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Multiple myeloma (MM) is a hematopoietic malignancy characterized by heterogeneity, which corresponds to alternative splicing
(AS) profiles and disadjust gene expression. Bioinformatics analysis of AS factors possibly related to MM progression identified the
polypyrimidine tract binding protein (PTBP1) as candidate. The purpose of this study was to confirm the incidence and prognostic
value of PTBP1 in MM patients. Several cohorts of 2971 patients presenting newly diagnosed and relapsed MM were enrolled.
Correlations between PTBP1 expression and clinicopathological characteristics, proliferative activity, and response to therapy of
myeloma cells were analyzed. Moreover, the effect of PTBP1 on the AS pattern of specific aerobic glycolysis-related genes was
explored in MM patients. Clinically, PTBP1 expression was present at all stages; it increased with disease progression and poor
prognosis, which was even stronger elevated in patients with high tumor burden and drug resistance. Mechanistically, PTBP1
modulated AS of PKM2 and aerobic glycolysis-related genes in MM patients, which play synergistic or additive effects in clinical
outcome. PTBP1 may be a novel marker for prognostic prediction and a promising therapeutic target for the development of
anti-MM treatments.

1. Introduction

Multiple myeloma (MM) is a plasma cell malignancy and is
characterized by hypercalcaemia, renal disorder, anaemia,
and lytic bone lesions, and it is incurable. Although the utilities
of novel chemotherapies have obviously conferred survival
advantage, MM remains a relapsed or refractory disease
[1–3]. Thus continued investigations to identify established
markers for risk stratification are still in urgent requirement
[4]. To date, several molecular markers have been adopted as
a standard staging system (DS/ISS); they are still inadequate
in prognostic prediction and providing treatment choices
[5]. The appropriate biomarkers that can reduce the proba-
bility of recurrence and progression are a clinicopathological
priority for MM risk stratification [6, 7].

Adaptation to various stresses is an important character-
istic of tumor cells. Recent studies reported how tumor cells
regulate gene expression at the level of alternative splicing
(AS) to withstand various stresses [8, 9]. AS leads to ligation
of exons and excision of introns from the pre-mRNA and is

arranged by the spliceosome [10]. When the intron/exon
boundaries show high standards of conservation, exons are
almost contained in the mRNA, whereas some exons lacking
consensus sequences are excluded by alternative regulation
[11]. In these cases, exons’ recognitions are regulated by
trans-acting splicing factors (SFs). The main members of
SFs are serine-arginine proteins and the heterogeneous
nuclear ribonucleoproteins, which act antagonistically in AS
regulation [10], and the interaction among antagonistic SFs
decides whether exon is skipped or included through AS.
Therefore, AS increases the coding potential of genomes
and represents an evolutionary advantage [12]. However,
the changeable regulation adds further opportunities for
error, and the defective splicing may contribute to the neo-
plastic transformation [13–15].

Polypyrimidine tract-binding protein (PTBP1) is a kind
of SFs, which participates in variable biological processes
[16]. It has been shown that PTBP1 plays important roles
in several tumors, such as bladder cancer [17], pancreatic
cancer [18], and colon cancer [19]. Accumulating studies
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have demonstrated that PTBP1 could modulate the expres-
sion of pyruvate kinase M2 isoform (PKM2), which is a vital
regulator of glycolysis [16, 19, 20]. For example, Cheng et al.
found that PTBP1 knockdown overcomes the resistance to
vincristine and oxaliplatin along with the switching of the
PKM isoform from PKM2 to PKM1, making for inhibiting
glycolysis [19]. However, the role of PTBP1 in MM progres-
sion is yet to be elucidated.

In this study, we investigated the impact of PTBP1
expression inMM patients’ survival, as well as the correlation
with clinicopathological characteristics, proliferative activity,
and response to therapy of myeloma cells. We also explored
whether PTBP1 plays a functional role in aerobic glycolysis
and influences the prognosis in MM.

2. Methods and Materials

2.1. Data Source and Microarray Analysis. Gene Expression
Omnibus (GEO) database was carried out to examine the
expression of PTBP1 in 2971 MM patients (GSE5900 [21],
GSE2658 [22], GSE24080 [23], GSE31161 [24], GSE83503
[25], GSE9782 [26], GSE19554 [27], and GSE57317 [28]).
Data acquisition and normalization methods in the afore-
mentioned databases have been described previously [23,
29]. The gene expression of PTBP1 in plasma cells was deter-
mined using the Affymetrix U133Plus2.0 microarray, which
was performed as previously described [22].

