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Abstract
Human papillomavirus type 16 (HPV-16) is the predominant genotype worldwide associated with invasive cervical cancer 
and hence remains as the focus for diagnostic development and vaccine research. L2, the minor capsid protein forms the 
packaging unit for the HPV genome along with the L1 protein and is primarily associated with transport of genomic DNA 
to the nucleus. Unlike L1, L2 is known to elicit cross-neutralizing antibodies and thus becomes a suitable candidate for pan-
HPV prophylactic vaccine development. In the present study, a total of 148 cervical HPV-16 isolates from Indian women 
were analyzed by PCR-directed sequencing, phylogenetic analysis and in silico immunoinformatics tools to determine the 
L2 variations that may impact the immune response and oncogenesis. Ninety-one SNPs translating to 35 non-synonymous 
amino acid substitutions were observed, of these 16 substitutions are reported in the Indian isolates for the first time. T245A, 
L266F, S378V and S384A substitutions were significantly associated with high-grade cervical neoplastic status. Multiple 
substitutions were observed in samples from high-grade cervical neoplastic status as compared to those from normal cervical 
status (p = 0.027), specifically from the D3 sub-lineage. It was observed that substitution T85A was part of both, B and T cell 
epitopes recognized by MHC-I molecules; T245A was common to B and T cell epitopes recognized by MHC-II molecules 
and S122P/A was common to the region recognized by both MHC-I and MHC-II molecules. These findings reporting L2 
protein substitutions have implications on cervical oncogenesis and design of next-generation L2-based HPV vaccines.
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Introduction

Cervical cancer is the fourth common cancer occurring in 
women worldwide, with an estimated 570,000 new cases 
and 250,000 deaths occurring annually [1, 2]. Infection with 
high-risk or oncogenic human papillomavirus (HPV) types 
plays a critical role in the development of cervical cancer. 
HPV type 16 (HPV-16) remains the most prevalent high-risk 

type globally and in India [2, 3]. The ~8 kb genome of HPV-
16 is packaged in the viral capsid which is composed of 
360 molecules of the major capsid protein L1 and up to 72 
molecules of the minor capsid protein L2, which largely lies 
buried inside L1 [4, 5]. The capsid proteins can assemble 
into virus-like particles (VLPs) and induce highly neutral-
izing antibodies that have shown promise in the prevention 
of papillomavirus-associated cancers. The currently avail-
able HPV vaccines, Gardasil and Cervarix are based on the 
L1, major capsid protein. However, targeting the L1 protein 
alone, prevents infection by limited HPV types because of 
lack of cross-reactive epitopes toward other HPV types. The 
HPV L2 protein on the other hand offers a distinct advan-
tage, as it not only elicits neutralizing antibodies but also 
cross-neutralizing antibodies for different HPV types, espe-
cially against its ‘N’ terminus [4, 6, 7]. Therefore, develop-
ment of a pan-HPV prophylactic vaccine derived from L2 
regions seems feasible and needs to be explored.
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For the development of an efficient L2 vaccine construct, 
recognition of appropriate epitope sequence is imperative to 
generate an efficient immune response [8, 9]. Implementa-
tion of informatics tools and online databases can facilitate 
this and reduce the time and experimental costs involved 
[10]. Determination of genetic variability, pertaining to 
epitopes, is important, as substitution of one or more amino 
acid(s) in the L2 protein could impact the conformation of 
epitopes relevant for viral neutralization. L2 protein also 
plays an important role during HPV infection, by bind-
ing to a secondary viral receptor to facilitate exit from the 
endosomes and delivery of the viral genome to appropri-
ate domains within the nucleus [11]. Variations in L2 gene 
might lead to amino acid substitutions and the associated 
conformational changes can impact viral assembly and 
clinical outcome of infection. Ideally, vaccine constructs 
and diagnostics need to be developed locally and hence it is 
important to understand the geographical variations.

Data with regard to molecular analysis of L2 protein of 
HPV-16 from India is negligible. The present study was 
thus carried out to determine the genetic variability in the 
L2 protein of HPV-16 and to analyze the association of the 
identified variations with cervical disease status. We fur-
ther predicted the immunogenic B and T cell epitopes of L2 
using in silico immunoinformatics tools and identified the 
substitutions that may impact these epitopes.

Methods

The study was approved by Institutional Ethics Committee 
of ICMR-National AIDS Research Institute (ICMR-NARI), 
Pune, India [NARI/EC/approval/17-18/31].

