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Abstract

As predators, the macronutrients spiders extract from their prey play important roles in their mat-

ing and reproduction. Previous studies of macronutrients on spider mating and reproduction focus

on protein, the potential impact of prey lipid content on spider mating and reproduction remains

largely unexplored. Here, we tested the influence of prey varying in lipid content on female mating,

sexual cannibalism, reproduction, and offspring fitness in the wolf spider Pardosa pseudoannulata.

We acquired 2 groups of fruit fly Drosophila melanogaster that differed significantly in lipid but not

protein content by supplementing cultural media with a high or low dose of sucrose on which the

fruit flies were reared (HL: high lipid and LL: low lipid). Subadult (i.e., 1 molt before adult) female

spiders that fed HL flies matured with significantly higher lipid content than those fed LL flies. We

found that the mated females fed with HL flies significantly shortened pre-oviposition time and

resulted in a significantly higher fecundity. However, there was no significant difference in female

spiders varying in lipid content on other behaviors and traits, including the latency to courtship,

courtship duration, mating, copulation duration, sexual cannibalism, offspring body size, and sur-

vival. Hence, our results suggest that the lipid content of prey may be a limiting factor for female re-

production, but not for other behavioral traits in the wolf spiders P. pseudoannulata.
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As one of the most abundant groups of obligate predators, spiders

feed upon phytophagous and omnivorous invertebrates, primarily

insects. The nutritional quality of an insect prey varies dramatically

and significantly affects the survival, growth, and reproduction of

spiders (Li and Jackson 1996, 1997; Bilde and Toft 2000; Sigsgaard

et al. 2001; Wilder 2011; Toft 2013; Wen et al. 2020). For example,

Sigsgaard et al. (2001) found that linyphiid spiders Atypena formo-

sana provided with a Collembola diet survived better and developed

faster than spiders provided with other types of insect prey

(Nilaparvata lugens; Nephotettix virescens). Pekar and Toft (2009)

reported that the ant-eating Zodarion spiders (Z. atlanticum and Z.

germanicum) provided with a diet solely comprising of ants grew

larger and had a longer life expectancy than spiders provided only

with fruit flies. Mixed prey (i.e., a combination of various prey spe-

cies) usually promotes spider growth and reproduction (Uetz 1992;

Toft 1995; Toft and Wise 1999; Bilde and Toft 2000; Sigsgaard

et al. 2001). However, the special prey containing toxic compounds

inhibits spider growth and survival (Marcussen et al. 1999; Toft and
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Wise 1999; Oelbermann and Scheu 2002; Fisker and Toft 2004;

Rickers et al. 2006).

Studies concerning the effects of different or mixed prey species

on spider fitness provide a foundation from which to investigate the

effects of prey macronutrients on spider fitness (Wilder 2011; Toft

2013). To explore the effects of specific macronutrient contents,

such as lipids and protein, on spider fitness, experiments should be

well designed to control the influences of prey species and quantity

(Mayntz et al. 2003; Philip and Shillington 2010; Kleinteich et al.

2015; Wiggins and Wilder 2018; Wen et al. 2020). In general, there

are 2 approaches used to manipulate the macronutrient contents of

prey without altering the prey species (Wilder 2011). The first ap-

proach simply involves the supplementary feeding of spiders with

non-prey food (Vogelei and Greissl 1989; Pollard et al. 1995;

Jackson et al. 2001; Taylor and Bradley 2009; Lietzenmayer and

Wagner 2017). Therefore, there are some limitations on this ap-

proach, including the limited availability of natural non-prey foods

for spiders (e.g., pollen and nectar) (Vogelei and Greissl 1989;

Taylor and Bradley 2009; Nyffeler et al. 2016). In addition, there

are a few spiders species known to consume these non-prey foods,

which contain a limited macronutrients, especially carbohydrates

(Taylor and Pfannenstiel 2008; Wilder 2011; Nahas et al. 2017).

The second approach requires the manipulation of the quantity or

ratio of macronutrients present in a single species of prey (Mayntz

and Toft 2001; Hawley et al. 2014; Wen et al. 2020). This method

was first used by Mayntz and Toft (2001), who cultured fruit flies

on a normal medium supplemented with various nutrients (e.g.,

amino acids and fatty acids). This and subsequent studies demon-

strated that altering the macronutrient content of the medium on

which larval fruit flies cultured results in the changes in the macro-

nutrient contents of the adult fruit flies. The changes of macronutri-

ent contents of the adult fruit flies influence the survival, growth,

and reproduction of spiders (Mayntz and Toft 2001; Mayntz et al.

2003, 2005). However, there are still some limitations on this

method. For instance, juvenile spiders, especially the wandering

hunters with a long lifespan, always encounter molting problems

and subsequently die before reaching adulthood when they are

restricted on a monotypic diet of fruit flies (Mayntz and Toft 2001;

Wen et al. 2020). Considering the fact that most spider species feed

on a variety of prey species to attain nutrition balance for survival

and reproduction (Greenstone 1979; Uetz 1992), nutrition enrich-

ment of fruit flies with special macronutrient may of course not suc-

ceed in making them perfectly optimal prey for spiders. Therefore,

this method was almost only applied to short-term studies on how

prey protein and lipid affect spider performance (Toft et al. 2010;

Jensen et al. 2011a, 2011b; Hawley et al. 2014; Wiggins and Wilder

2018; Koemel et al. 2019).

Due to the limitations of both approaches above mentioned,

only a few studies have determined how macronutrient composi-

tions of a single prey species affect spider fitness depending directly

on a performance test (Jensen et al. 2011a, 2011b; Wiggins and

Wilder 2018; Wen et al. 2020). These studies have consistently

shown that high protein (high ratio of Protein:Lipid) prey has posi-

tive impacts on spider growth and survivorship (Blamires et al.

2009; Jensen et al. 2011a, 2011b; Salomon et al. 2011). However,

the impact of high lipid (low ratio of Protein:Lipid) prey on spider

growth, development, and survival remains controversial. It is evi-

denced that the effect of prey lipid content (low ratio of

Protein:Lipid) on spider growth, reproduction, and survival depends

on spider species and life-history strategies (Jensen et al. 2010,

2011a, 2011b; Wen et al. 2020). Wiggins and Wilder (2018) found

that larger body size and heavier juveniles in the jumping spider

Phidippus audax was tightly associated with high-lipid prey (fruit

fly). On the contrary, Mayntz and Toft (2001) demonstrated that

prey (fruit fly) with high lipid reduced the survival of juvenile wolf

spiders Pardosa amentata. Similarly, the negative effects of high

lipid on the spider survival were found in the sheet-web spiders

Hylyphantes graminicola (Wen et al. 2020). In addition, prey (fruit

fly) with high lipid reduced the growth of the juvenile wolf spiders

Pardosa prativaga (Jensen et al. 2011a, 2011b). In terms of repro-

duction, Wen et al. (2020) demonstrated that female H. graminicola

fed fruit flies with high lipid throughout their life cycle substantially

delayed their egg-laying but not fecundity. However, a number of bio-

chemical analyses on several spider species during the reproductive

stage indicated that lipids play an important role in reproduction

(Salomon et al. 2008; Blamires 2011; Romero et al. 2018; Laino 2020).