2.2. Cell Culture and Western Blotting. Human myeloma cell
line (RPMI-8226) was cultured in RPMI 1640 medium
(Gibco, USA) supplemented with 10% heat-inactivated
FBS (Gibco, USA), penicillin (100 IU/ml), and streptomycin
(100μg/ml) in a humidified incubator at 37°C and 5% CO2.
Protein extracts and western blotting were performed as
described previously [3, 30]. Primary antibodies include
PTBP1 (Proteintech, USA), PKM2 (Zen Bioscience, China),
and GAPDH (Cell Signaling Technology, USA). GAPDH
was used as a loading control to normalize the protein sig-
nal. All western blot experiments were repeated in biological
triplicate.

2.3. Statistical Analysis. Various statistical analysis methods
were utilized to assess the roles of PTBP1 expression in clin-
ical features and prognosis in MM patients. A Kruskal-Wallis
test was used to compare multiple sets of samples. A two-
tailed Student t-test was used to compare the mean values
of the two groups. The one-way analysis of variance
(ANOVA) test was used to compare means of more than
two groups. The chi-square test was used to compare clinical
and pathological features between the PTBP1 high and
PTBP1 low groups. Survival curves were plotted according
to the Kaplan-Meier method, and the log-rank test was
employed to analyze statistical differences between survival
curves. The effect of PTBP1 expression on outcome was ana-
lyzed using univariate and multivariate Cox regression
models. For our analyses, the GraphPad Prism 6 software
was employed, and p ≤ 0:05 was considered statistically
significant.

3. Results

3.1. PTBP1 Is a High-Risk Myeloma Gene. To evaluate the
potential that PTBP1 is important for MM, we examined
the expression of PTBP1 in normal plasma (NP), smoldering
multiple myeloma (SMM), monoclonal gammopathy of
undetermined significance (MGUS), and myeloma cells
using GEP datasets. Notably, PTBP1 expression significantly
increased from NP, SMM, MGUS, to MM TT2 (Total Ther-
apy 2) and TT3 samples (∗∗p < 0:01, Figure 1(a)). In detail,
we found higher PTBP1 expression in the proliferation sub-
group (PR); the worst subgroup in MM patients (p < 0:0001,
Figure 1(b)). These findings led us to confirm that PTBP1 is
a high-risk gene in MM.

3.2. Correlations between PTBP1 Expression and
Clinicopathological Characteristics. To confirm the robust-
ness of the PTBP1, we divided the patients into two categories
according to their PTBP1 expressions (low/high expression,
using the 50th percentile as cutoffs) and tested in predicting
clinicopathological characteristics distribution. Using 11
clinicopathological characteristics, we found different distri-
butions between the two subgroups in 559 MM patients.
Expression levels of β2-microglobulin (β2-MG), lactate
dehydrogenase (LDH), and bone marrow infiltration were
significantly increased in the PTBP1high subgroup compared
with the PTBP1low subgroup by unpaired t-test (4:111 ±
0:2308 vs. 5:352 ± 0:3885, p = 0:0062, Figure 2(a); 166:5 ±
3:627 vs. 177:5 ± 4:22, p = 0:0479, Figure 2(b); and 43:72 ±
1:642 vs. 49:01 ± 1:534, p = 0:0188, Figure 2(c)). The remain-
ing characteristics were equally distributed between two
subgroups (Table 1). Consistent with GSE24080, PTBP1
expression was significantly correlated with low albumin
(37:79 ± 0:6134 vs. 35:80 ± 0:5878, p = 0:0201, Figure 2(d))
and high β2-MG levels (5:227 ± 0:5208 vs. 8:927 ± 1:805,
p = 0:0326, Figure 2(e)) in theGSE9782 (Table 2).Tovalidate
ourfindings in Figure 1(b),we also evaluated the correlation of
PTBP1 expression and proliferation. PTBP1 expression is
positively correlated (r = 0:3013, p < 0:0001, Figure 2(f)) with
myeloma cell proliferation in 246 bortezomib-treated MM
patients available at the GSE9782 dataset, using the global
gene expression-based proliferation index (GPI) of MM
originated by Mayo Clinic as proxy of actual myeloma cell
proliferation [31].

