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Autonomous Underwater Vehicle are widely used in industries, such as marine resource
exploitation and fish farming, but they are often subject to a large amount of interference
which cause poor control stability, while performing their tasks. A decoupling control
algorithm is proposed and A single control volume–single attitude angle model is
constructed for the problem of severe coupling in the control system of attitude of six
degrees of freedom Autonomous Underwater Vehicle. Aiming at the problem of complex
Active Disturbance Rejection Control (ADRC) adjustment relying on manual experience,
the PSO-ADRC algorithm is proposed to realize the automatic adjustment of its
parameters, which improves the anti-interference ability and control accuracy of
Autonomous Underwater Vehicle in dynamic environment. The anti-interference ability
and control accuracy of the method were verified through experiments.

Keywords: AUV (autonomous underwater vehicle), ADRC (active disturbance rejection control), PSO (partial swarm
optimization), attitude control, anti-disturbance control

INTRODUCTION

Autonomous Underwater Vehicle (AUV) can adapt excellently to the highly variable and dangerous
deep-sea environment and are often used as an important platform for ocean work and underwater
inspection. Nowadays, AUV are widely used (Palomeras et al., 2018; Peukert et al., 2018; Chen et al.,
2021a) in the fields of infrastructure inspection (Ridao et al., 2010), marine geology (Escartín et al.,
2008), underwater archaeology (Bingham et al., 2010), and target search (Cao et al., 2016;Weng et al.,
2021). More applications can be realized through the combination of related technologies and AUVs
(Sun et al., 2018; Chen et al., 2021b; Hao et al., 2021.; Yang et al., 2021; Zhang et al., 2022). The
control of AUV is highly nonlinear (Jia et al., 2012; Roy et al., 2013; Miao et al., 2015; Yun et al.,
2022a), with severe coupling of motions between different directions (Tang et al., 2012), while the
underwater environment is complex with uncertainties such as waves, water plants, and other
disturbances. Therefore, it is significant to carry out the study of control strategies.

For a six-degree-of-freedom AUV, an anti-interference decoupling control algorithm is
proposed in this paper in order to solve the problems of its serious attitude coupling and
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complex and diverse interference in the working environment,
and the main contributions of this paper are as follows:

1) A decoupling method is proposed for the six-degree-of-
freedom AUV, which solves the problem of serious coupling
between variables and realizes that one output variable
corresponds to one input variable of the attitude angle.

2) The disturbances are observed and compensated by the
ADRC controller, so as to improve the interference
resistance of the AUV, and achieves stable control of the
attitude of the AUV.

3) The self-tuning of ADRC parameters is achieved with the
ADRC algorithm optimized by PSO.

The other parts of this paper are as follows, Related Work
offers a review of control methods for AUV, AUV Attitude Anti-
Disturbance Decoupling Control analyzes the forces on the AUV
and establishes a mathematical model, and proposes a decoupling
algorithm for the problem of severe model coupling, and also
improves a Active Disturbance Rejection Control for attitude
control of AUV based on Particle Swarm Optimization,
Simulation Experiments gives a simulation control test of
different controllers for environmental disturbances and
system changes. and the conclusions of this paper are
summarized in Conclusion.

RELATED WORK

There are some control algorithms currently used in AUV, such
as PID control, fuzzy control, sliding mode variable structure
control, adaptive control, and control strategies that combine
multiple control methods.

1) PID control. It is one of the most commonly used control
methods in industry today (Kim et al., 2015; Huang et al.,
2019; Yu et al., 2019; Xu et al., 2022). The simplicity of the
design, the ease of debugging, and no modeling required are
the advantages of PID control. However, it is a linear
combination of proportional, differential, and integral that
simply applies the “deviation between the desired value and
the system output value”, which can cause significant
overshoot and oscillation when controlling AUV in a
strong time-varying environment.