Clinical specimens

A total of 148 cervical specimens positive for HPV-16 infec-
tion collected from women undergoing cervical screening 
from different geographical locales from India and stored 
at −70 °C as part of the sample repository in the Microbi-
ology laboratory, ICMR-NARI were included in the study. 
The samples were classified as belonging to normal (n = 41), 
low-grade (n = 45) or high-grade (n = 62) cervical status as 
described previously [12]. HPV detection and genotyping for 
the samples was done using the Linear Array HPV genotyp-
ing test (Roche Molecular Systems, USA).

Nucleic acid extraction and sequencing

DNA was extracted from cervical samples using the 
QIAamp DNA mini kit (Qiagen, USA) and analyzed for 
L2 (3373–4794 bp) using two pairs of gene specific prim-
ers [HPV-16 L2 F1- TTA CTT AAC AAT GCG ACA CA, 

HPV-16 L2 R1-TTA TCC ACA TCT ATA CCT TCA, HPV-
16 L2 F2-CCC TGC TTT TGT AAC CAC TC and HPV-16 
R2-CGT GCA ACA TAT TCA TCC GT [13]. The amplified 
PCR products were purified with QIAquick PCR purification 
kit (Qiagen, USA) and sequenced using Big Dye Termina-
tor v3.1 Cycle Sequencing Kit (Applied Biosystems, USA). 
The sequence data was curated using SeqScape (V.2.6) and 
aligned in SEED 2 software [14]. MEGA7 [15] was used to 
identify site specific nucleotide variations and their corre-
sponding amino acid substitutions using the reference entry, 
Refseq_ID: NC_001526.4 [16].

Phylogenetic analysis

Phylogenetic analysis of the 148 isolates of L2 gene 
sequences generated in this study was carried out using both 
alignment-based Maximum Likelihood (ML) method (for 
1000 bootstrap runs) implemented in IQTREE server (http:// 
iqtree. cibiv. univie. ac. at/) [17] and Return Time Distribution 
(RTD) (http:// bioin fo. unipu ne. ac. in/ RTD/ home. htm) devel-
oped in-house which is an alignment-free method [18] to 
analyze their clustering pattern. A dataset consisting of total 
211 entries of L2 was used which includes 63 entries from 
GenBank with known lineages (reference dataset; https:// 
www. ncbi. nlm. nih. gov/ nucle otide/) and 148 sequences gen-
erated in this study. Typing of the HPV-16 Indian isolates 
was done on basis of their L1 gene [12] and these lineage 
and sub-lineages were assigned to the L2 sequences of cor-
responding isolates. The OTU (operational taxonomic unit) 
labels in the tree were generated as ‘lineage/sub-lineage_iso-
late-ID_gene’. The OTU labels of isolates for which lineage/
sub-lineage could not be assigned due to non-availability of 
their corresponding L1 sequences were generated as ‘XX_ 
isolate-ID_gene’. Phylogenetic trees were visualized using 
the iTOL server (https:// itol. embl. de/) [19]. Recombination 
detection was carried out using the RDP4 software [20], 
while selection pressure analysis was carried out using Data-
monkey server (http:// www. datam onkey. org/) and a stringent 
cut-off of  10–5 was applied.

B cell and T cell epitope prediction

Experimentally characterized B and T cell epitopes of L2, 
were extracted from Immune Epitope Database (IEDB, 
http:// www. iedb. org/ home_ v3. php). We further predicted 
linear B cell epitopes for L2 protein using Bepipred Linear 
Epitope Prediction 2.0 [21], Chou & Fasman Beta-Turn Pre-
diction [22], Emini Surface Accessibility Prediction [23], 
Karplus & Schulz Flexibility Prediction [24], Kolaskar 
& Tongaonkar Antigenicity [25] and Parker Hydrophilic-
ity Prediction [26] methods available on IEDB resource. 
Consensus peptides predicted using all the six prediction 
methods were taken and overlapping antigenic regions were 

http://iqtree.cibiv.univie.ac.at/
http://iqtree.cibiv.univie.ac.at/
http://bioinfo.unipune.ac.in/RTD/home.htm
https://www.ncbi.nlm.nih.gov/nucleotide/
https://www.ncbi.nlm.nih.gov/nucleotide/
https://itol.embl.de/
http://www.datamonkey.org/
http://www.iedb.org/home_v3.php
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concatenated. T cell epitopes having potential to recognize 
both, MHC-I and MHC-II were predicted. MHC-I binding 
epitopes were predicted using MHC-I binding consensus 
[27] and MHC-I processing (Proteosome, TAP) methods 
[28]. The predicted epitopes were filtered using percentile 
rank, predicted IC50 < 50 nM, total score (combined score 
of proteasome, TAP and cleavage scores) and checked for 
consensus. MHC-II binding epitopes were predicted using 
MHC-II binding consensus method [29, 30] and filtered 
using both, percentile rank and predicted IC50 (<50 nM). 
The overlapping MHC-I and MHC-II peptides were concat-
enated to yield non-redundant antigenic regions.