3.3. Increased PTBP1 Expression Is Linked to Disease Relapse
in MM. The expression of PTBP1 is significantly increased in
relapsed MM patients from TT2 and TT3 cohorts compared
to baseline patients in the dataset (3822 ± 61:71 vs. 4285 ±
127, p = 0:0003; 4291 ± 59:29 vs. 4757 ± 350:8, p = 0:05,
Figure 3(a)). Figure 3(b) also confirms this and shows the sig-
nificantly increased PTBP1 expression in the relapsed group
(7:101 ± 0:029 vs. 7:254 ± 0:023, p = 0:0002, Figure 3(b)).
Furthermore, Figure 3(c) shows that significantly more
patients in the PTBP1low group had a higher bortezomib-
treated response rate (54.1% vs. 40.1%, p = 0:03). To confirm
the correlation between endogenous PTBP1 expression and
drug resistance, we used the parental RPMI-8226 (8226) cell
line and the RPMI-8226 drug-resistant (8226-DR) cell lines,
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which acquired drug resistance by prolonged exposure to low
doses of bortezomib. As expected, the expression of PTBP1
was substantially upregulated, as determined by western blot-
ting, in 8226-DR cells compared to 8226 cells (Figure 3(d)).
Furthermore, message expressions of PTBP1 in 12 MM
patients substantially increased for the following three serials
at diagnosis, prior to the first (after chemotherapies) and sec-
ond autologous stem cell transplant, indicating that increased
PTBP1 may account for drug resistance and promote cell
proliferation (p = 0:05, Figure 3(e)). Consistent with this
finding, the TT6 MM patients, who had been treated with
more than one cycle of prior therapy excluding autologous
hematopoietic stem cell transplant, were divided into two
groups based on high and low PTBP1 expression, and the
high PTBP1 group had an inferior overall survival (OS)
(p = 0:0195, Figure 3(f)).

3.4. Higher PTBP1 Expression Predicts Poor Prognosis in MM.
To evaluate the biological outcomes of elevated PTBP1
expression in MM patients, we divided all MM into two
groups based on high and low PTBP1 expression. The high
PTBP1 expression group had shorter median OS and
progression-free survival (PFS) time than the low PTBP1
expression group (44 vs. 52 and 39 vs. 45, respectively).
As shown in Figure 4, MM patients with strong PTBP1
expression had an inferior OS (p = 0:0152, Figure 4(a))
and PFS (p = 0:0474, Figure 4(b)). Furthermore, Table 3
shows the impact of PTBP1 expression and clinicopatho-
logical characteristics on clinical outcomes. Based on the
results of univariate Cox proportional hazards regression
analysis, β2-MG, Creatinine (Creat), ALB, and PTBP1
expression (HR = 1:435, 95% CI: 1.059–1.943, p = 0:020)
were included in the multivariable Cox proportional hazards
regression analysis which indicated that the PTBP1 expres-
sion was still an independent prognostic factor in terms of
OS in 559 MM patients (HR = 1:359, 95% CI: 1.001–1.845,
p = 0:049, Table 3). We also applied the Kaplan-Meier analy-
sis to validated PTBP1 expression in another independent
dataset, and the Kaplan-Meier survival analysis suggested

that patients in low PTBP1 expression group had better OS
and PFS compared with those in high PTBP1 expression
group in GSE9782 (p < 0:0001, Figure 4(c); p = 0:0011,
Figure 4(d)).