2) Fuzzy control. It accomplishes the control laws by expressing
the characteristics of the object model and the control
behavior (Jiang et al., 2019a; Liu et al., 2021a; Chen et al.,
2021c; Cheng et al., 2021). Khodayari (Khodayari et al., 2015)
designed a fuzzy control algorithm combined with an adaptive
approach, which was applied to both depth and heading
channels of the AUV with good results. Hammad
(Hammad et al., 2017) designed a self-tuning fuzzy PID
controller to control a multi-input and multi-output fully
driven AUV, which is faster and more stable compared to PID
accordingly. However, the fuzzy controller needs to adjust a
large number of fuzzy variables and related parameters, if the
dimensionality of the robot is increased,

3) Sliding mode variable structure control. It uses a sliding surface
to improve the control quality of the controller, it will make
adjustments according to the state of the system, so that the
system follows the set trajectory movement, which enables the
system to have good robustness to external disturbances and
parameter disturbances (Gao et al., 2013; He et al., 2019; Huang
et al., 2020; Li et al., 2020). It is more suitable to control the
motion of AUV, but due to the influence of factors such as
inertia and time delay, the system is prone to jitter and
vibration. Luis (Luis et al., 2016) implemented a sliding-
mode variable structure regulation based on the dynamics
model of the AUV, which allowed the system to have the
desired control effect and to achieve path tracking on the AUV.
The high-order sliding mode controller designed by Ruiz-
Duarte (Ruiz-Duarte et al., 2015) has theoretically
demonstrated good robustness in the longitudinal motion of
the AUV and fast response to disturbances. However, there are
some engineering difficulties in applying this complex control
strategy to practical applications.

4) Adaptive control. This control method is a real-time
measurement of the control quantity, and then adjusts its
parameters and construction method to achieve the effect of
weakening the influence caused by disturbances (Sun et al.,
2020a; Liao et al., 2020; Jiang et al., 2021a; Wen et al., 2021).
Adaptive control can achieve optimal or suboptimal control after
obtaining themathematicalmodel of the control object. Rath BN
(Rath et al., 2020) proposed an adaptive controller with a time
delay estimator that successfully predicted the state of the AUV.
An accurate model of the control object is obtained and the
control effect is very extremely good. F. Rezazadegan
(Rezazadegan et al., 2015) used the Lyapunov theory for
adaptive rectification of inverse control, which is used for the
estimation of uncertain parameters for the tracking control of
AUV motion trajectories, and the simulation results show that
the control algorithm has some stability. However, the algorithm
is based on linear control theory and the transition relies on an
accurate mathematical model, therefore the AUV has complex
and variable disturbances and time-varying parameters, making
it difficult to achieve the desired control effect.

By the above introduction, the current control methods (Caffaz
et al., 2010; Xiang et al., 2015; Mcewen et al., 2017; Sun et al., 2020b)
can be presumably divided into two types, one uses errors to
eliminate errors, which is represented by PID (Duan et al., 2021;
Tao et al., 2022a; Yun et al., 2022b; Sun et al., 2022), this method, is
independent of the model, adjusts only for the control process
without considering the structure and state of the system and has
been used in a large number of applications in practical engineering.
Another one is the modern control theory represented by sliding
mode control and adaptive control (Feng et al., 2017; Li B. et al.,
2019; Jiang et al., 2019b; Liu et al., 2022a), these methods rely on the
mathematical model of the control system, but by the error with the
manufacturing and processing, we are difficult to establish an
accurate mathematical model, its external interference and system
parameter changes are even more difficult to predict for the AUV
operating in an unknown environment, so use these methods in the
engineering practice is difficult.
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The Active Disturbance Rejection Control (ADRC) algorithm
studied in this paper (Han, 2002; Ma et al., 2020; Sun et al., 2021;
Tao et al., 2022b), which inherits the characteristics of the PID
algorithm, does not depend on the accurate model of the control
object, while using modern signal processing techniques to
improve its control process, unifies external disturbances and
system errors as total disturbances, and then estimates and
compensates them, which has the advantage of being easy to
use in engineering and at the same time has a strong anti-
disturbance capability. Depending on the Particle Swarm
Optimization (PSO) (Wang et al., 2013; Liu X. et al., 2021; Bai
et al., 2022; Liu et al., 2022b) which is characterized by fast
convergence and high computational efficiency (Li et al., 2019b;
Jiang et al., 2021b; Liu et al., 2021c; Huang et al., 2021.),
Optimizing the parameters of ADRC using PSO can achieve
better control effect. In this paper, this control method will be
used to solve the problems of nonlinear coupling, external
perturbations, and internal parameter variations of the AUV.

