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ABSTRACT
There are few studies on the role of iron metabolism genes in predicting the prognosis of lung 
adenocarcinoma (LUAD). Therefore, our research aims to screen key genes and to establish 
a prognostic signature that can predict the overall survival rate of lung adenocarcinoma patients. 
RNA-Seq data and corresponding clinical materials of 594 adenocarcinoma patients from The 
Cancer Genome Atlas(TCGA) were downloaded. GSE42127 of Gene Expression Omnibus (GEO) 
database was further verified. The multi-gene prognostic signature was constructed by the Cox 
regression model of the Least Absolute Shrinkage and Selection Operator (LASSO). We con-
structed a prediction signature with 12 genes (HAVCR1, SPN, GAPDH, ANGPTL4, PRSS3, KRT8, 
LDHA, HMMR, SLC2A1, CYP24A1, LOXL2, TIMP1), and patients were split into high and low-risk 
groups. The survival graph results revealed that the survival prognosis between the high and low- 
risk groups was significantly different (TCGA: P < 0.001, GEO: P = 0.001). Univariate and multi-
variate Cox regression analysis confirmed that the risk value is a predictor of patient OS 
(P < 0.001). The area under the time-dependent ROC curve (AUC) indicated that our signature 
had a relatively high true positive rate when predicting the 1-year, 3-year, and 5-year OS of the 
TCGA cohort, which was 0.735, 0.711, and 0.601, respectively. In addition, immune-related path-
ways were highlighted in the functional enrichment analysis. In conclusion, we developed and 
verified a 12-gene prognostic signature, which may be help predict the prognosis of lung 
adenocarcinoma and offer a variety of targeted options for the precise treatment of lung cancer.
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Introduction

Lung cancer is the leading cause of cancer-related 
deaths around the world [1]. In 2018, there were 
2.1 million new lung cancer cases and 1.8 million 
deaths worldwide [2]. In recent years, the inci-
dence of lung adenocarcinoma has consistently 
increased and has caused it to become the most 
common type of non-small cell lung cancer [3]. 
Thus, it is necessary to establish a neo-model for 
predicting the prognosis of lung adenocarcinoma 
in order to develop more effective diagnosis and 
treatment strategies.

Iron (Fe) is an essential nutrient for the human 
body; iron plays a prominent role in multiple 
forms of cell death, including apoptosis, necrosis, 
ferroptosis, and ascorbate-mediated death [4]. 
Circulating iron is normally found complexed 
with transferrin (Tf) and circulates in the blood-
stream. Tf is absorbed in peripheral tissues by 
binding to TfR1 [5]. The high expression of TfR1 
is not only related to the reduced response to 
chemotherapy, but also to the increased phosphor-
ylation of Src kinases in breast cancer, promoting 
tumor cell division, motility and adhesion [5]. 
Disorders of iron metabolism in cancer are well 
known. Based on review of the literature, there is 
evidence that iron plays a particularly important 
role in lung cancer [6]. Disorders of iron metabo-
lism are closely linked to the occurrence, prolifera-
tion and progression of tumors, and seriously 
affect tumorigenesis [7]. Sukiennicki [8] et al. 
showed that high iron and high iron protein repre-
sent higher body iron, which may be relevant to 
the occurrence of lung cancer. Ferritin and SOD 
are widely recognized in the occurrence of lung 
cancer [9,10]. Researchers have demonstrated that 
the increase of these two markers in lung cancer 
patients seems to be the result of inflammation 
and oxidative stress, and it is believed that inflam-
mation and oxidative stress are important compo-
nents of the pathogenesis of lung malignancies 
[10–12]. Chanvorachote [13] et al. found that 
iron can induce cancer stem cells and promote 
the production of an aggressive phenotype 
through the generation of ROS in lung cancer 
cells, which contributes to the occurrence of lung 
tumors. Although lung cancer is certainly not just 
an iron disease, these findings indicate that there is 

a clear and direct connection between iron and 
lung cancer. Therefore, it is necessary to identify 
novel prognostic biomarkers and construct more 
accurate prognostic models. Doing so can provide 
an effective reference for precise clinical treatment 
strategies for lung adenocarcinoma.