3.5. PKM2 and Other Key Regulators of Warburg Effect
Positively Correlate with PTBP1 Expression and Predict
Survival in MM. Using STRING tools, the protein-protein
interaction analysis showed that PTBP1 and PKM interact
or coexpress in the Homo sapiens protein interaction net-
work (Figure 5(a)). To confirm the correlation between
endogenous PTBP1 and PKM2, we investigated the expres-
sion of PTBP1 and PKM2 in 8226 and 8226-DR cell lines
by western blotting. As expected, both PTBP1 and PKM2
were upregulated in 8226-DR cells compared to 8226 cells
(Figure 3(d)). Given that PTBP1 is involved in PKM2
mediated-myeloma progression, we also investigated the cor-
relation between of PTBP1 and PKM2 in MM patients. As
shown in Figure 5(b), PKM2 expression was significantly cor-
related with PTBP1 expression in the GSE2658 with r value as
0.3666, respectively (p < 0:0001, Figure 5(b)). To further
investigate whether PTBP1 and PKM2 have synergistic or
additive effects in MM patients’ outcome, 351 myeloma
patients were divided into 3 subgroups including PTBP1
low/PKM2 low, PTBP1 mid/PKM2 mid, and PTBP1
high/PKM2 high, and survival curve showed that the PTBP1
high/PKM2 high group has the worst outcome in OS
(p < 0:0001, Figure 5(c)). These clinical data strongly support
findings that PTBP1 interacts with PKM2 and promotes its
oncogenic function. Previous studies indicated that PKM2
plays a vital role in aerobic glycolysis [32, 33]. We then inves-
tigated whether PTBP1 alters aerobic glycolysis by regulating
PKM2 expression. The correlation between PTBP1 and aero-
bic glycolysis genes was tested in 351 MM patients. The
expression of PTBP1 and glycolysis-enhancing genes, such
as lactate dehydrogenase A (LDHA), alpha-enolase (ENO1),
and hexokinase 2 (HK2), was significantly positively
correlated each other (r = 0:3329, r = 0:2780, r = 0:3225,
p < 0:0001, Figures 5(d)–5(f)).
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Figure 1: PTBP1 is a high-risk myeloma gene. (a) PTBP1 expression of NP (n = 22), MGUS (n = 44), SMM (n = 12), and MM TT2 (n = 351)
and TT3 (n = 208) in GSE5900 and GSE2658. (b) A scatter-plot shows PTBP1 expression in eight MM subgroups (CD1 and CD2 subgroups
with spiked expression of CCND1 and CCND3; PR: proliferation; LB: low-bone disease; HY: hyperdiploid; MS: MMSET; MF: MAFB;
MY: myeloid).

3Disease Markers



4. Discussion

MM remains incurable despite novel treatments, and plenty
of prognostic markers that reflect tumor- or host-related fac-
tors have failed to explain thoroughly the heterogeneity in
clinical outcomes [34]. Meanwhile, the AS signature of MM

is emerging as a detailed marker to distinguish tumor sub-
types and accurately stratify patients [35]. The workflow
chart is shown in Figure 4(e); we extracted 2971 MM
patients’ gene expression microarrays from the GEO data-
base. In GSE24080, we analyzed the association between
PTBP1 and clinicopathological characteristics of 559 MM
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Figure 2: PTBP1 is linked to myeloma progression inMM. (a)–(c) The levels of β2-MG, LDH, and bone marrow infiltration in PTBP1high and
PTBP1low subgroups. β2-MG, LDH, and bone marrow infiltration expressed highest in the PTBP1high group, while lowest in the PTBP1low

group. (d, e) The levels of ALB and β2-MG in the PTBP1high and PTBP1low subgroups. ALB expressed highest in the PTBP1low group,
while lowest in the PTBP1high group. (f) A scatter-plot demonstrating positive correlation of PTBP1 expression and myeloma proliferation
in 246 bortezomib-treated MM patients.
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patients. In GSE24080, MM patients were treated through
TT2 (induction therapy: D(T)-PACE, dexamethasone with
or without thalidomide; maintenance: thalidomide) and
TT3 (induction therapy: VTD-PACE; maintenance: bortezo-
mib-thalidomide-dexamethasone). In GSE2658, we analyzed
the expression of PTBP1 in eight different molecular
subgroups. In GSE9782, 264 samples from 264 patients, we
analyzed the association between the expression of PTBP1,
clinicopathological characteristics, and the global gene
expression-based proliferation index. In GSE31161, we ana-
lyzed the association between PTBP1 expression and relapse
in 937 samples. In GSE83503, 585 samples from 585 cases, we
analyzed the expression of PTBP1 in relapse MM patients
and nonrelapse MM patients. In GSE19554, we analyzed
the expression of PTBP1 before and after the first/second
transplant in 12 paired MM patients. In GSE57317, 55 sam-
ples from 55 cases, we analyzed the association between the
expression of PTBP1 and survival in ASCT-treated MM
patients. Therefore, our study showed that PTBP1 favors
splicing of oncogenic variants and uncovers novel potential
prognostic and therapeutic targets for MM patients.