AUV ATTITUDE ANTI-DISTURBANCE
DECOUPLING CONTROL

AUV Mathematical Model
The Active Disturbance Rejection Control technique has the
characteristic of not relying on the specific model of the
controlled object, but building a relatively accurate model can
make our simulation more convincing and more reference value
The research in this paper is centered on the AUVwhich is shown
in Figure 1. In this section, the dynamics of AUV shown in
Figure 1 is modeled. To simplify the task of model building and
subsequent control, the following assumptions are made:

1) Assume that the AUV is a rigid body and its mass does not
vary with time.

2) The effect of Earth’s rotation on the motion of AUV is not
considered.

3) The flow field in the model is a steady-state flow field and the
surrounding water is assumed to be stationary.

In this paper, the thruster distribution of the AUV is used
as shown in Figure 1. The motion of the AUV is described
using the ground and airframe coordinate systems shown in
Figure.

The conversion matrix from the AUV airframe coordinate
system to the ground coordinate system is (Li et al., 2019c; Tan
et al., 2020; Xiao et al., 2021; Liu et al., 2022c)

RBE � ⎡⎢⎢⎢⎢⎢⎣CθCψ −CφSψ + SφSθCψ SφCψ + CφSθCψ

CθSψ CφCψ + SφSθCψ −SφCψ + CφSθSψ
−Sθ CθSφ CθCφ

⎤⎥⎥⎥⎥⎥⎦ (1)

The force analysis of AUV has:

FG � ⎡⎢⎢⎢⎢⎢⎣ 00
mg

⎤⎥⎥⎥⎥⎥⎦, FB � ⎡⎢⎢⎢⎢⎢⎣ 00
Fb

⎤⎥⎥⎥⎥⎥⎦, FA � ⎡⎢⎢⎢⎢⎢⎣Fx

Fy

Fz

⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎣F5 + F6

0
F1 + F2 + F3 + F4

⎤⎥⎥⎥⎥⎥⎦
(2)

Where FG denotes gravity, FB denotes buoyancy, FA denotes the
thrust provided by the AUV thrusters, and FA is relative to the
airframe coordinate system, so it needs to be converted:

FΩ � RA−EFA � ⎡⎢⎢⎢⎢⎢⎣FxCθCψ + FzSφCψ + FzCφSθCψ

FxCθSψ + FzSφCψ + FzCφSθSψ
−FxSθ + FzCθCψ

⎤⎥⎥⎥⎥⎥⎦ (3)

According to Newton’s Second Law of Motion:

∑F � FΩ + FB − FG � m⎡⎢⎢⎢⎢⎢⎣x
..

y
..

z
..

⎤⎥⎥⎥⎥⎥⎦ (4)

Then

⎡⎢⎢⎢⎢⎢⎣x
..

y
..

z
..