Although there is still no coherent picture of how a spider’s lipid

requirement changes with life stages, Wilder and Rypstra (2010) did

find that female wolf spiders Hogna helluo were able to extract

nearly all lipid presented in male spiders and crickets. In addition,

their data also suggest that lipid, but not protein, may limit egg pro-

duction of female H. helluo (Wilder and Rypstra 2010). In another

study, female wolf spiders from 3 species also extracted over 90% of

the available lipid in a range of prey items (Wilder et al. 2010). The

fact that adult female spiders extract nearly all available lipids in

prey suggests that lipid may be a limiting macronutrient for adult

females, especially during the shortage of prey (e.g., hibernation),

maternal care, and reproduction (Jensen et al. 2010; Salomon et al.

2011; Ruhland et al. 2016; Potts et al. 2020). Yet there is relatively

limited direct evidence of the potential effect of lipids on spider mat-

ing and reproduction (Wen et al. 2020).

The wolf spider Pardosa pseudoannulata (Araneae: Lycosidae) is

one of the most important predators against diverse pests found in

rice paddies in China (Lou et al. 2014; Xiao et al. 2016; Guo et al.

2018; Hou et al. 2021), and there are 2–3 generations a year (Zhao

1993). In the present study, we aimed to investigate the effects of the

lipid content extracted from fruit flies Drosophila melanogaster on

female mating behavior, sexual cannibalism, and reproductive suc-

cess in the wolf spider, P. pseudoannulata in the laboratory. We first

acquired 2 groups of fruit flies D. melanogaster varying in lipid but

not protein content by manipulating the sucrose content of their cul-

ture media. Then the field-collected subadult female wolf spiders

were fed with HL or LL fruit flies until they reached maturation, the

lipid content of adult female spiders were determined. If the 2 groups

of adult female spiders differed in the lipid content, we then examined

the effects of the lipid contents of female spiders on their mating be-

havior (the occurrence of mating, courtship, and copulation), the oc-

currence of sexual cannibalism, reproductive success (pre-oviposition

time and fecundity), and offspring quality (offspring size and survival

under food and water stress). We expected to determine not only the

effects of lipid content on short-term behaviors but also on long-term

reproduction of the wolf spiders P. pseudoannulata. Our present study

would provide some implications on nutritional requirements for the

reproduction of the predatory spiders.

Material and Methods

Acquisition of fruit flies varying in lipid contents
To generate fruit flies D. melanogaster varying in lipid contents, we

prepared 2 types of culture media with different sucrose contents

(32 and 8 g, respectively). We kept other components of the culture

media the same and equal quantity (240mL H2O, 22 g corn powder,
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As one of the most abundant groups of obligate predators, spiders

feed upon phytophagous and omnivorous invertebrates, primarily

insects. The nutritional quality of an insect prey varies dramatically

and significantly affects the survival, growth, and reproduction of

spiders (Li and Jackson 1996, 1997; Bilde and Toft 2000; Sigsgaard

et al. 2001; Wilder 2011; Toft 2013; Wen et al. 2020). For example,

Sigsgaard et al. (2001) found that linyphiid spiders Atypena formo-

sana provided with a Collembola diet survived better and developed

faster than spiders provided with other types of insect prey

(Nilaparvata lugens; Nephotettix virescens). Pekar and Toft (2009)

reported that the ant-eating Zodarion spiders (Z. atlanticum and Z.

germanicum) provided with a diet solely comprising of ants grew

larger and had a longer life expectancy than spiders provided only

with fruit flies. Mixed prey (i.e., a combination of various prey spe-

cies) usually promotes spider growth and reproduction (Uetz 1992;

Toft 1995; Toft and Wise 1999; Bilde and Toft 2000; Sigsgaard

et al. 2001). However, the special prey containing toxic compounds

inhibits spider growth and survival (Marcussen et al. 1999; Toft and
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Wise 1999; Oelbermann and Scheu 2002; Fisker and Toft 2004;

Rickers et al. 2006).

Studies concerning the effects of different or mixed prey species

on spider fitness provide a foundation from which to investigate the

effects of prey macronutrients on spider fitness (Wilder 2011; Toft

2013). To explore the effects of specific macronutrient contents,

such as lipids and protein, on spider fitness, experiments should be

well designed to control the influences of prey species and quantity

(Mayntz et al. 2003; Philip and Shillington 2010; Kleinteich et al.

2015; Wiggins and Wilder 2018; Wen et al. 2020). In general, there

are 2 approaches used to manipulate the macronutrient contents of

prey without altering the prey species (Wilder 2011). The first ap-

proach simply involves the supplementary feeding of spiders with

non-prey food (Vogelei and Greissl 1989; Pollard et al. 1995;

Jackson et al. 2001; Taylor and Bradley 2009; Lietzenmayer and

Wagner 2017). Therefore, there are some limitations on this ap-

proach, including the limited availability of natural non-prey foods

for spiders (e.g., pollen and nectar) (Vogelei and Greissl 1989;

Taylor and Bradley 2009; Nyffeler et al. 2016). In addition, there

are a few spiders species known to consume these non-prey foods,

which contain a limited macronutrients, especially carbohydrates

(Taylor and Pfannenstiel 2008; Wilder 2011; Nahas et al. 2017).

The second approach requires the manipulation of the quantity or

ratio of macronutrients present in a single species of prey (Mayntz

and Toft 2001; Hawley et al. 2014; Wen et al. 2020). This method

was first used by Mayntz and Toft (2001), who cultured fruit flies

on a normal medium supplemented with various nutrients (e.g.,

amino acids and fatty acids). This and subsequent studies demon-

strated that altering the macronutrient content of the medium on

which larval fruit flies cultured results in the changes in the macro-

nutrient contents of the adult fruit flies. The changes of macronutri-

ent contents of the adult fruit flies influence the survival, growth,

and reproduction of spiders (Mayntz and Toft 2001; Mayntz et al.