To predict the prognosis of MM patients, the assessment
of cellular proliferative activity is regarded with importance
[36]. Proliferation status of MM cells had been evaluated by
the plasma cell labeling index, Ki-67, or metaphase cytoge-
netics [37, 38]. More importantly, PTBP1 was significantly

higher expressed in the PR subgroup, which is characterized
by overexpression of proliferation-related genes and acceler-
ate cell cycles, which was the worst prognosis in comparison
to the other molecular subgroups [22, 39]. The degree of
bone marrow infiltration by MM cells, as estimated by bone
marrow biopsy, is one of the considerable determinants of
the MM tumor burden [40]. We performed correlation anal-
ysis between PTBP1 expression and bone marrow plasma cell
infiltration, as derived from bone marrow biopsies. This
significant correlation between bone marrow infiltration
and PTBP1 expression raises the possibility that PTBP1
may represent a biomarker that indirectly reflects tumor
mass and the level of bone marrow invasion at diagnosis
[41]. Similarly, we evaluated BZW2 message levels in 241
bortezomib-treated patients paralleled the myeloma prolifer-
ation score, which was scored with the assistance of GPI
model constructed by Hose and his associates [42]. Conse-
quently, PTBP1 can facilitate cell proliferation and influences
the prognostic impact on MM patients.

Another interesting finding in our study is that PTBP1
expressions appear to correlate in response to bortezomib-
based chemotherapy. Bortezomib, which targets the 26S pro-
teasome subunit β5, has induced a high level of positive
response rates [43, 44]. However, toxicities associated with
global proteasomal inhibition and drug resistance in MM
were major concerns, prompting the further development

Table 1: Relation of the characteristics in GSE24080.

Characteristic No. of patients PTBP1low PTBP1high p value

Age ≥ 65 yr 136/559 (24) 59/280 (21) 77/279 (27) 0.072†

Male sex 337/559 (60) 178/280 (63) 159/279 (56) 0.111†

β2 −MG ≥ 3:5 (mg/l) 239/559 (42) 104/280 (37) 135/279 (48) 0.007†

CRP ≥ 4 (mg/l) 292/559 (52) 137/280 (48) 155/279 (55) 0.127∗

Creat ≥ 1:2 (mg/dl) 182/559 (32) 82/280 (29) 100/279 (34) 0.104∗

LDH ≥ 170 (U/l) 231/559 (41) 104/280 (37) 127/279 (45) 0.048∗

ALB ≥ 3:5 (g/dl) 482/559 (86) 246/280 (87) 236/279 (84) 0.272∗

HB ≥ 11 (g/dl) 312/559 (55) 163/280 (58) 149/279 (53) 0.268∗

ASPC ≥ 40% 283/559 (50) 128/280 (45) 155/279 (55) 0.022∗

BMPC ≥ 50% 269/559 (48) 122/280 (43) 147/279 (52) 0.034∗

MRI ≥ 3 lesions 305/559 (54) 149/280 (53) 156/279 (55) 0.552∗
∗Fisher’s exact test was used. †The chi-square test was used.

Table 2: Relation of the characteristics in GSE9782.

Characteristic No. of patients PTBP1low PTBP1high p value

Age ≥ 65 yr 87/264 (32) 45/132 (10) 42/132 (31) 0.694†

Male sex 159/264 (60) 76/132 (57) 83/132 (62) 0.378†

Ig A 54/264 (20) 28/132 (21) 26/132 (19) 0.760†

ALB ≥ 40 (mg/dl) 92/264 (34) 57/132 (43) 35/132 (26) 0.004∗

β2 −MG ≥ 3:5 (mg/l) 116/264 (43) 56/132 (42) 60/132 (45) 0.619†

CRP ≥ 1:2 (mg/l) 82/264 (31) 37/132 (28) 45/132 (34) 0.287∗

∗Fisher’s exact test was used. †The chi-square test was used.
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Figure 3: PTBP1 is linked to disease relapse in MM. (a) The expression of PTBP1 was significantly upregulated in relapsed patients from
TT2 and TT3 cohorts in comparison with baseline patients. (b) The expression of PTBP1 was significantly upregulated in relapsed patients
from the GSE83503 cohort in comparison with patients without relapse. (c) Bar view presents response rate between PTBP1low MM patients
and PTBP1high MM patients treated with bortezomib. (d) Western blots showing the expression of PTBP1, PKM2, and GAPDH in 8226 and
8226-DR cells. (e) The expression of PTBP1 is showed in 12 MM patient samples collected at diagnosis, pre-1st and pre-2nd ASCT. (f)
Kaplan-Meier analyses of OS revealed that high PTBP1 expression conferred inferior clinical outcomes in TT6 patients.