In our study, the mRNA expression profile and 
corresponding information data of patients with 
lung adenocarcinoma were obtained from the 
TCGA and GEO databases. We aimed to establish 
a credible iron metabolism-related prognostic gene 
signature for patients with lung adenocarcinoma. 
Our results help predict the prognosis of LUAD 
patients and provide a novel direction for the 
development of precise treatment strategies.

Materials and methods

Data collection

The Cancer Genome Atlas (TCGA) data mining plat-
form was searched and standardized RNA-seq data was 
downloaded. The number of fragments per million 
bases (FPKM) and relevant clinical data of LUAD, 
were accessed and naturalized into an expression 
matrix [14] (As of 16 July 2020, https://portal.gdc.can 
cer.gov/repository). The samples consisted of mainly 
594 cases of LUAD (535 samples, 59 adjacent normal 
samples). For the clinical information materials of 
TCGA-LUAD patients, the following methods were 
used for preprocessing: (1) Samples without clinical 
data were deleted; (2) Samples with follow-up time 
lower than 30 days were deleted. In total, 486 LUAD 
patients were included in the research as a training set.

Iron metabolism genes were downloaded 
through the GeneCards data portal, screening out 
the relevant score threshold (relevant score ≥ 5), 
and finally 3037 iron metabolism-related genes 
were obtained (https://www.genecards.org/). The 
mRNA expression matrix of iron metabolism 
genes in this study was obtained by taking the 
intersection with the expression matrix of the 
above-mentioned TCGA-LUAD patients, which 
was then used for subsequent analysis.

In addition, we retrieved gene expression arrays 
(GSE42127) and clinical information materials of 
another 133 lung adenocarcinoma patients in the 
Gene Expression Omnibus (GEO) (https://www. 
ncbi.nlm.nih.gov/geo/) in order to verify the 
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prognostic status of the gene signatures found in 
the training set (TCGA). Similarly, we deleted 
samples with no clinical data and with a follow- 
up time lower than 30 days. Finally, 131 patients 
were used as a test set for further validation.

Identify differentially expressed genes by 
dimension reduction algorithm

The ‘SVA’ R software was used to eliminate batch 
effects and other unnecessary changes in high- 
throughput experiments; the intersection genes of 
the TCGA and GEO data sets were obtained 
respectively [15]. Next, the ‘limma’ R software 
package was used to further distinguish the differ-
entially expressed genes (DEGs) between the 
tumor tissue and the tumor adjoining tissue 
((FDR)<0.05, logFC = 1.5) [16]. Finally, univariate 
Cox analysis was executed to single out iron meta-
bolism-related genes with a strong prognostic abil-
ity (P < 0.01). The candidate metabolic genes 
obtained were used in the next step of constructing 
the prognostic gene signature.

PPI network construction

The candidate genes related to iron metabolism 
were obtained by univariate Cox analysis. On the 
STRING database portal (version 11.0) [17], the 
protein-protein interaction (PPI) network of can-
didate genes was downloaded. R software package 
was used to compute the correlation coefficients of 
iron metabolism candidate genes and construct 
a correlation network diagram.

Construction and evaluation of iron metabolism 
gene prognosis model

For the candidate genes obtained above, in order 
to prevent overfitting, LASSO-Cox regression ana-
lysis was carried out through the ‘glmnet’ package, 
and a predictive prognostic model containing 12 
genes related to iron metabolism (iteration = 2000) 
was constructed [18]. The LASSO penalty was 
applied to simultaneous consideration of contrac-
tion and variable selection [18,19]. The penalty 
parameter (λ) of this metabolic model was con-
firmed through 10-fold cross-validation based on 
the ‘glmnet’ software package in the R software 

[18]. On the basis of standardized expression levels 
of a piece iron metabolic genes and its regression 
coefficient, the risk score equation of LUAD 
patients was calculated as follows:

Risk Score = ∑ (The expression level of a piece 
metabolic gene × regression coefficient).

Patients with lung adenocarcinoma could be 
split into high-risk and low-risk groups, on the 
basis of the median risk score. Kaplan-Meier 
analysis was carried out and the ‘survival ROC’ 
software package was applied in order to draw 
time-dependent ROC curves [20,21]. In addition, 
it was possible to assess the predictive perfor-
mance of the metabolic gene signature using 
a calibration chart that compared, predicted, 
and observed overall survival (OS) [20]. The 
GSE42127 data set with clinical data was used 
for further external verification.