2003, 2005). However, there are still some limitations on this

method. For instance, juvenile spiders, especially the wandering

hunters with a long lifespan, always encounter molting problems

and subsequently die before reaching adulthood when they are

restricted on a monotypic diet of fruit flies (Mayntz and Toft 2001;

Wen et al. 2020). Considering the fact that most spider species feed

on a variety of prey species to attain nutrition balance for survival

and reproduction (Greenstone 1979; Uetz 1992), nutrition enrich-

ment of fruit flies with special macronutrient may of course not suc-

ceed in making them perfectly optimal prey for spiders. Therefore,

this method was almost only applied to short-term studies on how

prey protein and lipid affect spider performance (Toft et al. 2010;

Jensen et al. 2011a, 2011b; Hawley et al. 2014; Wiggins and Wilder

2018; Koemel et al. 2019).

Due to the limitations of both approaches above mentioned,

only a few studies have determined how macronutrient composi-

tions of a single prey species affect spider fitness depending directly

on a performance test (Jensen et al. 2011a, 2011b; Wiggins and

Wilder 2018; Wen et al. 2020). These studies have consistently

shown that high protein (high ratio of Protein:Lipid) prey has posi-

tive impacts on spider growth and survivorship (Blamires et al.

2009; Jensen et al. 2011a, 2011b; Salomon et al. 2011). However,

the impact of high lipid (low ratio of Protein:Lipid) prey on spider

growth, development, and survival remains controversial. It is evi-

denced that the effect of prey lipid content (low ratio of

Protein:Lipid) on spider growth, reproduction, and survival depends

on spider species and life-history strategies (Jensen et al. 2010,

2011a, 2011b; Wen et al. 2020). Wiggins and Wilder (2018) found

that larger body size and heavier juveniles in the jumping spider

Phidippus audax was tightly associated with high-lipid prey (fruit

fly). On the contrary, Mayntz and Toft (2001) demonstrated that

prey (fruit fly) with high lipid reduced the survival of juvenile wolf

spiders Pardosa amentata. Similarly, the negative effects of high

lipid on the spider survival were found in the sheet-web spiders

Hylyphantes graminicola (Wen et al. 2020). In addition, prey (fruit

fly) with high lipid reduced the growth of the juvenile wolf spiders

Pardosa prativaga (Jensen et al. 2011a, 2011b). In terms of repro-

duction, Wen et al. (2020) demonstrated that female H. graminicola

fed fruit flies with high lipid throughout their life cycle substantially

delayed their egg-laying but not fecundity. However, a number of bio-

chemical analyses on several spider species during the reproductive

stage indicated that lipids play an important role in reproduction

(Salomon et al. 2008; Blamires 2011; Romero et al. 2018; Laino 2020).

Although there is still no coherent picture of how a spider’s lipid

requirement changes with life stages, Wilder and Rypstra (2010) did

find that female wolf spiders Hogna helluo were able to extract

nearly all lipid presented in male spiders and crickets. In addition,

their data also suggest that lipid, but not protein, may limit egg pro-

duction of female H. helluo (Wilder and Rypstra 2010). In another

study, female wolf spiders from 3 species also extracted over 90% of

the available lipid in a range of prey items (Wilder et al. 2010). The

fact that adult female spiders extract nearly all available lipids in

prey suggests that lipid may be a limiting macronutrient for adult

females, especially during the shortage of prey (e.g., hibernation),

maternal care, and reproduction (Jensen et al. 2010; Salomon et al.

2011; Ruhland et al. 2016; Potts et al. 2020). Yet there is relatively

limited direct evidence of the potential effect of lipids on spider mat-

ing and reproduction (Wen et al. 2020).

The wolf spider Pardosa pseudoannulata (Araneae: Lycosidae) is

one of the most important predators against diverse pests found in

rice paddies in China (Lou et al. 2014; Xiao et al. 2016; Guo et al.

2018; Hou et al. 2021), and there are 2–3 generations a year (Zhao

1993). In the present study, we aimed to investigate the effects of the

lipid content extracted from fruit flies Drosophila melanogaster on

female mating behavior, sexual cannibalism, and reproductive suc-

cess in the wolf spider, P. pseudoannulata in the laboratory. We first

acquired 2 groups of fruit flies D. melanogaster varying in lipid but

not protein content by manipulating the sucrose content of their cul-

ture media. Then the field-collected subadult female wolf spiders

were fed with HL or LL fruit flies until they reached maturation, the

lipid content of adult female spiders were determined. If the 2 groups

of adult female spiders differed in the lipid content, we then examined

the effects of the lipid contents of female spiders on their mating be-

havior (the occurrence of mating, courtship, and copulation), the oc-

currence of sexual cannibalism, reproductive success (pre-oviposition

time and fecundity), and offspring quality (offspring size and survival

under food and water stress). We expected to determine not only the

effects of lipid content on short-term behaviors but also on long-term

reproduction of the wolf spiders P. pseudoannulata. Our present study

would provide some implications on nutritional requirements for the

reproduction of the predatory spiders.

Material and Methods

Acquisition of fruit flies varying in lipid contents
To generate fruit flies D. melanogaster varying in lipid contents, we

prepared 2 types of culture media with different sucrose contents

(32 and 8 g, respectively). We kept other components of the culture

media the same and equal quantity (240mL H2O, 22 g corn powder,
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4 g yeast extract powder, 1.6 g Agar, 0.1 g benzoic acid [dissolved in

2mL ethyl alcohol], and 1mL propanoic acid). We termed these 2

groups of fruit flies as Group high lipid (HL) and Group low lipid

(LL), respectively. We divided each type of culture media equally

into 10 culture tubes (diameter � length: 50mm � 12mm). After

cooling and solidification, we inoculated each culture media tube

with approximately 5 pairs of adult fruit flies that had been sub-

cultured in the laboratory. After 1 week, we removed the sub-

cultured fruit flies from each tube after a large number of fruit flies

emerged. When the newly emerged fruit flies in each tube reached

the peak, we randomly collected more than 100 flies (a mix of males

and females) from each tube as representatives and then measured

the percentage (%) of lipid and protein to their dry body mass (HL:

N¼9 tubes; LL: N¼10 tubes). We measured the lipid content using

a gravimetric assay in which chloroform was used to dissolve lipids

as described by Wilder et al. (2013). Briefly, the dried samples were

soaked in 5mL chloroform for 24 h after which the chloroform was

removed. Each sample experienced 3 soaking periods and then was

re-dried and re-weighed. The lipid content was calculated as the dif-

ference in dry mass before and after the lipids were extracted by the

chloroform. After lipid extraction, the lean samples of fruit flies

were immediately immersed in 5mL of sodium hydroxide solution

(NaOH, 0.35 M) and the protein of fruit flies was digested at 37�C

(Rho and Lee 2014). The samples also went through 3 successive,

sodium hydroxide solution 24-h washes, after which they were re-

dried and re-weighed. The protein content of fruit flies was esti-

mated as the difference in dry mass before and after the 3 washes of

sodium hydroxide.