Statistical analysis

Statistical analysis was done using SPSS (V.15.0). HPV-16 
L2 variations and cervical lesion grade were compared using 
Mann–Whitney U test as described earlier [12]. Odds ratio 
and 95% confidence intervals were computed to determine 
the association between normal and high-grade cervical dis-
ease status. Differences were considered to be statistically 
significant if p < 0.05.

Results

HPV‑16 L2 variations

A total of 148 HPV-16 positive cervical samples were 
analyzed to study the extent of variations in L2 gene that 
resulted in detection of 91 nucleotide polymorphisms, of 
which, 43 (47.3%) were non-synonymous and 48 (52.7%) 
were synonymous nucleotide variations, translating to 35 
(39.8%) non-synonymous and 53 (60.2%) synonymous 
amino acid substitutions, with no indels.

A total of 16 amino acid substitutions L75F, T85A, 
T94A, S122A, S134R, S270N, D272N, N273S, D334T, 
Q342L, T352P, H354Q, T377S, L390F, I418M, S426A in 
L2 protein are reported in the Indian HPV-16 isolates for the 
first time. Amino acid substitutions L330F (75.6%), S269P 
(28.4%) and D334N (24.3%) were most frequently observed.

Evolutionary analysis of HPV‑16 L2

Phylogenetic trees depict the evolution of L2 gene of Indian 
isolates (Fig. 1). Similar clustering patterns were observed 
for both, alignment-based ML and alignment-free RTD 
methods (Fig. 1a, b) barring relative order of isolates as part 
of lineage assignments. Of the 148 Indian isolates, 134 iso-
lates were assigned lineage on the basis of L1 gene, whereas 
14 isolates could not be assigned lineage due to lack of cor-
responding L1 sequences. As can be seen in Fig. 1, 124/134 
(92.5%) isolates clustered in accordance with lineage 

assignment based on L1. Thus, 107/124 (86.3%) and 17/124 
(13.7%) isolates clustered with members of lineage A and 
lineage D, respectively. Of the 10/134 (7.5%) isolates, that 
did not cluster in accordance with their respective assigned 
lineages, 7 and 2 isolates with assigned lineage A clustered 
with members of lineage D and C respectively. The remain-
ing 1 isolate with assigned lineage D clustered with mem-
bers of lineage C. The 14 isolates without assigned lineage, 
clustered into A and D lineage clusters with 7 isolates in 
each. No evidence of recombination and positive selection 
was observed.

HPV‑16 L2 variations and cervical disease status

The association of amino acid substitutions with cervi-
cal lesion grade is shown in Table 1. Significantly higher 
occurrence of multiple substitutions in samples with high-
grade cervical status as compared to normal cervical status 
(p = 0.027) was observed. T245A, L266F, S378V and S384A 
substitutions showed significant association with high-grade 
cervical status as compared to normal cervical status. These 
substitutions were predominantly observed in the D3 sub-
lineage. The T245A substitution was observed in 19 sam-
ples (A1:2, A2:4, D1:1, D3:6 and unassigned sub-lineage:6), 
L266F was observed in 20 samples (A1:2, A2:4, D1:1, D3:7 
and unassigned sub-lineage:6), S378V was observed in 20 
samples (A1:2, A2:4, D1:1, D3:7 and unassigned sub-line-
age:6) and S384A was observed in 20 samples (A1:2, A2:4, 
D1:1, D3:7 and unassigned sub-lineage:6). These 4 substitu-
tions were found to be co-mutating in 19 samples.

Epitope prediction

Six experimentally validated non-overlapping B cell epitopes 
were obtained from IEDB. A total of 7 B cell epitopes were 
predicted. Amino acid substitutions L75F, T85A, T94A 
and T245A were part of these B cell epitopes (Table 2). 
One experimentally validated T cell epitope (MHC-I) was 
obtained from IEDB. Filtering of predicted MHC-I epitopes 
resulted into 20 overlapping peptides that were concatenated 
to yield 10 unique non-redundant regions. A total of 42 over-
lapping epitopes were predicted for MHC-II that resulted 
in 8 discrete regions. Amino acid substitutions T85A, 
S122P/A, S134R, T245A, L266F, S269P, S270N and I306L 
were part of predicted T cell epitopes (Table 3).