Prognostic independence analysis of lung 
adenocarcinoma

There was a need to further determine indepen-
dent prognostic parameters and verify the 
powerful prognostic ability of gene signature. 
Therefore, in order to conduct the study of 
gene signature and clinical pathological para-
meters (mainly age, gender, stage, TNM stage) 
that predict prognosis in the TCGA data set, we 
conducted univariate and multiple Cox regres-
sion analysis. Among them, in the multivariate 
Cox regression analysis, P < 0.05 was considered 
statistically significant. Therefore, we only con-
sidered the parameters with P value <0.05 in the 
univariate analysis.

Potential correlations between high and low risk 
populations and biological functions and 
immune cells

To explore the molecular mechanisms of the 
metabolic gene signature, we executed gene set 
enrichment analysis (GSEA) to further validate 
the model (version GSEA_4.0.3) [22]. Before 
that, we divided LUAD patients into high-risk 
and low-risk groups. Then, based on the gene 
expression data of lung adenocarcinoma patients 
obtained from TCGA, the ESTIMATE (using 
gene expression profile to assess stromal cells 
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and immune cells in malignant tumor tissues) 
algorithm was used to calculate stromal, immune 
and estimated scores [23]. Subsequently, using 
the ‘gsva’ software package in the R software, 
we performed a single-sample gene set enrich-
ment analysis (ssGSEA) [24]. Through the appli-
cation and estimation of expression data, 
valuable insights into the state of immune cell 
infiltration and the activity of immune-related 
pathways were obtained [24].

Statistical analysis

Statistical analysis was performed in R software 
v. 4.0.2. The Student’s t test was applied to analyze 
paired samples of tumor tissue and adjacent tumor 
tissue. For OS between people in different risk 
groups, Kaplan-Meier analysis and comparisons 
were applied. Through univariate and multivariate 
Cox regression analysis, survival assessment was 
further carried out. For further verification and 
evaluation, time-dependent ROC curve and cali-
bration curves were drawn. Additionally, the 
hazard ratio (HR) and 95% confidence interval 
(CI) was computed. The stromal, immune and 
estimated scores were calculated using the 
ESTIMATE software package. In all the statistical 
tests involved in this research, a P value < 0.05 was 
considered statistically significant.

Results

In the present study, we aimed to identify genes 
involved in iron metabolism that affect the 
prognosis of LUAD. We identified 12 DEGs 
involved in iron metabolism. These DEGs were 
used to construct a new prognostic models and 
validate it to explore the prognostic predictive 
power and diagnostic power of the signature. In 
addition, we also performed functional enrich-
ment analysis and immune correlation analysis 
to explore the potential biosynthetic mechan-
isms involved in the pathogenesis of lung 
adenocarcinoma.

Identification of iron metabolism DEGs in LUAD

After pre-processing, 486 LUAD patients from 
TCGA and 131 lung adenocarcinoma patients 

from GEO were selected. A detailed summary 
of the clinical features of these patients is 
shown in Table 1. In order to identify prognos-
tic genes related to iron metabolism of LUAD, 
differential expression analysis was performed. 
The DEGs between tumor samples and neigh-
boring tumor samples were selected through 
the Wilcox Test. A total of 257 iron metabo-
lism-related DEGs were identified (adjusted 
p values<0.05 and |logFC|>1.5); among them, 
there were 154 up-regulated DEGs, and 103 
significantly down-regulated DEGs. The heat 
map and volcano map of these differential 
genes are shown in (Figure 1(a,b)). To further 
identify the representative prognostic genes of 
iron metabolism, we performed univariate Cox 
analysis, leading to the retention of 46 DEGs 
(P < 0.01, Table 2). The interaction network 
between these genes is shown in (Figure 1(e)).

Table 1. Clinical characteristics of the lung cancer patients used 
in this study.