Acquisition of female spiders varying in lipid content
We collected the sub-adult female wolf spiders in the rice field in

Huazhong Agricultural University, Wuhan, Hubei Province, China,

between September and October 2020. They were kept individually

in glass tubes (diameter � height: 3�12 cm) and provided water via

a piece of water-dampened sponge at the bottom of glass tubes. We

kept them in an incubator with controlled environmental conditions

(256 0.5�C, 606 10% RH, and 14:10 light:dark regime). Then, we

randomly divided the sub-adult females into 2 groups (HL or LL) of

at least 100 spiders. We defined the female spiders fed with HL and

LL fruit flies as HL and LL groups, respectively. According to its

group (HL or LL), each subadult female spider was fed with 20 HL

or LL fruit flies each time and twice a week. We monitored the sub-

adult female spiders by checking for molting every 12 h until they

reached adulthood. We obtained a total of 75 HL and 70 LL adult

female spiders. We randomly chose 32 HL and 28 LL adult females

from either group of spiders 3 days after their last molt (i.e., 3 days

post-maturation) to determine their lipid content. The measurement

of the lipid contents of HL and LL adult female spiders was the

same as above mentioned (Wilder et al. 2013). The remaining adult

female wolf spiders were used for mating and reproduction

experiments.

Mating experiments
To determine the effects of lipid on mating of P. pseudoannulata, we

carried out mating trials for 2 groups of spiders separately. We used

a petri dish (12.0 cm in diameter) at the bottom lined with a piece of

clean filter paper and covered with an inverted cylindrical glass jar

(diameter � height: 10.5�12.0 cm) as a mating arena. We paired a

randomly selected adult female spider aged 3 days post-maturation

either from Group HL or Group LL with a randomly selected field-

collected adult male. We used the field-collected males because they

are polygynous (Zhao 1993; Gong et al. 2019) and we could ensure

all males were of relatively high quality compared with the

laboratory-reared males (Zhao 1993; Jiang et al. 2018). We also

controlled the possible interaction between female and male diets.

Prior to the trial, we first introduced the female into the arena and

allowed the spider to acclimate for 30min. After that, we removed

the cover and introduced the male to the mating arena to begin the

mating trial. We placed the cover back to avoid the spiders escaping.

We recorded courtship latency (the time elapsed from the start of

the mating trial to the start of the courtship), courtship duration

(time interval in min between the start of the courtship and the onset

of copulation), the occurrence of mating, mating duration, and the

occurrence of sexual cannibalism for each mating trial. Given that

the latency to mate (time interval in min between the start of the

mating trial and the onset of copulation) was relatively short, each

successful trial lasted for a maximum of 30min. The mating was

deemed successful when the male spider climbed on the female

back. However, if the male spider failed to climb on the female’s

back or was cannibalized by the female within 30min, the mating

was deemed unsuccessful. After mating, the paired male and female

were maintained for another 10min to determine the occurrence of

postcopulatory sexual cannibalism. If the female caught the male,

we immediately separated them with a soft brush.

Female reproduction and offspring survival
To test the effect of prey lipid content on female reproduction, we

put the female into its original glass tube and monitored it every

12 h to determine whether the female laid the egg sac or not. After

mating, the feeding regime of these successfully mated females was

the same as above mentioned (i.e., fed with HL or LL flies accord-

ingly). We recorded the pre-oviposition period (time interval in days

between the end of mating and the first egg sac laying), egg develop-

ment time (time interval in days between the production of first egg

sac and hatching of eggs), and fecundity (i.e., total number of eggs)

of all female spiders that had successfully produced the first egg sac.

There was no significant difference in carapace width between fe-

male spiders from Group HL and Group LL (independent t-test: t54
¼ 1.858, P¼0.069).

We measured the offspring body size (proxy: carapace width)

and their survival without food and water. Two days after spider-

lings emerged from the egg sacs, 5 spiderlings were randomly

selected from each egg sac and their carapace width was measured

individually. In addition, another 5 spiderlings were randomly

selected from each egg sac to determine their viability in the absence

of food and water. They were kept individually in clean and dry

glass tubes under 15�C, and their survival was monitored every

12 h.

Data analysis
We performed all statistical analyses using R 4.0.3 (R Core Team

2021). We checked for normality of all the data using the Shapiro–

Wilk test. The differences in the lipid contents, protein contents,

ratio of lipid to protein of fruit flies, and pre-oviposition duration

between Groups HL and LL were tested using independent t-tests.

The differences in the lipid contents of female wolf spiders, court-

ship latency, courtship duration, copulation duration, and egg devel-

opment time between HL and LL female spiders were compared

using unpaired Wilcoxon rank sum test. We performed Chi-square

tests to compare the differences in the frequency of mating success
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and sexual cannibalization of female spiders between HL and LL

groups. To examine the effects of lipid content on offspring carapace

width and survival under the stress conditions without food and

water, we ran general linear models with lipid treatment as a fixed

factor and female identity as a random factor.

Results

Lipid contents of fruit flies and adult female spiders
The lipid content of the fruit flies fed on the culture media with high

sucrose was significantly higher than that of the fruit flies fed on cul-

ture media with low sucrose (independent t-test: t17 ¼ 5.082,

P<0.0001; Figure 1A). However, the protein content was the same

between the 2 groups (independent t-test: t17 ¼ 0.499, P¼0.6243;

Figure 1B). Therefore, the ratio of lipid to protein of fruit flies was

still higher for HL than LL flies (Independent t-test: t17 ¼ 4.281,

P¼0.0005; Figure 1C). Similarly, the lipid content of females fed on

fruit flies with high lipid was significantly higher than that of

females fed on fruit flies with low lipid (Wilcoxon rank sum test:

W¼887,N1 ¼ 32,N2 ¼ 28, P<0.0001; Figure 1D).

Courtship and mating success
There were no significant effects of female diet on male courtship la-

tency (W¼361,N1 ¼ 31,N2 ¼ 25, P¼0.611; Figure 2A), courtship

duration (W¼402, N1 ¼ 31, N2 ¼ 25, P¼0.813; Figure 2B), and

copulation duration (W¼367, N1 ¼ 31, N2 ¼ 25, P¼0.741;

Figure 2C). Both females with high lipid and those with low lipid

had a high rate of mating success (HL: 89% [31/35]; LL: 83% [25/

30], respectively), with no significant difference in the mating suc-

cess between females with different lipid contents (v21 ¼ 0.062,

P¼0.803). No female spiders engaged in precopulatory sexual can-

nibalism. The postcopulatory sexual cannibalization rates of females

with high lipid and females with low lipid were 29% (9/31) and

24% (6/25), respectively, and there was no significant difference

(v21 ¼ 0.014, P¼0.905).