Discussion

HPV-16 is the predominant genotype worldwide, associ-
ated with invasive cervical cancers and hence remains as 
the focus for HPV diagnostic development and vaccine 
research. L2 protein of HPV is a major component required 
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for virus assembly along with L1 and helps in transport of 
viral particles to the host cell nucleus. L2 protein also helps 
in mediating the increased efficiency of formation of VLPs 

by binding with L1 [31, 32]. The C-terminal amino acid resi-
dues 396–439 of HPV11 L2 are shown to form the L1 bind-
ing domain [11, 33]. This L2 region of HPV11 corresponds 

Fig. 1  Phylogenetic tree of HPV-16 L2 gene: a Alignment-based Maximum Likelihood tree and b Alignment-free RTD-based tree
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to 412–455 amino acid residues of HPV-16. Seven non-
synonymous amino acid substitutions were observed in this 
region, of which I420T and A443G substitutions were also 
reported at the corresponding positions in L2 of HPV11 
[11]. These substitutions might affect the binding of L2 
with respective L1 molecule and thereby impact formation 
of VLPs. It is also noteworthy that these substitutions (I420T 
and A443G) were predominantly observed in samples from 

high-grade cervical disease and may have a role in cervical 
oncogenesis as well.

The phylogenetic tree constructed from L2 gene 
sequences showed that majority of the isolates (92.5%) 
clustered in accordance with the lineages assigned on the 
basis of L1 as reported previously [12]. However, changes 
in the sub-lineage clustering pattern were observed, which 
indicates the differential evolution of L1 and L2.

Table 1  Human papillomavirus 
16 amino acid substitutions in 
L2 by cervical lesion grade

OR Odds ratio, 95% CI 95% confidence interval
a OR with 95% CI are presented for normal versus high-grade cervical status. The p values of significant 
associations are marked in boldface

HPV-16 L2 Amino 
acid substitutions

Cervical disease status Total (n = 148) ORa

(95% CI)
p-value

Normal 
(n = 41)

Low-grade 
(n = 45)

High-grade 
(n = 62)

L75F 2 0 0 2 0.73 (0.29, 1.78) 0.512
T85A 2 0 0 2 – –
T94A 0 2 0 2 – –
S122P 8 5 20 36 0.51 (0.19, 1.30) 0.180
S122A 0 3 0 3 – –
S134R 1 0 0 1 – –
T245A 2 3 19 24 0.12 (0.02, 0.53)  <0.01
L266F 2 4 20 26 0.10 (0.02, 0.49)  <0.01
S269P 10 9 23 42 0.55 (0.23, 1.32) 0.201
S270N 0 3 0 3 – –
D272N 0 3 0 3 – –
N273S 0 2 1 3 – –
I306L 0 2 1 3 – –
L330F 30 40 42 112 1.96 (0.77, 5.01) 0.180
T332S 1 0 9 10 0.15 (0.02, 1.21) 0.084
D334N 8 10 19 37 0.47 (0.18, 1.21) 0.124
D334H 0 0 1 1 – –
D334T 0 0 1 1 – –
E338D 0 5 3 8 – –
Q342L 2 0 0 2 – –
T352P 3 0 0 3 – –
H354Q 0 0 2 2 – –
T377S 0 0 1 1 – –
S378V 5 5 20 30 0.29 (0.09, 0.85) 0.033
S378F 8 8 20 36 0.51 (0.19, 1.30) 0.180
S384A 5 5 20 30 0.29 (0.09, 0.85) 0.033
V385I 8 5 22 35 0.44 (0.17, 1.11) 0.120
L390F 0 0 1 1 – –
I418M 0 0 1 1 – –
I420T 8 5 20 33 0.51 (0.19, 1.30) 0.180
Q423H 0 3 1 4 – –
A424T 8 5 20 33 0.51 (0.19, 1.30) 0.180
S426A 2 0 0 2 – –
I428L 2 5 5 12 0.58 (0.11, 3.16) 0.699
A443G 7 5 20 32 0.43 (0.16, 1.14) 0.110
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The L2 residues 1-MRHKRSAKRTKR-12 and 
456-RKRRKR-461 constitute the nuclear localization sig-
nal (NLS) and the region 296-SRRTGIRYSRIGNKQTL-
RTRS-316 constitutes the arginine rich nuclear retention 

signal (NRS). Substitution of arginine residues within 
NRS lead to reduction in L2 concentration in nucleus even 
though both the NLS are retained [34]. The only substitu-
tion observed in the NRS was I306L that occurs imme-
diately after arginine at 305th position and might impact 
L2 concentration in nucleus, which needs to be validated 
experimentally.