Features TCGA (n, %) GSE42127 (n, %)

Platform Illumina HiSeq Illumina HumanWG-6 v3 Array
≤ 60 years 156 (32.1%) 22 (16.8%)
> 60 years 330 (67.9%) 109 (83.2%)
NA 0 (0.0%) 0 (0.0%)
Male 225 (46.3%) 67(51.1%)
Female 261 (53.7%) 64 (48.9%)
NA 0 (0.0%) 0 (0.0%)
StageI 258 (53.1%) 87(66.4%)
StageII 116 (23.9%) 22(16.8%)
StageIII 79 (16.3%) 20(15.3%)
StageIV 25 (5.1%) 1 (0.75%)
NA 8 (1.6%) 1 (0.75%)
T1 163 (33.5%) 123 (93.9%)
T2 259 (53.3%) 7 (5.35%)
T3 43 (8.9%) 0 (0.0%)
T4 18 (3.7%) 0 (0.0%)
TX 3 (0.6%) 1(0.75%)
NA 0(0.0%) 0(0.0%)
N0 312 (64.2%)
N1 93 (19.1%)
N2 68 (14.0%)
N3 2(0.4%)
N4 0(0.0%)
NX 10 (2.1%)
NA 1(0.2%)
M0 322 (66.3%)
M1 24 (4.9%)
MX 136 (28.0%)
NA 4 (0.8%)
Alive 328 (67.5%) 90 (68.7%)
Dead 158 (32.5%) 41 (31.3%)
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Establishment and verification of an iron 
metabolism-related gene signature

For constructing a genetic signature related to iron 
metabolism, the following steps were performed: first, 
on the basis of expression profiles of the above 46 
candidate genes, LASSO Cox regression analysis 
(2,000 iterations) was carried out. According to the 
minimum λ, the optimal model was constructed with 
the minimum parameters (Figure 1(c,d)). Eventually, 
a prognostic model containing 12 genes was established 
to evaluate the prognosis of each lung adenocarcinoma 
patient. The specific calculation equation for this risk 
score was: Risk Score = (0.01949× expression value of 
HAVCR1 0.00501 × expression value of SPN + 
0.00003× expression value of GAPDH + 0.00087 ×  
expression value of ANGPTL4 + 0.00004× expression 

value of PRSS3 + 0.00036 × expression value of 
KRT8 + 0.00122 × expression value of LDHA + 
0.02521× expression value of HMMR + 0.00407 
× expression value of SLC2A1 + 0.00102× expression 
value of CYP24A1 + 0.00450 × expression value of 
LOXL2 + 0.00031 × expression value of TIMP1). 
Patients could be split into high-risk group (n = 238) 
and low-risk group (n = 239) using the optimal cutoff 
value of the risk score (After adjusted, Figure 2(a)). 
Kaplan-Meier analysis results revealed that the OS of 
the two different risk groups in the training group was 
significantly different. It was observed that the OS of the 
low-risk group was significantly higher than that of the 
high-risk group (P < 0.0001, Figure 2(b)). Next, the 
strong prognostic value of 12 gene signatures was ana-
lyzed using the time-dependent ROC curve. In addi-
tion, with respect to the prediction of risk scores for 

Figure 1. (a)(b) Heat map and volcano map of 257 different gene expression levels. (c) Coefficient distribution of 12 prognostic 
genes. (d) The dashed lines represent the minimum value and the optimal λ of the optimal volume of the variable respectively. (e) 
PPI network downloaded from STRING database shows the interaction among 46 candidate genes. Correlation coefficients are 
expressed in different colors.
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1-year, 3-year, and 5-year overall survival, the AUCs 
were 0.735, 0.711, and 0.601, respectively (Figure 2(d, 
e,f)).

External verification of 12 gene signatures in 
GSE42127

The external data set GSE42127 further proved 
the predictive capability of the 12-gene prognostic 
signature. For patients in the GEO cohort, the 
same calculation method as the TCGA cohort 

was applied to compute the risk score, following 
which the LUAD patients were split into high- 
risk and low-risk groups (Figure 3(a)). Kaplan- 
Meier analysis results were similar to those 
obtained in the TCGA cohort; it was shown that 
the overall survival of the low-risk group was 
significantly longer than that of the high-risk 
group (P = 0.001, Figure 3(b)). Next, the prog-
nostic ability of the signature was assessed 
through time-dependent ROC, wherein the 12- 
gene signature could have a higher performance. 
When predicting the AUC of the overall survival 
(OS) of the 12-gene signature, the results at 1, 3 
and 5 years were 0.904, 0.745, and 0.712, respec-
tively (Figure 3(d,e,f)).