Reproduction and offspring fitness
Compared with females with low lipid, females with high lipid laid

their first egg sac significantly earlier after their mating (t54
¼�2.526, P¼0.015; Figure 3A). In addition, females with high

lipid produced significantly more eggs than those with low lipid

(W¼507.5, N1 ¼ 31, N2 ¼ 25, P¼0.049; Figure 3B). Eggsacs from

all the mated females (31 for females with high lipid and 25 for

females with low lipid, respectively) hatched successfully. However,

no significant effect of lipid content in female was found on egg de-

velopment rate (W¼322.5, N1 ¼ 31, N2 ¼ 25, P¼0.269;

Figure 3C).

We found no effect of lipid content from females on their off-

spring body size (i.e., carapace width) (GLMM: b ¼ �0.004,

z¼1.13, P¼0.257; Figure 4A). In addition, the spiderlings from

females with low lipid had a similar survival time to those with high

lipid under the stress conditions without food and water at 15�C

(GLMM: b ¼ �0.42, z¼0.78, P¼0.434; Figure 4B).

Discussion

Food quality, the components and relative concentrations of macro-

nutrients in food, have important implications for the fitness of ani-

mals. Food quality could not be determined just from biochemical

analysis because even the same proportion of nutrients in the food

may have different quality among different species, if the predator

has different nutrition demands. Although the consequences of the

macronutritional content of food has been well studied for herbi-

vores (Roeder and Behmer 2014; Dreassi et al. 2017; Wang et al.

2018), relatively few studies have been conducted for predators

including spiders (Raubenheimer et al. 2007; Barry and Wilder

2013; Wen et al. 2020). Among the 3 types of macronutrients, previ-

ous studies dealing with lipids usually inferred the effects of lipids

on spider reproduction (Xu et al. 1994; Salomon et al. 2008; Hyne

et al. 2009; Bressendorff and Toft 2011). For example, a few studies

showed that adult female spiders could efficiently extract lipids

from prey (Wilder et al. 2010; Wilder and Rypstra 2010), while

other studies found that lipid content varied significantly for female

spiders during reproductive stages through biochemical analyses

(Salomon et al. 2008, 2011; Romero et al. 2018). Our first attempt

is to determine whether lipid might affect mating and reproduction

of spiders directly through a performance test. By acquiring HL and

LL fruit flies varying in lipid but not protein contents (Figure 1A–C)

and feeding sub-adult P. pseudoannulata female spiders with HL

and LL fruit flies, respectively, we acquired 2 groups of female wolf

spiders varied in their lipid contents when they grow adults (i.e., HL

and LL female spiders, Figure 1D). Then, we conducted
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Figure 1. Boxplots of the lipid content (%) (A), protein content (%) (B), ratio of lipid to protein (C) of the fruit flies D. melanogaster between the high and low su-

crose groups; and (D) female spiders P. pseudoannulata that fed on fruit flies D. melanogaster varying in the lipid content (HL; LL). Boxplots show the median
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4 g yeast extract powder, 1.6 g Agar, 0.1 g benzoic acid [dissolved in

2mL ethyl alcohol], and 1mL propanoic acid). We termed these 2

groups of fruit flies as Group high lipid (HL) and Group low lipid

(LL), respectively. We divided each type of culture media equally

into 10 culture tubes (diameter � length: 50mm � 12mm). After

cooling and solidification, we inoculated each culture media tube

with approximately 5 pairs of adult fruit flies that had been sub-

cultured in the laboratory. After 1 week, we removed the sub-

cultured fruit flies from each tube after a large number of fruit flies

emerged. When the newly emerged fruit flies in each tube reached

the peak, we randomly collected more than 100 flies (a mix of males

and females) from each tube as representatives and then measured

the percentage (%) of lipid and protein to their dry body mass (HL:

N¼9 tubes; LL: N¼10 tubes). We measured the lipid content using

a gravimetric assay in which chloroform was used to dissolve lipids

as described by Wilder et al. (2013). Briefly, the dried samples were

soaked in 5mL chloroform for 24 h after which the chloroform was

removed. Each sample experienced 3 soaking periods and then was

re-dried and re-weighed. The lipid content was calculated as the dif-

ference in dry mass before and after the lipids were extracted by the

chloroform. After lipid extraction, the lean samples of fruit flies

were immediately immersed in 5mL of sodium hydroxide solution

(NaOH, 0.35 M) and the protein of fruit flies was digested at 37�C

(Rho and Lee 2014). The samples also went through 3 successive,

sodium hydroxide solution 24-h washes, after which they were re-

dried and re-weighed. The protein content of fruit flies was esti-

mated as the difference in dry mass before and after the 3 washes of

sodium hydroxide.

Acquisition of female spiders varying in lipid content
We collected the sub-adult female wolf spiders in the rice field in

Huazhong Agricultural University, Wuhan, Hubei Province, China,

between September and October 2020. They were kept individually

in glass tubes (diameter � height: 3�12 cm) and provided water via

a piece of water-dampened sponge at the bottom of glass tubes. We

kept them in an incubator with controlled environmental conditions

(256 0.5�C, 606 10% RH, and 14:10 light:dark regime). Then, we

randomly divided the sub-adult females into 2 groups (HL or LL) of

at least 100 spiders. We defined the female spiders fed with HL and

LL fruit flies as HL and LL groups, respectively. According to its

group (HL or LL), each subadult female spider was fed with 20 HL

or LL fruit flies each time and twice a week. We monitored the sub-

adult female spiders by checking for molting every 12 h until they

reached adulthood. We obtained a total of 75 HL and 70 LL adult

female spiders. We randomly chose 32 HL and 28 LL adult females

from either group of spiders 3 days after their last molt (i.e., 3 days

post-maturation) to determine their lipid content. The measurement

of the lipid contents of HL and LL adult female spiders was the

same as above mentioned (Wilder et al. 2013). The remaining adult

female wolf spiders were used for mating and reproduction

experiments.