Nucleotide variations and the resultant amino acid substi-
tutions can alter the L2 protein properties which can impact 
the carcinogenic potential. We observed that substitutions 
T245A, L266F, S378V and S384A were significantly asso-
ciated with the high‐grade cervical disease. These substi-
tutions need further functional validation to decipher their 
role as molecular marker(s) of cervical carcinogenesis. Con-
trary to a previous report we did not find difference in the 
prevalence of non-synonymous variations between samples 
from normal and high-grade cervical disease, though the 
occurrence of multiple non-synonymous variations differed 
significantly [13].

In the present study, the potential impact of substitu-
tions on antigenicity and immunogenicity was evaluated. 
The amino acid residues 69–81 and 108–120 of L2 protein 
are highly conserved and play an important role in inducing 
neutralizing antibodies [35, 36]. Two monoclonal antibodies 
(mAbs) KIL2 and MAb6 recognize L2 regions, 73–79 and 
65–81 respectively [37, 38]. The L75F substitution is part 
of these antibody binding sites and may impact the produc-
tion of neutralizing antibodies. In addition to experimentally 
validated epitopes reported in IEDB, we predicted, both B 
and T cell epitopes using computational methods. L75F, the 
only experimentally validated substitution in B cell epitope 
was rarely observed in the 148 samples studied. Recently, 
a number of HPV vaccine constructs based on L2 covering 
different epitope regions are reported [39–42]. The substitu-
tion T85A observed in our study is part of the L2 region of 
the proposed therapeutic and prophylactic vaccine construct 
based on L2, E6 and E7 regions [41]. Therefore, T85A sub-
stitution might impact vaccine efficacy being common to 
both B and MHC-I epitopes.

The substitution S122P/A is common to the epitope 
region recognized by both MHC-I and MHC-II. The sub-
stitution T245A is part of both B and T cell epitopes (rec-
ognized by MHC-II), while the substitution L266F is part 
of epitope recognized by MHC-II. These substitutions were 
observed to be associated with high-grade cervical lesions. 
Thus, the regions containing substitutions (T245A and 
L266F) need to be given consideration for disease sever-
ity status, immune response based on antigenic diversity, 
validating existing vaccines and designing novel vaccine 
candidates.

To conclude, the findings reported in this study would 
help to understand the impact of L2 protein substitutions on 
cervical oncogenesis as well as in considerations for design 

Table 2  B cell epitopes (the amino acid and the substitution is high-
lighted in red and the substitution is listed in parentheses)

Description Start End

Experimentally validated B cell epitopes from IEDB
QLYKTCKQAGTCPPDIIPKV 17 36
RTGYIPL(F)GTRPPT 69 81
LVEETSFIDAGAP 108 120
STHNYEEIPMDTFIVSTNPNTVTSSTPI 189 216
SGYIPANTTIPF 391 402
YMLRKRRKRLPYFF 453 466
Predicted B cell epitopes
HKRSAKRTKRASATQLYKTC 3 22
GTRPPTATDT(A)LAPVRPPLT(A)VDPV 76 98
TTHNNPTFTDPSVLQPP 156 172
VARLGLYSRTTQQVKVVDPAFVTT(A)P 222 246
LDIVALHRPALTSRRTG 284 300
GAKVHYYYDLS 321 331
FYLHPSYYMLRKRRKR 446 461

Table 3  T cell epitopes (the amino acid and the substitution is high-
lighted in red and the substitution is listed in parentheses)

Description Start End

Experimentally validated T cell epitopes from IEDB
AILDINNTV 144 152
Predicted MHC-I epitope
ILQYGSMGVFF 45 55
TATDT(A)LAPV 81 89
SLVEETSFIDAGAPTS(P/A)V 107 123
AILDINNTV 144 152
AETGGHFTL 175 183
GLYSRTTQQVKVVDPAF 226 242
KLITYDNPAY 248 257
DFLDIVALHR 282 291
RI(L)GNKQTLRTRSGKSIGAKVHYY 305 327
SYYMLRKRRKRLPYFFSDV 451 469
Predicted MHC-II epitope
GSMGVFFGGLGIGTGSGT 49 66
EETSFIDAGAPTS(P/A)VPSIP 110 127
PDVSGFS(R)ITTSTDTPAILDINNTVTTVT 128 156
IPMDTFIVSTNPNTVTSST 196 214
KVVDPAFVTT(A)PTKLITYDNP 236 255
AYEGIDVDNTL(F)YFS(P)S(N)N 256 271
IAPDPDFLDIVALHRPALTSR 277 297
FYLHPSYYMLRKRRKRLPYFFSDVSLAA 446 473
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of next-generation L2-based HPV vaccine, subject to experi-
mental validations.
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