Analysis of independent prognostic potency of 
12-gene signature

To determine the prognostic factors of overall 
lung adenocarcinoma survival, we carried out 
univariate and multivariate Cox regression ana-
lysis. Among them, the univariate analysis 
showed the following results for the TCGA 
cohort: Risk Score (HR = 3.982, 95% 
CI = 2.867–5.530, P < 0.001), Stage 
(HR = 1.648, 95%CI = 1.396–1.946, P < 0.001), 
T stage (HR = 1.600, 95%CI = 1.285–1.994, 
P < 0.001), N stage (HR = 1.787, 95% 
CI = 1.455–2.195, P < 0.001). The univariate 
analysis also showed that the GEO cohort with 
Risk Score (HR = 82.970, 95%CI = 10.025– 
686.710, P < 0.001), Stage (HR = 1.652, 95% 
CI = 1.144–2.387, P = 0.007) had a significant 
correlation with the overall survival of lung ade-
nocarcinoma (Table 3). Interestingly, we 
observed that the risk scores in the TCGA and 
GEO cohorts were distinctly related to OS. 
Similarly, the multivariate regression analysis 
(after correcting the parameters) indicated the 
following data for the TCGA cohort: Risk Score 
(HR = 3.313, 95%CI = 2.273 − 4.827, P < 0.001), 
Stage (HR = 1.921, 95%CI = 1.154–3.198, 
P = 0.012); and the GEO cohort: Risk Score 
(HR = 84.063, 95%CI = 7.882 − 896.052, 
P < 0.001), Stage (HR = 1.568, 95%CI = 1.052– 
2.337, P = 0.027) (Table 3). However, in the 
multivariate Cox regression analysis, the risk 
score was an independent predictor of OS.

Table 2. Univariate Cox analysis results of TCGA cohort-46 
candidate genes.

Gene HR 95% CI(low) 95% CI(high) P value

AURKA 1.025 1.008 1.042 0.003
FBP1 0.993 0.988 0.998 0.004
MKI67 1.045 1.021 1.069 <0.001
CYP4B1 0.994 0.989 0.998 0.005
HAVCR1 1.133 1.071 1.199 <0.001
FEN1 1.028 1.011 1.046 0.001
CYP27A1 0.984 0.973 0.996 0.007
MCM4 1.019 1.006 1.033 0.003
RRM2 1.026 1.012 1.04 <0.001
ITGB4 1.006 1.002 1.01 0.004
VIPR1 0.839 0.753 0.936 0.002
ENO1 1.002 1.001 1.002 <0.001
INHA 1.008 1.003 1.014 0.004
HSPD1 1.006 1.003 1.009 <0.001
ADRB2 0.785 0.673 0.914 0.002
PFKP 1.009 1.004 1.013 <0.001
TK1 1.009 1.003 1.014 0.002
CCNB1 1.019 1.009 1.029 <0.001
TXNRD1 1.002 1.001 1.004 0.001
PLOD2 1.013 1.007 1.02 <0.001
MAD2L1 1.05 1.012 1.09 0.009
SPN 0.896 0.831 0.966 0.004
BIRC5 1.023 1.008 1.038 0.003
KRT19 1.001 1 1.001 0.004
GAPDH 1.001 1 1.001 <0.001
KPNA2 1.012 1.006 1.017 <0.001
ANGPTL4 1.009 1.004 1.013 <0.001
CCNA2 1.034 1.016 1.052 <0.001
PRSS3 1.024 1.009 1.04 0.002
KRT8 1.001 1.001 1.002 <0.001
LDHA 1.005 1.003 1.006 <0.001
HMMR 1.075 1.041 1.11 <0.001
ABCC2 1.019 1.007 1.031 0.001
CDKN3 1.039 1.013 1.066 0.003
SLC2A1 1.01 1.007 1.012 <0.001
FOXM1 1.035 1.017 1.053 <0.001
SCN4B 0.763 0.63 0.923 0.005
NT5E 1.009 1.002 1.016 0.008
DLC1 0.96 0.932 0.99 0.009
IGFBP3 1.003 1.001 1.004 0.002
CYP24A1 1.003 1.002 1.005 <0.001
LOXL2 1.02 1.014 1.027 <0.001
TIMP1 1.001 1 1.002 0.001
ALDOA 1.002 1.001 1.003 0.002
PTPRH 1.036 1.012 1.061 0.003
TPX2 1.011 1.004 1.019 0.001
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Constructed and verified nomogram and 
calibration plots