Mating experiments
To determine the effects of lipid on mating of P. pseudoannulata, we

carried out mating trials for 2 groups of spiders separately. We used

a petri dish (12.0 cm in diameter) at the bottom lined with a piece of

clean filter paper and covered with an inverted cylindrical glass jar

(diameter � height: 10.5�12.0 cm) as a mating arena. We paired a

randomly selected adult female spider aged 3 days post-maturation

either from Group HL or Group LL with a randomly selected field-

collected adult male. We used the field-collected males because they

are polygynous (Zhao 1993; Gong et al. 2019) and we could ensure

all males were of relatively high quality compared with the

laboratory-reared males (Zhao 1993; Jiang et al. 2018). We also

controlled the possible interaction between female and male diets.

Prior to the trial, we first introduced the female into the arena and

allowed the spider to acclimate for 30min. After that, we removed

the cover and introduced the male to the mating arena to begin the

mating trial. We placed the cover back to avoid the spiders escaping.

We recorded courtship latency (the time elapsed from the start of

the mating trial to the start of the courtship), courtship duration

(time interval in min between the start of the courtship and the onset

of copulation), the occurrence of mating, mating duration, and the

occurrence of sexual cannibalism for each mating trial. Given that

the latency to mate (time interval in min between the start of the

mating trial and the onset of copulation) was relatively short, each

successful trial lasted for a maximum of 30min. The mating was

deemed successful when the male spider climbed on the female

back. However, if the male spider failed to climb on the female’s

back or was cannibalized by the female within 30min, the mating

was deemed unsuccessful. After mating, the paired male and female

were maintained for another 10min to determine the occurrence of

postcopulatory sexual cannibalism. If the female caught the male,

we immediately separated them with a soft brush.

Female reproduction and offspring survival
To test the effect of prey lipid content on female reproduction, we

put the female into its original glass tube and monitored it every

12 h to determine whether the female laid the egg sac or not. After

mating, the feeding regime of these successfully mated females was

the same as above mentioned (i.e., fed with HL or LL flies accord-

ingly). We recorded the pre-oviposition period (time interval in days

between the end of mating and the first egg sac laying), egg develop-

ment time (time interval in days between the production of first egg

sac and hatching of eggs), and fecundity (i.e., total number of eggs)

of all female spiders that had successfully produced the first egg sac.

There was no significant difference in carapace width between fe-

male spiders from Group HL and Group LL (independent t-test: t54
¼ 1.858, P¼0.069).

We measured the offspring body size (proxy: carapace width)

and their survival without food and water. Two days after spider-

lings emerged from the egg sacs, 5 spiderlings were randomly

selected from each egg sac and their carapace width was measured

individually. In addition, another 5 spiderlings were randomly

selected from each egg sac to determine their viability in the absence

of food and water. They were kept individually in clean and dry

glass tubes under 15�C, and their survival was monitored every

12 h.

Data analysis
We performed all statistical analyses using R 4.0.3 (R Core Team

2021). We checked for normality of all the data using the Shapiro–

Wilk test. The differences in the lipid contents, protein contents,

ratio of lipid to protein of fruit flies, and pre-oviposition duration

between Groups HL and LL were tested using independent t-tests.

The differences in the lipid contents of female wolf spiders, court-

ship latency, courtship duration, copulation duration, and egg devel-

opment time between HL and LL female spiders were compared

using unpaired Wilcoxon rank sum test. We performed Chi-square

tests to compare the differences in the frequency of mating success

Feng et al. � Lipid content promotes spider reproduction 3

and sexual cannibalization of female spiders between HL and LL

groups. To examine the effects of lipid content on offspring carapace

width and survival under the stress conditions without food and

water, we ran general linear models with lipid treatment as a fixed

factor and female identity as a random factor.

Results

Lipid contents of fruit flies and adult female spiders
The lipid content of the fruit flies fed on the culture media with high

sucrose was significantly higher than that of the fruit flies fed on cul-

ture media with low sucrose (independent t-test: t17 ¼ 5.082,

P<0.0001; Figure 1A). However, the protein content was the same

between the 2 groups (independent t-test: t17 ¼ 0.499, P¼0.6243;

Figure 1B). Therefore, the ratio of lipid to protein of fruit flies was

still higher for HL than LL flies (Independent t-test: t17 ¼ 4.281,

P¼0.0005; Figure 1C). Similarly, the lipid content of females fed on

fruit flies with high lipid was significantly higher than that of

females fed on fruit flies with low lipid (Wilcoxon rank sum test:

W¼887,N1 ¼ 32,N2 ¼ 28, P<0.0001; Figure 1D).

Courtship and mating success
There were no significant effects of female diet on male courtship la-

tency (W¼361,N1 ¼ 31,N2 ¼ 25, P¼0.611; Figure 2A), courtship

duration (W¼402, N1 ¼ 31, N2 ¼ 25, P¼0.813; Figure 2B), and

copulation duration (W¼367, N1 ¼ 31, N2 ¼ 25, P¼0.741;

Figure 2C). Both females with high lipid and those with low lipid

had a high rate of mating success (HL: 89% [31/35]; LL: 83% [25/

30], respectively), with no significant difference in the mating suc-

cess between females with different lipid contents (v21 ¼ 0.062,

P¼0.803). No female spiders engaged in precopulatory sexual can-

nibalism. The postcopulatory sexual cannibalization rates of females

with high lipid and females with low lipid were 29% (9/31) and

24% (6/25), respectively, and there was no significant difference

(v21 ¼ 0.014, P¼0.905).

Reproduction and offspring fitness
Compared with females with low lipid, females with high lipid laid

their first egg sac significantly earlier after their mating (t54
¼�2.526, P¼0.015; Figure 3A). In addition, females with high

lipid produced significantly more eggs than those with low lipid

(W¼507.5, N1 ¼ 31, N2 ¼ 25, P¼0.049; Figure 3B). Eggsacs from

all the mated females (31 for females with high lipid and 25 for

females with low lipid, respectively) hatched successfully. However,

no significant effect of lipid content in female was found on egg de-

velopment rate (W¼322.5, N1 ¼ 31, N2 ¼ 25, P¼0.269;

Figure 3C).

We found no effect of lipid content from females on their off-

spring body size (i.e., carapace width) (GLMM: b ¼ �0.004,

z¼1.13, P¼0.257; Figure 4A). In addition, the spiderlings from

females with low lipid had a similar survival time to those with high

lipid under the stress conditions without food and water at 15�C

(GLMM: b ¼ �0.42, z¼0.78, P¼0.434; Figure 4B).

Discussion

Food quality, the components and relative concentrations of macro-

nutrients in food, have important implications for the fitness of ani-

mals. Food quality could not be determined just from biochemical

analysis because even the same proportion of nutrients in the food

may have different quality among different species, if the predator

has different nutrition demands. Although the consequences of the

macronutritional content of food has been well studied for herbi-

vores (Roeder and Behmer 2014; Dreassi et al. 2017; Wang et al.