⎤⎥⎥⎥⎥⎥⎦ � 1
m
⎡⎢⎢⎢⎢⎢⎣FxCθCψ + FzSφCψ + FzCφSθCψ

FxCθSψ + FzSφCψ + FzCφSθSψ
Fb −mg − FxSθ + FzCθCψ

⎤⎥⎥⎥⎥⎥⎦ (5)

The angular motion of the AUV is controlled by the moments it is
subjected to. The moments to which the AUV is subjected are
mainly the moments generated by the thruster thrust and the
thruster counter-torque, and the total moment can be
expressed as

⎡⎢⎢⎢⎢⎢⎣Mx

My

Mz

⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎣F1X + F2X − F3X − F4X +M6 −M5

F1Y − F2Y − F3Y + F4Y
M1 −M2 +M3 −M4 + F6Y − F5Y

⎤⎥⎥⎥⎥⎥⎦ (6)

Fi is the thrust generated by the ith thruster, X, Y denotes the
distance from the thruster to the corresponding coordinate
axis, and Mi denotes the counter torque generated by the ith
thruster.

The reaction moment generated by the thrusters can be mostly
offset by the forward and reverse propeller settings, and itis much
smaller than the moment generated by the thrusters, in order to
simplify the model, the total moment can be expressed as:

⎡⎢⎢⎢⎢⎢⎣Mx

My

Mz

⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎣F1X + F2X − F3X − F4X
F1Y − F2Y − F3Y + F4Y

F6Y − F5Y

⎤⎥⎥⎥⎥⎥⎦ (7)

According to the Newtonian Euler equation:

FIGURE 1 | Relationship between ground coordinates and airframe
coordinates.
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∑M � ⎡⎢⎢⎢⎢⎢⎣Mx

My

Mz

⎤⎥⎥⎥⎥⎥⎦ � Iw − w × (Iw) (8)

Among them w � ⎡⎢⎢⎢⎢⎢⎣ _φ
_θ
_ψ

⎤⎥⎥⎥⎥⎥⎦
Obtains

∑M � ⎡⎢⎢⎢⎢⎢⎣Mx

My

Mz

⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Ixφ

.. + _θ _φ(Iy − Iz)
Iyθ

.. + _φ _ψ(Iz − Ix)
Izψ

..

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (9)

The equation of rotation is then obtained as

⎡⎢⎢⎢⎢⎢⎢⎢⎣φ
..

θ
..

ψ
..

⎤⎥⎥⎥⎥⎥⎥⎥⎦ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Iy − Iz
Ix

_θ _ψ + Mx

Ix

Iz − Ix
Iy

_φ _ψ + My

Iy

Mz

Iz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(10)

From Eqs 5, 7, 10, the mathematical model of robot posture
control can be obtained:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
..

y
..

z
..

φ
..

θ
..

ψ
..

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
m
(FxCθCψ + FzSφCψ + FzCφSθCψ)

1
m
(FxCθSψ + FzSφCψ + FzCφSθSψ)
1
m
(Fb −mg − FxSθ + FzCθCψ)

Iy − Iz
Ix

_θ _ψ + F1X + F2X − F3X − F4X

Ix

Iz − Ix
Iy

_φ _ψ + F1Y − F2Y − F3Y + F4Y

Iy

F6Y − F5Y

Iz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

Fi denotes the thrust of the ith motor. Table 1 is the relevant
parameters of AUV.

AUV Attitude Decoupling Control Structure
Design
Position control is the basis and key of the whole underwater
navigation control of AUV (Sun et al., 2020c; Tao et al., 2021; Liu

et al., 2022d). Its position control accuracy is determined by the
attitude control accuracy, and the attitude control error of AUV
will amplify its position control error, so in order to ensure the
high accuracy control of speed and position during underwater
navigation, its attitude must be accurately controlled. The Active
Disturbance Rejection Control technique used in this paper
enables accurate control of AUV attitude even in the
complexity and variability of underwater disturbances. The
system equations of the AUV are shown in Eq. 11. It can be
shown that there are six variables that need to be controlled, while
the output of attitude control is only three items, and coupling
phenomenon exists in all three attitude angle directions.
Therefore, in the following we propose a decoupled control
method to control the attitude of the AUV.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F’
1

F’
2

F’
3

F’
4

F’
5

F’
6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F0 + Fφ + Fθ

F0 + Fφ − Fθ

F0 − Fφ − Fθ

F0 − Fφ + Fθ

0 − Fψ

0 + Fψ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(12)

Where the F0 is the thrust of the 6 thrusters when the AUV is
stationary in the water to maintain the desired state Fφ, Fθ , Fψ ,,
are respectively the adjustment forces in three directions φ, θ, ψ.