All the clinical information parameters in the uni-
variate Cox regression analysis mentioned above 
exist in the TCGA and GEO cohorts. Among 
these, gender, stage, T stage, M stage and N stage 
were the parameters involved in the TCGA nomo-
gram (Figure 2(c)). The parameters included in the 
GEO nomogram were gender and stage (Figure 3 
(c)). In the TCGA and GEO cohorts, a prognostic 
nomograph was constructed to predict the OS at 1, 
3, and 5 years, respectively. It can be seen that 
those patients with higher scores have distinctly 
lower OS than those with lower scores. In addi-
tion, the results of the calibration chart have 
shown that the nomogram is significantly accurate 
in predicting the OS of patients with lung adeno-
carcinoma (TCGA: Figure 2(g,h,i), GEO: Figure 3 
(g,h,i)).

Biological function and immune analysis of TCGA 
Cohort

Next, we aimed to deepen our understanding of 
the biological functions of the prognostic model. 
In 477 LUAD samples from high-risk and low-risk 
groups of TCGA (After adjusted), ssGSEA was 
used to explore the tumor microenvironment in 
different immune clusters, and to compute the 
stromal score, immune score and estimated score 
of cancer tissue expression profile. Based on the 
data, we have reason to conclude that patients with 
high immunity have higher estimated score, stro-
mal score, and immune score than patients with 
low immunity. In contrast, the tumor purity of the 
low-immune patients was higher than that of the 
high-immune patients. The result is shown in 
Figure 4(a). These results indicated that the 
TCGA cohort significantly enriched many 
immune-related biological processes (P < 0.05). 

Figure 2. (a) Distribution of median of risk scores and OS status and risk score in TCGA cohort. (b) Survival analysis of TCGA high-risk 
group and low-risk group (P < 0.001). (c) Nomogram analysis results of TCGA cohort. (d)(e)(f) AUC of time-dependent ROC curves in 
TCGA cohort for 1 year, 3 years and 5 years. (g)(h)(i) Calibration curve for 1 year, 3 years and 5 years in TCGA cohort.
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Among them, eight biological processes related to 
immunity include: immunoglobulin complex, nat-
ural killer cell chemotaxis, circulating immunoglo-
bulin complex, immunoglobulin receptor binding, 

MHC class II protein complex, MHC protein com-
plex, positive regulation of interferon−gamma bio-
synthetic process, and T cell receptor complex 
(P < 0.05, Figure 4(b)).

Figure 3. (a) Distribution of median of risk scores and OS status and risk score in GEO cohort. (b) Survival analysis of GEO high-risk 
group and low-risk group (P = 0.001). (c) Nomogram analysis results of GEO cohort. (d)(e)(f) AUC of time-dependent ROC curves in 
GEO cohort for 1 year, 3 years and 5 years. (g)(h)(i) Calibration curve for 1 year, 3 years and 5 years in GEO cohort.

Table 3. Univariate and multivariate Cox analysis of the 12-gene prognostic signature and clinical risk factors.
Variables Univariate analysis Multivariate analysis

Training set
id HR HR (95% CI) p-value HR HR (95% CI) p-value
Age 0.997 0.978–1.015 0.718 1.014 0.994 − 1.035 0.16
Gender 1 0.694–1.441 1 0.85 0.585 − 1.235 0.394
Stage 1.648 1.396–1.946 <0.001 1.921 1.154 − 3.198 0.012
T 1.6 1.285–1.994 <0.001 1.009 0.785 − 1.296 0.946
M 1.748 0.959–3.187 0.068 0.368 0.095 − 1.423 0.147
N 1.787 1.455–2.195 <0.001 0.943 0.603 − 1.476 0.798
Risk Score 3.982 2.867–5.530 <0.001 3.313 2.273 − 4.827 <0.001
Test set
id HR HR (95% CI) p-value HR HR (95% CI) p-value
Age 1.01 0.977 − 1.044 0.561 0.985 0.950 − 1.021 0.407
Gender 1.905 0.994 − 3.650 0.052 1.23 0.616 − 2.454 0.557
Stage 1.652 1.144 − 2.387 0.007 1.568 1.052 − 2.337 0.027
RiskScore 82.97 10.025 − 686.710 <0.001 84.063 7.882 − 896.502 <0.001