2018), relatively few studies have been conducted for predators

including spiders (Raubenheimer et al. 2007; Barry and Wilder

2013; Wen et al. 2020). Among the 3 types of macronutrients, previ-

ous studies dealing with lipids usually inferred the effects of lipids

on spider reproduction (Xu et al. 1994; Salomon et al. 2008; Hyne

et al. 2009; Bressendorff and Toft 2011). For example, a few studies

showed that adult female spiders could efficiently extract lipids

from prey (Wilder et al. 2010; Wilder and Rypstra 2010), while

other studies found that lipid content varied significantly for female

spiders during reproductive stages through biochemical analyses

(Salomon et al. 2008, 2011; Romero et al. 2018). Our first attempt

is to determine whether lipid might affect mating and reproduction

of spiders directly through a performance test. By acquiring HL and

LL fruit flies varying in lipid but not protein contents (Figure 1A–C)

and feeding sub-adult P. pseudoannulata female spiders with HL

and LL fruit flies, respectively, we acquired 2 groups of female wolf

spiders varied in their lipid contents when they grow adults (i.e., HL

and LL female spiders, Figure 1D). Then, we conducted
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Figure 1. Boxplots of the lipid content (%) (A), protein content (%) (B), ratio of lipid to protein (C) of the fruit flies D. melanogaster between the high and low su-

crose groups; and (D) female spiders P. pseudoannulata that fed on fruit flies D. melanogaster varying in the lipid content (HL; LL). Boxplots show the median

(central line), first and third quartiles (box), and the minimum and maximum values (whiskers), and the jitter points show the value and corresponding N of each

treatment. The red rhombi show the mean values. ***P < 0.001.
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performance tests to determine whether the lipid contents in female

spiders exerted significant effects on female mating success, sexual

cannibalization rate, egg production, and offspring quality.

Our results from the mating experiments show that the lipid con-

tent of females has no effect on their courtship latency, courtship

duration, mating success, and mating duration (Figure 2). These

results are expected since the measured mating behaviors are prom-

inent to be affected by male quality. Male quality is not a confound-

ing factor since all the males used were field-collected and they were

randomly paired with either HL or LL females. Wilder and Rypstra

(2008) also found there were no significant effect of diet quality on

the latency to male courtship, courtship duration, and occurrence of

mating in the wolf spider P. milvina.

In addition to mating behavior, our results also indicate that

there is no significant difference in sexual cannibalistic rate between

HL and LL females. Thus, the results rule out the possibility that

female spiders cannibalize males for replenishing the limited lipids

in P. pseudoannulata. Alternatively, it is also possible that sexual

size dimorphism in the wolf spider P. pseudoannulata is not large

enough for a relatively well-fed female spider to capture a male

(Gav�ın-Centol et al. 2017). Further investigation, using the starved

female spiders, is needed to test the hypothesis.

Although no difference was found in mating behavior and sexual

cannibalism, our reproduction experiments showed that HL females

laid eggsacs significantly earlier and with more eggs than LL females

(Figure 3A,B). Field-caught female wolf spiders P. milvina main-

tained on a high-quality diet (fruit flies reared on media supple-

mented with dog food) also produced eggsacs more quickly (Wilder

and Rypstra 2008). Spiders are shown to mainly feed upon protein-

rich prey in the field (Wilder 2011; Wilder et al. 2013; Wiggins and

Wilder 2018). It seldom happens that the field-collected female spi-

ders were deficient in protein (Wilder 2011; Wilder et al. 2013). In
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addition, proteins play an important role in promoting the growth

of juvenile spiders (Jensen et al. 2011b; Wilder 2011; Laino et al.

2020), but adult spiders might not grow much in size and what an

adult spider has to reserve may be lipids to meet the needs of metab-

olism and reproduction (Jensen et al. 2010; Wilder and Rypstra

2010; Romero et al. 2018; Trabalon et al. 2018), especially for a fe-

male spider that has a far higher input in reproduction than a male

(Lease and Wolf 2011; Wilder 2011). Thus, it can be inferred that P.

milvina also benefits from the lipids in the high-quality diet to accel-

erate egg production. In contrast, our previous study demonstrates

that females fed with high lipid prey greatly delayed egg-laying in a

sheet-web spiderH. graminicola (Wen et al. 2020). This discrepancy

may be due to several differences between the 2 studies. First, H.

graminicola was a much smaller spider (Female: about 3–4% wet

mass of P. pseudoannulata) with an extremely short development

duration, thus having a high protein demand for development. In

the present study, however, P. pseudoannulata females were reared

with fruit flies from subadult to adult, whereas H. graminicola spi-

ders were constantly fed on high-lipid diet from hatching to matur-

ation. Consequently, H. graminicola (Group HL mean: 26% dry

mass) matured with much higher lipid than P. pseudoannulata

(Group HL mean: 19% dry mass). Second, as protein are also im-

portant for reproduction (Barry and Wilder 2013; Romero et al.

2019; Montoro et al. 2021), a much higher protein demand for

growth and too high lipid reserve at maturation may limit the

amount of protein that H. graminicola could consume and further

invest in egg production. Meanwhile, protein is not a big problem

for egg production of female P. pseudoannulata with a much larger

body to store more protein. Furthermore, in both studies, we are un-

able to completely rule out the possibility that the inadequacy of

other micronutrients, such as phosphorus, vitamins, and minerals,

may influence the reproduction of female spiders (Wilder and

Rypstra 2008; Wilder 2011; Wilder and Schneider 2017).

During egg-laying, female spider exhibits plasticity in allocating

the amount of lipid to their eggs (Anderson 1978; Blamires 2011;

Wilder 2013), which may have a potential influence not only on fe-

cundity, but also on egg quality (i.e., egg size and egg energy density)

(Trabalon et al. 2018). Moreover, high-quality eggs are often

associated with greater nutritional provisioning (Fox and Czesak

2000; Ameri et al. 2019) and offsprings may hatch earlier, hatching

with a larger size, and experience higher survival than offsprings

developing from low-quality eggs (Geister et al. 2008; Ameri et al.