Thus the attitude decoupling control system of the AUV can
be expressed as:

⎡⎢⎢⎢⎢⎢⎢⎢⎣φ
..

θ
..

ψ
..

⎤⎥⎥⎥⎥⎥⎥⎥⎦ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Iy − Iz
Ix

_θ _ψ + 4FφX

Ix

Iz − Ix
Iy

_φ _ψ + 4FθY

Iy

2FψY

Iz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13)

AUV Attitude ADRC Control Algorithm
ADRC has excellent immunity to perturbations and is not
dependent on a specific system model. The ADRC consists of
a tracking differentiator (TD), a nonlinear state error feedback
control law (NLSEF), and an ESO. The literature (Wu et al., 2018;
Luo et al., 2020) used ADRC to achieve decoupled control of
MIMO nonlinear system; the literature (Fareh et al., 2019; Cheng
et al., 2020) used ADRC to achieve control of flexible robotic arm;
the literature (Qiao et al., 2020; Yu et al., 2020) used ADRC to
achieve adaptive control of missile attitude; the structure of
ADRC is shown in Figure 2:

From Eq. 13, it can be seen that the AUV attitude control
system is a nonlinear system. In this paper, TD is used to give the
transition to the input signal, ESO is used to realize the

TABLE 1 | Related parameters of AUV.

M (kg) G (m/s2) X (m) Y (m) Ix (kg•m2) Iy (kg•m2) Iz (kg•m2)

5.8 9.8 0.17 0.2 0.078 0.096 0.118

TABLE 2 | Tracking effect with external interference.

Response time/s Overshoot/% Steady-state error/%

PSO-PID 2.242 0.2 0.7
ADRC 2.601 2.7 0.1
PSO-ADRC 2.628 0.4 0.07

TABLE 3 | Tracking effect with internal interference.

Response time/s Overshoot/% Steady-state error/%

PSO-PID 3.627 7.8 1.15
ADRC 4.141 8.7 0.04
PSO-ADRC 4.063 2.6 0.02
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observation of the internal and external disturbance of the
system, and the real-time compensation of the disturbance is
realized in the NLSEF. Its corresponding ADRC attitude control
structure is shown in Figure 3.

AUV Attitude Input Signal Tracking Process
For the input signal tracking problem of the second-order system,
Prof. Jingqing Han derived a fastest integrated function fhan (Eq.
14), where d, a0, y, a1, a2, sy, a, sa are intermediate quantities for
the purpose of simplifying the equation, and this Function can
achieve fast tracking of the input signal. The differential tracker of
AUV attitude input signal is constructed by using this function as
shown in Eq. 15

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d � r0h
2
0

a0 � h0x2

y � x1 + a0

a1 �
����������
d(d + 8

∣∣∣∣y∣∣∣∣)√
a2 � a0 + sign(y)(a1 − d)/2
sy � [sign(y + d) − sign(y − d)]/2
a � (a0 + y − a2)sy + a2
sa � [sign(a + d) − sign(a − d)]/2
fhan � −r[a/d − sign(a)]sa − r0sign(a)

(14)

⎧⎪⎨⎪⎩
x1(k + 1) � x1(k) + hx2(k)
x2(k + 1) � x2(k) + hfh
fh � fhan(x1(k) − v(k), x2(k), r0, h0)

(15)

FIGURE 2 | ADRC controller structure.