HR: Hazard ratio; CI:confidence interval; T: Tumor; M: Metastasis; N: Node. 
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We also probed the correlation between high 
and low-risk populations and immune status. 
ssGSEA analysis was used to analyze the 
immune cells and related functions of the two 
groups. Between the low-risk group and the 
high-risk group of the TCGA cohort, it was 
observed that the scores of APC co-inhibition, 
Th2 cells, NK cells and MHC class I were sig-
nificantly different (P < 0.05, Figure 4(c,e)). In 
addition, for the high-risk group, the scores of 
Inflammation-promoting, Parainflammation and 

Th1 cells were higher, while the scores were 
lower for HLA, type II IFN response, aDCs, 
B cells, iDCs, Mast cells, Neutrophils and 
T helper cells (P < 0.05, Figure 4(c,e)). In the 
ssGSEA score of the GEO cohort, between the 
high-risk group and the low-risk group, there 
were differences in cytolytic activity, MHC class 
I, Parainflammation, type II IFN response, Th2 
cells, CD8 + T cells, iDCs, Inflammation−pro-
motion, Th1 cells, and Treg (P < 0.05, Figure 4 
(d,f)).

Figure 4. (a) Immune grouping results and tumor microenvironment heat map. Distribution of tumor purity, ESTIMATE score, 
immune score, and stromal score in high vs low immunity groups. (b) GO enrichment analysis results (P < 0.05). (c)(d)(e)(f) Results of 
immune cell scores and immune-related functions in TCGA and GEO groups.
(*** P < 0.001, ** P < 0.01, * P < 0.05, ns = not significant). 
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Discussion

Lung cancer is a malignant lesion formed by the 
immortal proliferation of cancer cells with genetic 
mutations in the lungs. Lung adenocarcinoma is 
the most common type of lung cancer. Studies 
have shown that malignant cancer is usually 
related to dysregulated iron metabolism, especially 
the expression of iron metabolism genes. This 
excess iron is needed not only in the early stages 
of tumor development, but also in the late stages 
of promoting the metastatic cascade [25,26]. In 
view of the complex network of iron metabolism 
genes in cancer cells and their effects on tumor 
growth and survival, it is necessary to understand 
their relevance to the prognosis of lung adenocar-
cinoma. In present study, we identified DEGs 
related to iron metabolism, and then constructed 
a 12-gene prognostic model through the LASSO 
Cox regression analysis and verified its relation-
ship with OS in the external cohort (GSE42127). 
The results indicated that the 12-gene signature 
was able to divide LUAD patients in the TCGA 
and GEO datasets into two groups with different 
risk levels, namely the high-risk group and the 
low-risk group. Kaplan-Meier analysis suggested 
that patients with low-risk scores were correlated 
with better prognosis, and vice versa. These results 
indicated that our gene model significantly corre-
lated with the overall survival of LUAD patients. 
In addition, univariate and multivariate Cox ana-
lysis results revealed that our signature model was 
closely related to risk scores. Risk scores are an 
extremely important factor that predict the prog-
nosis of patients, which further reflects the strong 
prognostic ability of our signature. ROC analysis, 
nomogram and calibration graphs using TCGA 
and GEO data sets also confirmed the robustness 
of our prognostic model. In addition, functional 
and immune exploration analysis showed that 
immune-related pathways were enriched. 
Therefore, these results indicated that our 12- 
gene signature provides the possibility of identify-
ing lung adenocarcinoma and using iron metabo-
lism genes to establish a prognostic model.

The gene signature proposed in this study con-
sists of 12 iron metabolism-related genes 
(HAVCR1, SPN, GAPDH, ANGPTL4, PRSS3, 