2019). However, offsprings from HL females did not show any ad-

vantage in quality indexes such as egg developmental rate, body

size, and survival (Figures 3C and 4). This is still no wonder as both

groups of female spiders fed on fruit flies with different lipid but

equal protein contents, the latter was more important for offspring

quality. For example, Wilder and Schneider (2017) found that ju-

venile offspring of female spiders Argiope bruennichi supplemented

with essential amino acids survived longer than those with fatty

acids. Meanwhile, protein contributed principally to the energy ex-

penditure of juvenile wolf spiders Pardosa saltans during the period

between dismounting off their mother’s back until their first exogen-

ous feed (Laino et al. 2020). On the contrary, Anderson (1978)

examined the energy content (positive correlation with lipid content)

of eggs of 12 spider species from 6 families and found no correlation

between energy content per unit egg mass and size of the female par-

ent, egg size, or clutch size. He also found that the variation in mass-

specific energy content was less than the variation in clutch size

(Anderson 1978). Thus, the high lipid contents of the fruit flies con-

tribute to promoting egg production, but not offspring size and sur-

vival of female P. pseudoannulata.

In summary, our study demonstrated that female lipid content

has no effect on mating behavior, but positively facilitates their re-

production in the wolf spider, P. pseudoannulata. The present study

sheds some lights on nutritional requirements for the reproduction

of the predatory spiders.
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performance tests to determine whether the lipid contents in female

spiders exerted significant effects on female mating success, sexual

cannibalization rate, egg production, and offspring quality.

Our results from the mating experiments show that the lipid con-

tent of females has no effect on their courtship latency, courtship

duration, mating success, and mating duration (Figure 2). These

results are expected since the measured mating behaviors are prom-

inent to be affected by male quality. Male quality is not a confound-

ing factor since all the males used were field-collected and they were

randomly paired with either HL or LL females. Wilder and Rypstra

(2008) also found there were no significant effect of diet quality on

the latency to male courtship, courtship duration, and occurrence of

mating in the wolf spider P. milvina.

In addition to mating behavior, our results also indicate that

there is no significant difference in sexual cannibalistic rate between

HL and LL females. Thus, the results rule out the possibility that

female spiders cannibalize males for replenishing the limited lipids

in P. pseudoannulata. Alternatively, it is also possible that sexual

size dimorphism in the wolf spider P. pseudoannulata is not large

enough for a relatively well-fed female spider to capture a male

(Gav�ın-Centol et al. 2017). Further investigation, using the starved

female spiders, is needed to test the hypothesis.

Although no difference was found in mating behavior and sexual

cannibalism, our reproduction experiments showed that HL females

laid eggsacs significantly earlier and with more eggs than LL females

(Figure 3A,B). Field-caught female wolf spiders P. milvina main-

tained on a high-quality diet (fruit flies reared on media supple-

mented with dog food) also produced eggsacs more quickly (Wilder

and Rypstra 2008). Spiders are shown to mainly feed upon protein-

rich prey in the field (Wilder 2011; Wilder et al. 2013; Wiggins and

Wilder 2018). It seldom happens that the field-collected female spi-

ders were deficient in protein (Wilder 2011; Wilder et al. 2013). In
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addition, proteins play an important role in promoting the growth

of juvenile spiders (Jensen et al. 2011b; Wilder 2011; Laino et al.

2020), but adult spiders might not grow much in size and what an

adult spider has to reserve may be lipids to meet the needs of metab-

olism and reproduction (Jensen et al. 2010; Wilder and Rypstra

2010; Romero et al. 2018; Trabalon et al. 2018), especially for a fe-

male spider that has a far higher input in reproduction than a male

(Lease and Wolf 2011; Wilder 2011). Thus, it can be inferred that P.

milvina also benefits from the lipids in the high-quality diet to accel-

erate egg production. In contrast, our previous study demonstrates

that females fed with high lipid prey greatly delayed egg-laying in a

sheet-web spiderH. graminicola (Wen et al. 2020). This discrepancy

may be due to several differences between the 2 studies. First, H.

graminicola was a much smaller spider (Female: about 3–4% wet

mass of P. pseudoannulata) with an extremely short development

duration, thus having a high protein demand for development. In

the present study, however, P. pseudoannulata females were reared

with fruit flies from subadult to adult, whereas H. graminicola spi-

ders were constantly fed on high-lipid diet from hatching to matur-

ation. Consequently, H. graminicola (Group HL mean: 26% dry

mass) matured with much higher lipid than P. pseudoannulata

(Group HL mean: 19% dry mass). Second, as protein are also im-

portant for reproduction (Barry and Wilder 2013; Romero et al.

2019; Montoro et al. 2021), a much higher protein demand for

growth and too high lipid reserve at maturation may limit the

amount of protein that H. graminicola could consume and further

invest in egg production. Meanwhile, protein is not a big problem

for egg production of female P. pseudoannulata with a much larger

body to store more protein. Furthermore, in both studies, we are un-

able to completely rule out the possibility that the inadequacy of

other micronutrients, such as phosphorus, vitamins, and minerals,

may influence the reproduction of female spiders (Wilder and

Rypstra 2008; Wilder 2011; Wilder and Schneider 2017).

During egg-laying, female spider exhibits plasticity in allocating

the amount of lipid to their eggs (Anderson 1978; Blamires 2011;

Wilder 2013), which may have a potential influence not only on fe-

cundity, but also on egg quality (i.e., egg size and egg energy density)

(Trabalon et al. 2018). Moreover, high-quality eggs are often

associated with greater nutritional provisioning (Fox and Czesak

2000; Ameri et al. 2019) and offsprings may hatch earlier, hatching

with a larger size, and experience higher survival than offsprings

developing from low-quality eggs (Geister et al. 2008; Ameri et al.

2019). However, offsprings from HL females did not show any ad-

vantage in quality indexes such as egg developmental rate, body

size, and survival (Figures 3C and 4). This is still no wonder as both

groups of female spiders fed on fruit flies with different lipid but

equal protein contents, the latter was more important for offspring

quality. For example, Wilder and Schneider (2017) found that ju-

venile offspring of female spiders Argiope bruennichi supplemented

with essential amino acids survived longer than those with fatty

acids. Meanwhile, protein contributed principally to the energy ex-

penditure of juvenile wolf spiders Pardosa saltans during the period

between dismounting off their mother’s back until their first exogen-

ous feed (Laino et al. 2020). On the contrary, Anderson (1978)

examined the energy content (positive correlation with lipid content)

of eggs of 12 spider species from 6 families and found no correlation

between energy content per unit egg mass and size of the female par-

ent, egg size, or clutch size. He also found that the variation in mass-

specific energy content was less than the variation in clutch size

(Anderson 1978). Thus, the high lipid contents of the fruit flies con-

tribute to promoting egg production, but not offspring size and sur-

vival of female P. pseudoannulata.

In summary, our study demonstrated that female lipid content

has no effect on mating behavior, but positively facilitates their re-

production in the wolf spider, P. pseudoannulata. The present study

sheds some lights on nutritional requirements for the reproduction

of the predatory spiders.
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