FIGURE 3 | ADRC attitude control structure diagram.
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x1 is the tracking of the AUV attitude input signal v, x2 is the
tracking of the differential signal of v, r0 is the velocity factor, h0 is
the filtering factor, and fh is the intermediate quantity of the
simplified equation.

ESO-Based AUV Perturbation Estimation
From Eq. 13, the pitch angle equation of state of the AUV can be
written in the following form.

⎧⎪⎪⎨⎪⎪⎩
_x1 � x2

_x2 � f(x1, x2, w(t), t) + buθ

y � x1

(16)

where x1 � θ; x2 � _θ; b � 4X
Ix
; w(t) are external disturbances; uθ �

Fθ is the control quantity; and f(x1, x2, w(t), t) is the complex
disturbance.

Make x3 � f(x1, x2, w(t), t) extend a new state that can turn
the original system into a linear system by:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
_x1 � x2

_x2 � x3 + buθ

_x3 � _f(x1, x2, w(t), t) � w0(t)
y � x1

(17)

For the above system the following observer is designed for
observation.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε1 � z1 − y

_z1 � z2 − β01ε1

_z2 � z3 − β02fal(ε1, 12, δ) + buθ

_z3 � −β03fal(ε1, 14, δ)
(18)

The rectification parameters enable precise tracking of system
state variables and accurate estimation of external disturbances.
The heading and yaw angles of the AUV are also processed using
this algorithm.

Nonlinear Error Feedback and Control Volume
Generation for AUV
Based on the above observed disturbance and the tracking
amount of the input signal, high precision control can be
achieved by using the ADRC nonlinear error combination.
The nonlinear error combination is shown as follows.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

e11 � v11 − z11, e12 � v12 − z12
u01 � fhan(e11, ce12, r, h1)
e21 � v21 − z21, e22 � v22 − z22
u02 � fhan(e21, ce22, r, h1)
e31 � v31 − z31, e32 � v32 − z32
u03 � fhan(e31, ce32, r, h1)

(19)

The results of the nonlinear error feedback can be used to
generate high-precision control quantities for the AUV.

⎧⎪⎨⎪⎩
u1 � (u01 − z13)/b1
u2 � (u02 − z23)/b2
u3 � (u03 − z33)/b3 (20)

where u1, u2, u3, respectively denote the control inputs of pitch angle,
cross-roll angle, and heading angle,; b is the compensation factor.

FIGURE 4 | Flow chart of particle swarm optimization.

FIGURE 5 | Tracking the target signal.
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PSO Optimization of ADRC Control
Parameters
ADRC needs to adjust more parameters, although most of them
have reference values and have little impact on the system,
however there are still damping factor c, accuracy factor h1,
compensation factor b0 that need to be adjusted, and the
adjustment process is complicated. The Particle Swarm

Optimization algorithm (PSO) is one of the evolutionary
algorithms (Lalwani et al., 2019; Sun et al., 2020d; Zhao et al.,
2022). The solution process of PSO starts from a set of random
initial solutions and iterates continuously to find the optimal
solution through the neighborhood search computational
method, in each iteration of the computation, the particle
swarm updates itself through the individual optimal solution

FIGURE 6 | Signal tracking under no interference.

FIGURE 7 | Signal tracking experiment under external interference.
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and the population optimal solution until it finds the optimal
solution. Compared to evolutionary algorithms such as genetic
algorithms, Particle Swarm Optimization have no crossover and
mutation operations, can be encoded with real numbers, have a
simple structure and are fast to calculate, which have great
advantages as algorithms for online optimization (Chegini
et al., 2018; Tian et al., 2020; Liao et al., 2021). In this paper,
we use PSO to offline optimize three parameters that have a large
impact on ADRC: the damping factor c, the accuracy factor h1,
and the compensation factor b0.

ADRC Control Adaptation Function
According to the performance requirements of AUV control, the
steady-state error, response time, and overshoot are taken into
account in the evaluation index, and the constructed fitness
function is shown in Eq. 21. ess, et, and Mp represent the

steady-state error, response time, and overshoot, and ηi (i =
1,2,3) is the corresponding weights.