KRT8, LDHA, HMMR, SLC2A1, CYP24A1, 
LOXL2, TIMP1). Hepatitis A virus cellular recep-
tor 1 (HAVCR-1) is mainly a susceptibility gene 
for asthma and allergies, which is principally 
expressed on Th2 cells and acts as an effective 
costimulatory molecule for T cell activation 
[27,28]. According to a report by Zheng et al. 
[29] the abnormal expression of HAVCR-1 is asso-
ciated with the occurrence and progression of 
NSCLC. Glyceraldehyde-3-phosphate dehydrogen-
ase (GAPDH) is a glycolytic enzyme and one of the 
main housekeeping proteins, and its increased 
expression is correlated with the proliferation and 
invasion of lung cancer [30]. Angiopoietin-like 
protein 4 (ANGPTL4) is a glycoprotein secreted 
by various cells; it belongs to the Angiopoietin 
family (ANGPTL) and is overexpressed in non- 
small cell lung cancer [31]. According to Ma 
et al. [32] serine protease 3 (PRSS3) and its signal 
transduction pathway are related to poor prognosis 
in lung cancer, which may lead to the invasion and 
growth of lung adenocarcinoma tumor cells. 
Keratin 8 (KRT8) is a type II basic intermediate 
filament (IF) protein, which can be abnormally 
expressed in various human cancers (including 
lung adenocarcinoma tissue) [33]. Lactate dehy-
drogenase A (LDHA) is an enzyme that plays 
a particularly important role in cancer cell meta-
bolism and tumor growth, and is connected with 
poor prognosis in lung adenocarcinoma [34,35]. 
Hyaluronan-mediated motor receptor (HMMR) is 
a multifunctional protein, according to Song et al. 
[36]. HMMR is associated with the reduction of 
the overall survival of lung cancer patients. In 
addition, it can pass HCG18/miR-34a- The 5p/ 
HMMR axis that can accelerate the progression of 
lung adenocarcinoma [37]. Glucose transporter 1 
(GLUT1) is a pivotal protein in the pathway of 
cellular energy metabolism, also known as solute 
carrier family 2 member 1 (SLC2A1); it has 
a particularly essential role in the occurrence and 
progression of tumors, and may be one of the 
driver genes of lung cancer [38]. Cytochrome 
P450 family 24 subfamily A member 1 
(CYP24A1) is situated at the inner mitochondrial 
membrane and nucleus, according to Shiratsuchi 
et al [39]. The expression of CYP24A1 is relevant 
to the poor prognosis of resected lung 
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adenocarcinoma. Lysine oxidase-like 2 (LOXL2) 
pertains to the lysyl oxidase (LOX) family, and is 
mainly involved in the formation of cross-linked 
products of matrix collagen and elastin outside the 
cell [40]. In addition, according to the report by 
Peng et al. [41], LOXL2 has a driving effect on the 
invasion and metastasis of lung cancer, and the 
increase of LOXL2 expression indicates poor prog-
nosis in patients with LUAD. The tumor/stroma 
TIMP-1 intensity ratio in the tissue has 
a particularly important predictive effect on 
tumor recurrence [42]. At present, the function of 
SPN in the occurrence and development of lung 
cancer is indistinct. Although some biological 
functions of these 12 genes have not been reported 
in LUAD, it provides a new direction for the study 
of tumorigenesis and cancer immunity.

In the past ten years, although iron has been 
a research hotspot of lung cancer, there are few 
studies on the correlation between iron metabo-
lism and tumor immunity. For the patients in the 
different risk groups of LUAD, GO analysis was 
conducted. Unexpectedly, many biological pro-
cesses related to immunity were enriched. 
Therefore, we speculate that iron metabolism 
may be closely related to tumor immunity. 
Moreover, we also studied and explored the 
interrelationship between risk groups and 
immune cells. Interestingly, there is a difference 
between high and low-risk groups, including 
naïve B cells, CD8 + T cells, activated CD4 
+ memory T cells, M1 Macrophages and acti-
vated dendritic cells. Previous research has indi-
cated that CD8 + T cells [43,44] and 
macrophages [44,45] have a connection with the 
poor prognosis of lung cancer patients. Perhaps 
one of the reasons for the poorer prognosis of 
high-risk patients is the weakened anti-tumor 
immune function.

This study also has few deficiencies as well as 
limitations. First, our predictive model is constructed 
and verified by retrospective data from public data-
bases. Therefore, it is necessary to conduct more 
prospective experimental studies to further verify 
the prognosis of our gene signature, and experimen-
tal studies on these genes may provide new insights 
into their biological functions. Secondly, the use of 
a single feature to build a predictive gene signature is 
actually an inherent defect. In practice, other 

mechanisms also affect the occurrence and develop-
ment of lung adenocarcinoma.

Conclusion

In summary, our research may define a new 
gene signature of iron metabolism to explore 
the overall survival of lung adenocarcinoma. 
The 12-gene signature consists of promising 
prognostic biomarkers for lung adenocarcinoma, 
and also provides multiple targets for precise 
treatment.
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