell and C. Bargmann) in place of the tag-168 pan-

neuronal promoter to generate plasmid pZH59. Pan-neuronal Cre lines were generated by re-injec-

tion of pSF11 at a concentration of 20 ng/mL. For all Cre lines, pCFJ90 was used as a co-injection

marker at a concentration of 2.5 ng/mL.

For the ACY-1(gf) construct, the 3.8 kb acy-1(P260S) fragment was amplified from genomic DNA

extracted from the strain CX15050 (gift from S. Flavell and C. Bargmann) which carries a transgenic

array with the acy-1(P260S) cDNA under the control of a different promoter. This fragment was

cloned into a plasmid backbone carrying the trx-1 promoter and unc-54 3’UTR to generate pZH53.

All fosmids and plasmids were verified by sequencing and injected at a concentration of 50 ng/mL

along with a plasmid carrying pofm-1::gfp at 50 ng/mL as a co-injection marker unless otherwise

noted. At least three independent transgenic lines were obtained and analyzed for each construct

and one or two representative lines are shown. For a list of all primers used in this paper, please see

Supplementary file 2.

Measurement of gene expression in ASI and ASJ neurons
Quantification of daf-7 expression was performed as described in (Hilbert and Kim, 2017) using the

ksIs2(pdaf-7::gfp) transgene (Murakami et al., 2001). All adult quantifications were done on animals

72 hr after egg lay. Quantification of animals on P. aeruginosa were performed as before.
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Starvation assays
Starvation assays and measurement of pdaf-7::gfp fluorescence in the ASJ neurons of starved males

was performed as previously described (Hilbert and Kim, 2017).

Mate-Searching assays
Mate-searching assays were performed as previously described (Hilbert and Kim, 2017;

Lipton et al., 2004).

P. aeruginosa lawn avoidance assays
P. aeruginosa plates were prepared as described in (Hilbert and Kim, 2017). Animals were synchro-

nized by treatment with bleach and allowed to hatch and arrest as L1 larvae before being dropped

onto E. coli plates. L4 animals were transferred to the center of the P. aeruginosa lawn, incubated at

25˚C and then scored for avoidance after 16 hr.

For male lawn avoidance assays shown in Figure 1—figure supplement 2B, plates and animals

were prepared using the same method as for hermaphrodites, but males were placed individually

onto plates seeded with P. aeruginosa as L4s. Plates were incubated at 25˚C and then scored for

avoidance after 16 hr. These experiments were repeated three times, with 30 individual animals per

genotype in each replicate.

Fluorescence In Situ Hybridization
FISH was performed as previously described (Hilbert and Kim, 2017; Raj et al., 2008). The pdfr-1

probe was constructed by pooling together 36 unique 20 nucleotide oligos that tile across base-

pairs 580–1540 in the pdfr-1 B-isoform cDNA. This sequence is contained in all isoforms of pdfr-1 so

should anneal to any endogenous pdfr-1 mRNA. After pooling, oligos were coupled to Alexa Fluor

647 NHS ester (Invitrogen/Thermo Fisher Scientific) and then purified by HPLC.

Statistical analysis
All statistical analysis was performed using the Graphpad Prism software. Statistical tests used for

each experiment are listed in the figure legend.
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