6 Disease Markers



of novel target and therapies. In GSE31161, we found a sig-
nificant increase in the expression of PTBP1 in relapsed
MM patients from TT2 and TT3 cohorts in comparison with
baseline patients. Furthermore, compared to PTBP1high sam-
ples, patients with PTBP1low MM cells were significantly
responded to bortezomib evidenced in GSE9782 [26]. Con-
sistent with GEPs derived from patient populations, the pro-
tein expression of PTBP1 was substantially increased in

8226-DR cells compared with parental 8226 cells. The above
data suggested that myeloma with higher PTBP1 expression
represents more aggressive behavior and worse response to
chemotherapies.

Aberrant splicing regulation confers alternative advan-
tage to tumor cells by favoring oncogenic splice variants of
tumor-related genes [9, 45]. For example, upregulation of
PTBP1 in tumor cells affected glycolytic metabolism by
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Figure 4: High PTBP1 expression is linked to a poor prognosis in two independent datasets. (a, b) Kaplan-Meier analyses of OS and PFS
revealed that high PTBP1 expression conferred inferior clinical outcomes in GSE24080. (c, d) Kaplan-Meier analyses of OS and PFS
revealed that high PTBP1 expression conferred inferior clinical outcomes in GSE9782. (e) Bioinformatics flowchart of the GEO database.

Table 3: Univariate and multivariate Cox regression analyses for OS in 559 MM patients.

Variables
Univariate model Multivariate model

HR 95% CI p HR 95% CI p

Age ≥ 65 yr 1.206 0.885-1.700 0.286

Male sex 0.968 0.714-1.313 0.835

β2 −MG ≥ 3:5 (mg/l) 2.185 1.613-2.958 0.000 1.870 1.327-2.636 0.000

Creat ≥ 1:2 (mg/dl) 1.731 1.278-2.345 0.000 1.213 0.865-1.701 0.262

ALB ≥ 3:5 (g/d) 0.521 0.360-0.756 0.001 0.640 0.437-0.935 0.021

PTBP1 high 1.435 1.059-1.943 0.020 1.359 1.001-1.845 0.049
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promoting AS of the PKM2 variant [46], leading to acquisition
of drug resistance to chemotherapy [18]. Likewise, by screen-
ing PTBP1-interaction targets reported by STRING database,
we found that PTBP1 and PKM2 mRNA expression is posi-
tively correlated in GSE2658. Additionally, the high expres-
sion of the PTBP1 and PKM2 groups showed worst
prognosis in various types of MM. The above clinical data
forcefully support our findings that PTBP1 upregulates
PKM2 expression and promotes its oncogenic function.
Because PKM2 is a fundamental enzyme for regulation of aer-
obic glycolysis in tumor cells, we further determine that
PTBP1 expression is positively correlated with aerobic glycol-

ysis genes including LDHA, HK2, and ENO1. Myeloma cells
possess increased glycolysis for ATP generation, which is
called the Warburg effect [47, 48]. Recently, accelerating stud-
ies confirmed that aerobic glycolysis is the hallmark of tumor
cells and crucial for proliferation and survival [49, 50]. Despite
therapeutic advances, the MM patients eventually relapse and
the altered metabolism with increased glycolysis is showed to
contribute to drug resistance [48, 51], and increasing research
reveals that inhibition of glycolysis restores sensitivity to bor-
tezomib and suppresses tumor growth induced by metabolism
[51]. It indicated that targeting glycolysis may be a novel ther-
apeutic strategy to overcome drug resistance.
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Figure 5: PTBP1 regulates aerobic glycolysis in MM. (a) The protein network was constructed by online software STRING. (b) A scatter-plot
showed the correlation between PTBP1 and PKM2. (c) Kaplan-Meier analyses of OS among MM patients with different expression levels of
PTBP1 and PKM2. (d–f) Scatter-plots shows the correlation between PTBP1 and glycolysis-enhancing genes, respectively.
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5. Conclusions

In conclusion, our results revealed that increased PTBP1
expression was associated with a poor outcome and resis-
tance to chemotherapy in newly diagnosed MM patients.
We also characterized PTBP1 as a novel regulator of aerobic
glycolysis which contributes to PKM pre-mRNA splicing.
Hence, to better individualize the chemotherapy regime,
apart from the laboratory markers of prognostic significance,
the incorporation of an initial valuation of PTBP1 expression
to an individual prognostic profile for MM risk stratification
should be considered.
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