J � ∫t

0
(η1|ess|)dt + η2et + η3Mp (21)

PSO Optimized ADRC Controller Flow
Step 1: Initialize the particle swarm and ADRC parameters. Set

the random position and velocity of the particle swarm,
and calculate the local optimal and global optimal initial
values of the particle swarm.

Step 2: The position vector of each particle is used as the three
parameters of the ADRC controller: damping factor,
accuracy factor, and compensation factor. The
adaptation value of each particle is calculated
according to Eq. 21.

FIGURE 8 | External interference signal.

FIGURE 9 | Tracking error under external disturbance.
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Step 3: Compare the adaptation value of each particle with the
local optimum and the global optimum, and update the
position and velocity of the particle swarm.

Step 4: Determine whether the end condition is reached. If not,
return to Step 2, otherwise stop the optimization and
output the global optimum parameters. Figure 4 shows
the flow chart of the PSO algorithm.

SIMULATION EXPERIMENTS

Simulation experiments are performed for the above control
objects. In order to reflect the control effect of particle swarm
optimized ADRC, it is compared with Particle Swarm Optimized
PID algorithm (Girirajkumar et al., 2010) and conventional
ADRC. From AUV Mathematical Model, it can be shown that

FIGURE 10 | Signal tracking experiment under internal interference.

FIGURE 11 | Tracking error under internal disturbance.
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the three attitude angle control equations of AUV are basically the
same, so it is only shown that the effect of the simulation control
of pitch angle in this paper. Figure 5 shows the tracking target
signal for the pitch angle, where the 2nd second is step signals and
the 12th second starts with a sinusoidal signal. The simulation of
PSO-PID, ADRC and PSO-ADRC in the absence of interference
is shown in Figure 6. The response speed and overshoot of PSO-
PID in the absence of disturbances are better than those of ADRC
and PSO-ADRC, and the overshoot of ADRC optimized by
particle swarm is smaller than that of ADRC.

Figure 7 shows the tracking effect of the signal under external
disturbance, and Figure 8 shows the random external
disturbance. The PSO-PID controller shows significant
perturbations under the influence of external disturbances,
while the control effect is basically unaffected by the two
ADRCs due to the mechanism of observing and compensating
the perturbations based on ESO, and the signal tracking error
under external disturbances is smaller than that of the PSO-PID
algorithm (Figure 9, Table 2).

Figure 10 shows the simulation experiment of changing the
internal parameters of the system, by adding the internal
disturbance. The response speed of three controllers is reduced
and the overshoot is increased. The effect of PSO-PID controller
is the most affected and basically fails to satisfy the control
requirements, while the effect of ADRC controller optimized
by using PSO in this paper is the least affected (Figure 11,
Table 3).

From the appeal simulation experiments, it can be shown that
PSO-ADRC has strong robustness to interference, which has
better generality at the same time. After the parameters are
optimized by PSO, the parameters of actual control object has
changed within a certain range, which does not affect the effect of
the controller. These characteristics of PSO-ADRC have strong
applicability for AUV working in complex and changing
underwater environment.

CONCLUSION

The research on AUV attitude control based on decoupling
algorithm and PSO-ADRC is motivated by the fact that it can

facilitate the stable control of AUV attitude and improve the
operational capability of AUV. In this paper, a decoupling
algorithm for a six-degree-of-freedom AUV is proposed to
solve the problem of serious coupling in each variable and to
realize that one output variable of attitude angle corresponds to
one input variable. The problem with current AUV control
methods is that immunity and versatility cannot be combined,
however the ADRC controller can guarantee AUV immunity
while not relying on an accurate mathematical model of the AUV.
The parameters of the ADRC optimized by the PSO algorithm
can greatly reduce the process of manually adjusting the
parameters.
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